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Abstract. Graph Neural Networks (GNNs) learn the correlation
between local graph neighborhoods and node properties, with the
requirement of adequate complete and clean neighborhoods. How-
ever, the intrinsic structural characteristics of the long-tail node de-
gree distribution in most real-world graphs violate the assumption.
Numerous low-degree nodes lack accurate representation due to lim-
ited connections, while bits of high-degree nodes include redundancy
and errors in observed neighborhoods, harming the performance of
GNNs. In this paper, we propose Laner-GNN, which performs latent
neighborhood restoration adapting to aforesaid structural character-
istics and improves representation capacity. Specifically, to reduce
computational complexity, latent disentangled neighborhood factors
are extracted and then manipulated for restoration instead of explic-
itly altering the entire adjacency matrix. A Degree-Adaptive Restorer
captures the dependency of restoration on node degrees, while a
Label-Informed Restorer and the Structured Field Augmented Priori
enhance restoration with information from the prediction target and
the graph structure. Extensive experiments on real-world datasets in
different domains verify that our model excels existing SOTAs in dif-
ferent degree bins, thus uplifting the model performance in the whole
dataset.

1 Introduction

Graphs are powerful tools to represent relationships among entities,
and have been applied in a wide variety of real-world domains, such
as e-commercial platforms and social recommendation. A crucial
task on graphs is to predict node properties like class labels, utilizing
node attributes and edges depicting interactions between nodes. One
of the most influential paradigms to achieve this goal is Graph Neu-
ral Networks (GNNs) [8, 4, 3, 19]. By performing message-passing
within a node’s local neighborhood, GNNs approximate functions
defined on graphs that are related to the target properties. To train
GNNs, it is desirable to have sufficient data to capture the correla-
tion between the node neighborhood and the target to predict, i.e.,
adequate complete and clean neighborhoods along with their labels.

However, nodes in real-world graphs often exhibit a long-tail de-
gree distribution, where diverse data patterns are associated with
different degrees. This intrinsic structure significantly impacts the
performance of GNNs. On one hand, a large fraction of nodes in
the graph have low degrees (we call such nodes tail nodes), and
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Figure 1. Node count with different degrees (blue bars) and the
performance of GCN [8] (grey lines) and GAT [19] (red lines) in all bins on
Cora and Photo. The number of nodes decreases with node degree increases,

and models perform worse at both ends of the degree distribution.

their observed neighborhood is sparse and incomplete. On the other
hand, extremely high-degree nodes (head nodes) are connected to
numerous neighbors, some of which may be redundant or even spu-
rious. The limited population of head nodes also hinders models from
learning essential features within such data. To provide a more vivid
depiction of the long-tail degree distribution, we take real-world e-
commerce graphs as example, where nodes are items and edges are
co-purchases. In these graphs, most of the items are cold (tail nodes)
and isolated from other items, while a few extremely popular items
(head nodes) can be co-purchased with a diverse set of items that may
be distinct from them. In both scenarios, GNN models struggle to
accurately capture the unique characteristics of these items. In stark
contrast, the nodes in the middle part of the distribution (body nodes)
have an appropriate population and relatively complete and less noisy
observed neighborhoods, on which GNNs can achieve better perfor-
mance. Figure 1 shows several benchmark graphs exhibiting a long-
tail degree distribution. The performance of existing GNNs deterio-
rates when dealing with nodes of either low or high degrees because
they treat all nodes identically and ignore the structural characteris-
tics of the degree distribution. A naïve idea is to discard the nodes at
both ends and train GNNs only on body nodes, which does nothing
to solve the problem. Though nodes with different degrees cannot be
managed identically, they play a vital role in the training of GNNs.
Tail nodes constructively support effective training with their abun-
dance, while head nodes offer valuable information for the model de-
spite potential issues with their population or neighborhoods. There-
fore, to better model the correlation between node neighborhood and
target properties, we need to design GNN models and correspond-
ing training paradigms that can adapt to and effectively utilize nodes
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over the long-tail degree distribution.
Issues about degree distribution on graphs have gained increas-

ing attention, the majority of which focus on the incompleteness of
neighborhoods of tail nodes. They either re-normalize the adjacency
matrix to exert higher impact from tail nodes over model training [7]
or learn to complete the neighborhood with generative models [10] or
knowledge transferring techniques [12, 26]. Nevertheless, rare atten-
tion is paid to the head nodes, except [13] introduces debiasing func-
tions to relieve unfair issues introduced by structure. Another line
of work considers optimizing graph structure and the GNN model si-
multaneously [5, 20, 9]. Unfortunately, such methods explicitly learn
to adjust the whole adjacency matrix, neglecting local characteristics
of node neighborhoods and high in complexity.

