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Abstract. Natural Language Explanations (NLE) are becoming in-
creasingly important in Interpretable Natural Language Processing,
which can clarify the reasoning process and improve performance. It
is essential to utilize human-authored gold explanations to improve
the quality of explanations produced by the generator. However, the
gold standard explanations within the same dataset are produced by a
fixed group of annotators, leading to a more homogeneous perspective
and style. This has inspired us to improve the quality of generated
explanations by enhancing the diversity of the training set. Based
on this, we introduce DINEX, a two-stage framework comprising a
diversified explanation generator and an explanation-aware predic-
tor, suitable for any task related to NLE. The first stage of DINEX
augments the generator’s training set through two approaches: Se-
mantic Similarity Sampling (SSS) and Structural Variety Generation
(SVG). This enables the generator to learn how to produce NLE from
diverse perspectives and styles. In the second stage, DINEX improves
the predictor’s ability to capture the complementary semantics be-
tween contexts and explanations. It also reduces the impact of noise
on predictions through dynamic perturbations. We conduct experi-
ments on four datasets in the domains of Question Answering and
Reasoning. The results show that DINEX achieves an average per-
formance improvement of 5.49%, establishing a new state-of-the-art
on the ComVE dataset. Evaluations by human evaluators and Large
Language Models (LLMs) demonstrate that DINEX-generated ex-
planations surpass the baseline in quality across 62.4% of the test
samples.

1 Introduction

Neural language models achieve remarkable performance across a
variety of NLP tasks [20], including Sentiment Analysis [39], Ques-
tion Answering (QA) [14, 30], and Natural Language Inference (NLI)
[31]. However, language models are often considered "black boxes"
as their reasoning processes remain largely inaccessible. This lack of
transparency has sparked interest among researchers in developing
methods to provide evidence or explanations for predictions, leading
to the emergence of the field called Interpretable NLP [6].

In Interpretable NLP [17, 25], explanations can be categorized into
two forms: 1) Extractive Rationales (ER), which focuses on selecting
a subset of the input as a crucial evidence for predictions [10]; 2) Nat-
ural Language Explanations (NLE), which generates human-readable
explanations for predictions [8]. NLE can refer to external information
beyond the task inputs, offering greater flexibility in terms of content,
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Figure 1: The typical explain-then-predict framework. The left part
shows the data processing flow. Firstly, a piece of context is input into
the generator, which then produces an explanation. The explanation
and the context are then input into the predictor, which outputs the
prediction. The right part shows specific examples of this framework
in QA (Question Answering) and NLI (Natural Language Inference)
tasks.

style, and length. Moreover, NLE can provide more comprehensive
knowledge than ER, increasing interest in leveraging it to enhance
performance [11].

The Explain-then-Predict structure [25] is commonly used to gen-
erate NLE, as shown in Figure 1. It first employs an explanation
generator to create an explanation for the input, which is then fed into
the predictor for the final decision. This structure ensures that the pre-
dictor is inherently faithful by construction and leverages knowledge
from explanations to improve performance. Generating high-quality
explanations and fully utilizing knowledge from them are central tasks
in this research field. NILE [22] and LIREX [45] are developed for
the NLI task, where they fine-tune explanation generators through
the human-authored gold explanations. However, finetuning with one
gold explanation per question is hard to ensure the quality of the
generated explanations. Prompt-based methods such as PINTO [37]
rely on LLMs to generate explanations, but this approach may be
impacted by hallucinations. During the prediction, NILE inputs the
explanation for each label into the predictor, whereas LIREX only
inputs the explanation with the highest confidence. PINTO employs
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counterfactual regularization to prevent the spurious relation issue.
We observe that the gold explanations in the same dataset are pro-

duced by a fix group of annotators, resulting in a more homogeneous
perspective and style. Based on this observation, we explore ways to
improve the quality of generated explanations by increasing the diver-
sity of gold explanations. In this work, we propose a Interpretable NLP
framework via DIversified Natural Language EXplanations (DINEX).
As shown in Figure 2, DINEX, a two-stage framework, contains a