In this paper, we consider nodes all over the long-tail degree dis-
tribution, and restore the local neighborhood adapting to the intrinsic
structural characteristics. However, there are several challenges asso-
ciated with this restoration process. First, to reduce complexity and
prioritize the node-centered characteristics, it is crucial to recover
the local neighborhood without explicitly learning to manipulate the
entire graph structure. Also, the position of nodes in the degree dis-
tribution decides the difference between the neighborhood currently
observed and the ideal (ground-true) one. Effectively incorporating
this dependency on degrees into the restoration process remains a
challenging task. Furthermore, the prediction target, along with in-
formation relevant to prediction from the graph (e.g. feature distri-
bution and topological structure), should guide and facilitate adjust-
ments for better neighborhood restoration.

To combat these challenges, here we propose the Latent
Neighborhood Restorers Boosted Graph Neural Networks (Laner-
GNN). Specifically, we model the correlation between the node
neighborhood and the target under the framework of variational in-
ference. First, rather than learning to modify explicit edges in the
graph, we treat the latent variables in variational inference as dis-
entangled structural factors and manipulate them to replenish or di-
minish the neighborhood structures. On top of that, we elaborate
a Degree-Adaptive Restorer to inject the dependency on node de-
grees. To bring tighter integration of the prediction target and rel-
evant information in the graph to local neighborhood restoration, a
Label-Informed Restorer and the Structured Field Augmented Pri-
ori are introduced. Additionally, the high-quality neighborhoods of
body nodes are leveraged to achieve improved model initialization
and train the restorers. Subsequently, all restored nodes, spanning
various degrees, actively partake in the training process, providing
adequate data and information. Extensive experimental results on six
real-world benchmarks from diverse domains with long-tail degree
distribution demonstrate the improvements brought by our methods,
especially on tail and head nodes.

We summarized our contribution as follows:

• We dive into the intrinsic structural characteristics of the long-tail
degree distribution, and give an overall consideration on nodes
throughout the distribution, rather than only assuming that tail
nodes are problematic.

• We propose Laner-GNN performing latent local neighborhood
restoration utilizing degree information, prediction target and mul-
tifaceted information in the graph.

• We conduct experiments on six real-world datasets, and our model
excels existing SOTAs in different degree bins, demonstrating the
effectiveness of our design.

2 Related Work

2.1 Graph Neural Networks

Due to superior performance, GNNs have been widely used for graph
analysis. The main idea of GNNs is message passing and neighbor-
hood aggregation. Early GNNs [8, 4] obtain the representation of the
central node by iteratively aggregating the representation of all or a
sampled set of its neighbor nodes. [19, 2, 14, 27] further improve
by adjusting the aggregation weight according to the importance of
neighbors to reduce noise. Most of the existing GNNs assume that
the underlying graphs are correct and reliable, but graphs in the real
world may either contain error information or miss important ones,
thus bringing greater bias to GNN models.

2.2 Improving Graph Neural Networks on
Low-Degree Nodes

The issues of degree-related biases have gained increasing concerns
in the field of graph embedding. Existing methods [21, 18] build mul-
tiple models for nodes with different degrees using hashing tech-
niques, which suffer from high space complexity and neglect the
problems existing in local neighborhood. Particularly, recent stud-
ies have been devoted to improving the performance of GNNs on tail
nodes with very low degrees and large populations. RawlsGCN [7]
increases the influence of low-degree nodes on model optimization
by re-normalizing the adjacency matrix to a doubly stochastic matrix.
meta-tail2vec [11] is a meta-learning framework for local-aware rep-
resentation learning, which specifies the task of learning tail node
representations as personalized regression problems based on lo-
cal context. Tail-GNN [12] further introduces the concept of neigh-
borhood transformation to model the variable relationships between
target nodes and their neighbors. LAGNN [10] utilizes Variational
Auto-encoder to learn the distribution of neighbor node representa-
tions conditioned on the central node representation and enhances
the expressive power of graph neural networks through the gener-
ated features. Cold Brew [26], on the other hand, addresses isolated
nodes and achieves the transfer of graph structural information using
knowledge distillation techniques. DegFairGNN [13] introduces the
problem of general degree unfairness and employs learnable debias-
ing functions for nodes with different structures. Some studies [25, 1]
consider both degree and class long-tailedness, which are outside the
scope of our discussion. Different from our model, these existing
models for the long-tail degree distribution pay more attention to tail
nodes while ignoring the problems of high-degree ones.

2.3 Graph Structure Learning

Graph structure learning (GSL) jointly optimizes graph structures
and node representations to improve learning quality. As standing-
out representatives, Pro-GNN [5] takes into account some properties
shared by real-world graphs, such as low rank, sparsity and feature
smoothness. GEN [20] takes the original graph structure, node fea-
tures and multi-order neighborhood information as multifaceted ob-
servations to estimate a better graph using Bayesian inference, and
then optimizes the parameters of GNN. WSGNN [9] harnesses a
variational inference approach to solve a label-structure joint esti-
mation problem, improving the robustness of the model when both
labels and edges are sparse. However, these GSL methods explicitly
learning to adjust the graph structure are high in complexity.
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Figure 2. Overview framework of Laner-GNN made up of an encoder network and a decoder network defined with variational inference. Specifically in the
former one, local neighborhood factors are first extracted, and then go through the Degree-Hinted Restorer and the Label-Informed Restorer to get more perfect

neighborhoods. Then, the restored neighborhood factors are fed into the decoder network to get predictions.

3 Preliminaries

Graph. A graph is represented by G = (V, E ,X), where V is the
node set and E is the edge set. The edges can also be represented
by an adjacency matrix A ∈ {0, 1}|V|×|V|, where Ai,j = 1 iff
(vi, vj) ∈ E . X ∈ R

|V|×dx is the node feature matrix, each row
xv of which denotes the features of node v ∈ V . Y ∈ R

|V|×dy

represents the node properties to predict. For example, in the node
classification task, each row yv ∈ Y can be class labels. For each
node v, degree dv refers to the number of edges connected to it.

Problem. We consider the problem of predicting node properties
on graphs. Specifically, in graph G, the task is to estimate the dis-
tribution of node labels P (Y |G). We optimize a machine learning
model parameterized by Θ using Maximum Likelihood Estimation
(MLE):

max logPΘ(Y |G). (1)

GNN models factorize and approximate the probability based on
the local neighborhood Nv = {v} ∪ {u|(u, v) ∈ E} of each node v:

PΘ(Y |G) =
∑

v∈V
PΘ(yv|Nv), (2)

where |Nv| ∝ dv . The error of such approximation depends strongly
on the quality of the observed neighborhood Nv , which is related to
the neighborhood size.

Our goal is to design a better form of approximating function
that can reduce the negative impact of low-quality neighborhoods,
achieve better performance on nodes with different degrees, and thus
improve the overall performance on the whole dataset.

4 Proposed Methods

4.1 Overall Framework

Instead of explicitly learning the optimal graph structure by gen-
erating/deleting the edges (i.e., editing the whole adjacency matrix
A), we propose to introduce an extra latent variable M as structural
factors that constitute the neighborhoods. Each factor may represent

specific patterns within the neighborhood. By manipulating and reg-
ularizing these factors, we adjust the composition of neighborhoods
and achieve implicit restoration.

Incorporating M , we rewrite Equation (1) as follows:

logPΘ(Y |G) = log

∫
PΘ(Y ,M |G)dM . (3)

To optimize this objective, we follow the variational inference ap-
proach [6] to derive the Evidence Lower Bound (ELBO) for the ob-
served data:

logPΘ(Y |G)

≥
∫

Qφ(M |Y ,G) log PΘ(M |G)PΘ(Y |G,M)

Q(M |Y ,G)
=EQφ(M |·)[logPΘ(Y |G,M)]

−DKL(Qφ(M |Y ,G)||PΘ(M |G)).

(4)

The overview framework of our model is shown in Figure
2. Practically, we need to instantiate the variational distribution
(Qφ(M |Y ,G), PΘ(Y |G,M) and PΘ(M |G)) with neural net-
works and learn to find their optimal parameters.

The key lies in how the encoder network (modeling
Qφ(M |Y ,G)) extracts and restores the latent neighborhood
of nodes. To cope with the intrinsic structural characteristics of
the long-tail degree distribution, we hope that the distribution
modeling is dependent on the node degree (thus we denote it as
Qφ(d)(M |Y ,G) instead). Moreover, the prediction target Y also
plays an important guiding role in the network. The details are
introduced in Section 4.2.

The prior PΘ(M |G) imposes distribution constraints on the re-
stored latent factors outputted by the encoder network leveraging
existing information from the data, making sure that the restoration
accords with the expectation. To capture the complex structural char-
acteristics of the graph, we propose using a structured field, further
introduced in Section 4.3.

The decoder network (modeling PΘ(Y |G,M)) performs target
prediction given the recovered neighborhood factors which are en-
dowed with sufficient knowledge. For simplicity, we instantiate it
with a Multilayer Perceptron (MLP):

ŷv = MLP([W xxv||mv]), (5)

L. Xu et al. / Laner-GNN: Adapting to Long-Tail Degree Distribution with Latent Neighborhood Restorers2840



and learn by minimizing the prediction loss Lpred =
− logPΘ(Y |G,M) given the observed training set.

4.2 Latent Neighborhood Restoration

In this section, we present the panorama of the encoder network with
latent neighborhood restoration. First, we extract the initial latent
neighborhood factors. Then, the Degree-Adaptive Restorer mines in-
formation inside the degree distribution. The Label-Informed Re-
storer further resorts to external sources of information relevant to
the prediction, complementing each other.

4.2.1 Local Neighborhood Factor Extractor

We define that each row of M contains multiple latent neighborhood
structural factors, which are disentangled so they may focus on mutu-
ally distinct structural components. We harness an extracting module
inspired by [14] to get original factors from the currently observed
neighborhoods. The representations of factors are initialized with:

zv,i = norm(σ(W ixv + bi)), i = 1, 2, ..., F, (6)

where F is the number of factors. Then, to achieve factor disentan-
glement, they are iteratively spread to different fields with T updates:

pv,i = softmaxF (cos(zu,i, cv,i)/τ1), u ∈ Nv, (7)

cv,i = zv,i +
∑

u∈Nv

pu,izu,i, i = 1, 2, ..., F, (8)

where cv,i are initialized with zv,i and τ1 is a hyper-parameter that
controls the hardness of factor assignment.

4.2.2 Degree-Adaptive Restorer

Intuitively, the disparity between the observed neighborhood and the
ground truth depends on node degree. For head/tail nodes, there may
be a huge gap, while for body nodes the observation may have minor
differences with the ground truth. Hence, we propose to use node

degree information as clues in neighborhood restoration.
Here we define the task for degree d as outputting the ground-

true factor composing the ideal neighborhood c̃v,i = f i
d(cv,i) given

the observed neighborhood factor cv,i, where fd is the mapping
performed by the task. For different degrees, the tasks are differ-
ent while sharing global correlation. Specifically, we consider dv =
dv/max(d) as the normalized degree to show the position of node v
within the degree distribution. Suppose we already have pairs of data
D = {(cu,i, c̃u,i)} to learn the relationship, and we first introduce
the architecture of the restorer model. Then explain how to obtain
and utilize the data D, and how the model is trained.

Degree-Adaptive Restoration Task. We represent the task with a
degree-adaptive kernel vector. First, data pairs are embeded with
node degrees:

ru,i = W r,i[du||cu,i||c̃u,i], (cu,i, c̃u,i) ∈ D. (9)

To produce more adaptive contexts for each node v, we re-weight
the data points with the similarity between them and node v and ag-
gregate them to get the task kernel for degree dv . We consider de-
grees and observed factors here, because they stand for the task by
definition and the characteristics of the current neighborhood:

weightv,u = softmaxu(exp(−|du − dv|2/τ2) cos(cu,i, cv,i)),
(10)

rdv
i =

∑

u∈D
weightv,uru,i, (11)

where τ2 is the hyper-parameter controlling the correlation across
degrees. To avoid extra calculation, we propose to use a cache with
LRU replacement mechanism to store the calculated kernels during
training, and directly refer to the cache during inference.

The calculated kernels are then fused with the input to perform
restoration. Here, we propose a scale-and-shift mechanism. Given
degree clues, the model learns adaptively to address varying degrees.
The gate γv,i reduces the intensity of factors to remove excessive
neighborhood factors. Also, the bias βv,i can introduce additional
knowledge from the task kernel exposure to data beyond the current
neighborhood during the whole learning process:

c̃v,i = γv,i � cv,i + βv,i, (12)

where the gate and bias are calculated as:

γv,i = tanh(W γ,i[dv||rdv
i ] + bγ,i), (13)

βv,i = tanh(W β,i[dv||rdv
i ] + bβ,i). (14)

Learning with Disturbing and Contrasting. Now we go back to
acquire the data pairs D = {(cu,i, c̃u,i)}. Since there is no access to
the actual pre-restoration and post-restoration data, we need to simu-
late and self-supervise the restoration module based on the available
observed data. Compared to head/tail nodes, the body nodes with
median degrees can be assumed that the observed neighborhood is
relatively cleaner. Thus, we can corrupt the local topology of body
nodes w to imitate tail or head nodes by randomly dropping or adding
neighbors from/to w and get Γ disturbed versions of neighborhoods
cwj ,i, j = 1, ...,Γ. We treat them as observed factors, and the orig-
inally observed neighborhood cw,i as pseudo ground truth. Notice
that the difference between this corruption and the GSL methods is
that we do not learn how to drop or add edges, and the altering is
localized to the node rather than the whole adjacency matrix.

In each epoch, we sample nk body nodes with all disturbed ver-
sions to form D for the computation of task kernels. In addition, we
sample ncon nodes to guide the optimization of the restorer, using the
contrastive loss to force the output of disturbed views to be closed to
the ground truth:

Lcon = −
ncon∑

w

Γ∑

j=1

log
sim(cw,i, c̃wj ,i)

sim(cw,i, c̃wj ,i) +
∑

q sim(cwq ,i, c̃wj ,i)
,

(15)
where sim(·, ·) = exp(cos(·, ·)/τ3), τ3 is the temperature hyper-
parameter and q is the number of negative samples.

4.2.3 Label-Informed Restorer

Although degrees are informative clues for restoration, we need aug-

mentation from the target labels to make sure that such a process
accords with the prediction task. Specifically, we use a learnable vec-
tor pool {hc,i}Cc=1 to represent the information of labels. We first
calculate the relevance of nodes to each label with t-distribution:

δv,c,i =
(1 + ||c̃v,i − hc,i||2/τ4)−

τ4+1
2

∑
c′(1 + ||c̃v,i − hc′,i||2/τ4)−

τ4+1
2

, (16)

where τ4 is the hyper-parameter to control the degree of freedom of
t-distribution. Based on the relevance, knowledge are fetched from
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the pool, and fused to the observed factors:

ĉv,i = αc̃v,i + (1− α)
∑

c

δv,c,ihc,i, (17)

where α is a parameter to control the impact from labels. This ap-
proach has dual benefits. For tail nodes, we complement missing in-
formation from the pool, while for head nodes, the common informa-
tion stored in the pool can well compensate for the lack of population.

To guide the optimization of this restorer, we force the relevance
δ to be closed to the ground-true labels on the training set Y L:

Lclu,sup = DKL(δi||Y L). (18)

On top of that, to adjust to circumstances where limited labels are
available, an unsupervised clustering loss [22] is introduced for aug-
mentation, which is calculated on the whole batch:

Lclu,unsup = DKL(δi||Di), (19)

Lclu = Lclu,sup + Lclu,unsup, (20)

where each item in Di is

Dv,c,i =
δ2v,c,i/

∑
v′ δv′,c,i∑

c′((δv,c′,i)
2/

∑
v′ δv′,c′,i)

. (21)

Finally, we concatenate the factor representations to the latent vari-
able for each node (restored latent neighborhood):

mv = σ([ĉv,1||...||ĉv,F ]). (22)

4.3 Structured Field Augmented Priori

Now we consider the prior PΘ(M |G). The traditional variational in-
ference assumes that each data point follows i.i.d. standard Gaus-
sian Distribution, which is contradictory to the nature of inter-
connectedness of nodes in graphs. Also, such an assumption treats
neighborhood representations separately and prevents them from
fully utilizing the information in graphs. Therefore, we propose to in-
troduce a Structured Field Augmented Priori for neighborhood M ,
assuming that M lies in an underlying force field defined on the
graph, reflecting the interconnected characteristics of graph structure.

Specifically, we instantiate the structured field as Graph Markov
Random Field (GMRF) [16] here. GMRF assumes the joint distri-
bution of all nodes and edges in the graph share the same prob-
ability density function of the multivariate Gaussian Distribution
N(0,K−1) and is easy to calculate. Let

S = A+ ηAknn, (23)

K = Laplacian(S), (24)

where Aknn is the k-nn graph of node features, k, η are hyper-
parameters. With this assumption, the priori of node neighborhoods
are correlated to the similarity of node features and topological dis-
tance, which contains more information and can result in better
restoration.

To efficiently calculate the KL-divergence in the ELBO loss, we
follow the implementation in [24]:

Lgmrf =DKL(Qφ(M |Y ,G)||PΘ(M |G))
=tr(MTKM)− 1

2
log |I +MTM |.

(25)

4.4 Training Paradigm

In this section, we propose a training paradigm adapting to the in-
herent strucutral characteristics of the long-tail degree distribution.
First, due to the good quality of observed neighborhoods of body
nodes, they are used to train the Degree-Adaptive Restorers as men-
tioned before. In addition, we use them for pre-training and get a
better initialization of factor extractor and the generative model using
the prediction loss Lpred. Finally, using all restored nodes contain-
ing sufficient information, we train the whole model together, with
the following total optimization objective:

L = Lpred + θgmrfLgmrf + θcluLclu + θconLcon, (26)

where θgmrf , θclu, θcon are hyper-paramters.

5 Experiment

5.1 Experimental Setup

5.1.1 Datasets

Our model is evaluated on six public benchmarks from vari-
ous domains for node classification: citation networks Cora and
Pubmed [23], e-commercial networks Photo and Computer [17], a
co-authorship network Coauthor-CS [17] and a social network Face-
book [15]. The statistics of them are summarized in Table 1. The
degree distribution of all benchmarks exhibits a characteristic long
tail.

5.1.2 Baselines

We compare our model with the following models: (1) GCN [8] and
GraphSAGE [4] are traditional GNNs, aggregating neighborhood
features without discrimination. (2) GAT [19], GPR-GNN [2], Dis-
enGCN [14], S2GC [27] adjust the weights of existing edges during
aggregation. (3) RawlsGCN [7], Tail-GNN [12], LAGNN [10], Cold-
Brew [26] emphasize to improve performance on tail nodes; Deg-
FairGNN [13] further consider structural fairness. (4) Pro-GNN [5],
GEN [20], WSGNN [9] reduce noise by explicitly refining the graph
structure, such as generating or removing edges.

5.1.3 Settings

For Cora and Pubmed, we follow the same train/val/test split ratio as
[23] while others follow [17]. For all methods, we take a two-layer
network structure and set the hidden dimension as 64. For Laner-
GNN, we set the number of latent factors F = 8, each of which con-
tains an 8-dimensional vector. For the number of pre-training epochs,
we set it to 10 for Cora, Pubmed and Coauthor and 50 for the oth-
ers. The thresholds to divide head/body/tail nodes are decided by the
95% percentile and mean value of the degree distribution. We tune
the hyper-parameters on the validation set, and run all models for 5
times and report their average performance on the test set.

5.2 Main Results

In this section, we evaluate the semi-supervised node classification
performance of Laner-GNN against the state-of-the-art baselines. Ta-
ble 2 shows that our Laner-GNN achieves superior performance on
all datasets. Firstly, traditional GNNs ignore the problem of the long-
tail distribution of degrees, so the performance is poor. Secondly,
GNNs for tail node embedding mostly only consider the problem of
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Table 1. Statistics of datasets.

Dataset Cora Pubmed Photo Computer CoauthorCS Facebook

# Nodes 2708 19717 7650 13572 18333 22470
# Edges 5278 44327 119082 245861 81894 171002

# Features 1433 500 745 767 6805 4714
# Classes 7 3 8 10 15 4

Avg. degree 3.90 4.50 31.13 35.76 8.93 15.22
Std of degree 5.23 7.43 47.27 70.31 9.11 26.41

95% perc. of degree 9 18 87 101 26 55

Table 2. Accuracy (%±std.) on node classification task. Boldfaced letters mark the best results and underlined ones are the runners-up. OOM denotes
out-of-memory on an NVIDIA GeForce RTX 3090 (24GB).

Model Cora Pubmed Photo Computer Coauthor-CS Facebook

GCN 81.88±0.70 78.72±0.32 89.91±0.78 78.39±1.71 88.90±0.89 69.29±2.48
GraphSAGE 82.50±0.49 78.68±0.45 89.41±0.90 78.69±1.99 91.06±0.60 67.47±2.67

GAT 82.24±0.47 77.66±0.27 90.82±0.91 76.04±1.90 91.29±0.40 72.41±2.49
DisenGCN 81.96±0.47 78.80±0.84 89.95±0.91 80.16±1.89 90.98±0.35 72.31±2.95

S2GC 82.62±0.04 79.97±0.05 89.91±1.49 78.15±1.04 91.63±0.54 72.24±2.24
GPR-GNN 83.34±0.64 78.96±0.43 89.91±0.44 78.98±2.39 87.24±0.62 72.60±1.87

RawlsGCN 78.52±0.20 75.30±0.23 88.40±0.19 79.67±1.28 91.16±0.66 68.35±1.34
Tail-GNN 81.52±0.26 77.86±0.94 87.77±1.56 78.52±1.34 90.44±0.82 70.15±1.32
LAGNN 83.70±0.29 80.28±0.37 91.81±0.38 79.87±2.30 91.00±0.65 71.67±2.20

ColdBrew 80.16±0.39 77.84±0.75 90.72±0.31 81.24±0.60 90.24±0.05 69.44±0.45
DegFairGNN 78.28±0.72 76.84±0.43 88.74±0.66 79.23±1.74 88.59±0.96 70.47±1.38

Pro-GNN 80.66±0.68 78.01±0.25 87.28±1.37 73.15±1.95 90.57±0.60 OOM
GEN 82.18±0.18 79.06±0.16 89.40±0.33 81.42±1.93 92.26±0.63 70.10±1.22

WSGNN 83.28±0.49 OOM 91.09±0.95 OOM OOM OOM

Laner-GNN 83.94±0.46 81.20±0.67 92.32±0.31 81.88±0.76 92.88±0.52 72.76±1.12

missing information. However, our Laner-GNN focuses on the prob-
lems existing in all nodes of the long-tail distribution graph, taking
into account the missing information of tail nodes and noise and lim-
ited samples about head nodes with full use of the graph structure
information. Finally, GSL methods, explicitly adjusting the graph
structure, suffer from poor space complexity and are out of mem-
ory in relatively large datasets like Pubmed, Computer, Coauthor-CS
and Facebook. On the contrary, Laner-GNN uses the neighborhood
factors to perform implicit restoration and thus achieve even better
performance. In summary, the results significantly demonstrate the
effectiveness of our proposed framework and our motivation.

5.3 Model Performance in Different Degree Bins
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Figure 3. Comparison of models in different degree bins.

We divide the nodes on Cora and Photo into bins according to
their degrees, and report model performance on different bins to
demonstrate our superiority. The results are shown in Figure 3. By
adjusting aggregation weights, GAT can somehow reduce the noise
in head nodes, but is helpless to the lack of information in tail bins.

For LAGNN, the plugged-in features add more information to neigh-
borhoods. However, compared to Laner-GNN, it cannot fully utilize
information from the prediction task and underlying the graph, and
fail to achieve better performance. Our Laner-GNN completes the la-
tent neighbor structure for tail nodes and significantly outperforms all
baselines. Also, after removing the noise and obtaining supplements
for the limited samples from the label pool, the performance on head
nodes is improved. Notice that although the neighborhood of the
middle nodes is relatively high in quality, it is not perfect. Through
neighborhood restoration, their quality is improved to some extent.
Therefore, our model indeed has the ability to handle the structural
problem existing in long-tail degree distribution.

5.4 Model Analysis

5.4.1 Ablation Studies

In this section, we conduct ablation studies on Cora and Photo. The
results are shown in Table 3.

Table 3. Ablation Studies on Cora and Photo.

Variants Cora Photo

Laner-GNN 83.94 92.32

w/o Degree-Adaptive Restorer 81.23 91.70
w/o Degree Clues 82.19 91.71

w/o Label-Informed Restorer(α = 0) 83.30 90.98
w/o GMRF 80.94 89.58

w/o KNN (η = 0) 82.10 91.10
w/o Pre-train 80.41 90.57

Effects of Degree-Adaptive Restorer. To validate the effective-
ness of Degree-Adaptive Restorer, we compare the full model with
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Figure 4. (a) Total training time until convergence of different models on Cora. (b) Visualization of latent structural factors learned by Laner-GNN on Photo,
where the leftmost one shows the mean factors of body nodes in each classes. The two figures on the right respectively show the differences of tail and head to
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Figure 5. Performance on Cora w.r.t. epochs, which demonstrates faster
convergence and better model performance brought by pre-training on body

nodes. For Laner-GNN, the start points of lines are at the number of
pre-training epochs

variants that remove it (w/o Degree-Adaptive Restorer) or do not use
degree information in the restorer (w/o Degree Clues). As we can
see, the two variants underperform full Laner-GNN in both datasets,
which demonstrates that the component leads to better representation
capacity. Also, degrees are important clues to determine how far the
observed neighborhoods are from the ground truth.

Effects of Label-Informed Restorer. We compare Laner-GNN
with the variant without Label-Informed Restorer (w/o Label-
Informed Restorer). Because labels are elements directly associated
with the prediction task, incorporating them into the restorer can up-
lift the quality of local neighborhood restoration.

Effects of Structure Field Augmented Priori. We conduct abla-
tion experiments to prove the improvement brought by the structured
field, with a variant removing such constraint (w/o GMRF) and the
one without Aknn in the priori (w/o KNN). The variant w/o GMRF
has a significant drop compared to the full counterpart, concluding
that GMRF better utilizes the nature of linking in graphs and ben-
efits local neighborhood restoration. Moreover, feature distribution
included in Aknn is vital knowledge in the priori to ensure the qual-
ity of restoration. Without the distribution constraints imposed by
the priori, the model fails to fully fulfill its intended purpose, as the
restoration module cannot capture the characteristics of the graph

data.

Effects of Pre-training with Body Nodes. Compared to the vari-
ant directly training on the whole training set (w/o Pre-train), our
Laner-GNN first warming up on body nodes converges faster and has
better performance as shown in Figure 5(a). We conjecture that the
relatively complete neighborhood structure of body nodes can help
generate a better initialization of the model, and thus the learning
progress of the restorers can be accelerated.

5.4.2 Runtime Analysis

We test Laner-GNN training efficiency on Cora and the results are
shown in Figure 4(a). The time complexity of Laner-GNN is compa-
rable to most existing GNNs focusing on low-degree nodes. Notice
that the training time of GSL models, especially Pro-GNN and GEN,
is more than five times that of our model. The reason is that they need
to search for the optimal graph structure by explicitly learning to add
or remove edges, while Laner-GNN restores local neighborhoods in
latent vector spaces.

5.5 Visualization

To have a deeper insight into the behaviors of Laner-GNN, we vi-
sualize the mean latent factors of each class in Photo (see Figure
5(b). On one hand, Laner-GNN can learn discriminable composition
of structural factors for each class, so the idea of latent neighbor-
hood restoration is reasonable. On the other hand, the gaps between
tail/head and body are narrow, demonstrating the ability of Laner-
GNN to find back missing information or reduce noise, and thus it
can achieve good latent neighborhood restoration.

6 Conclusion

In this paper, we introduce Laner-GNN, a method that improves
node property prediction by restoring the latent neighborhood of
nodes to compensate for structural imperfections. It consists of a
Degree-Adaptive Restorer, which considers the influence of node de-
grees on restoration, and a Label-Informed Restorer and Structured
Field Augmented Priori, which leverage graph information for better
restoration. Our experiments on real-world datasets validate the ef-
fectiveness of our model and its ability to handle nodes with varying
degrees in the long-tail distribution.
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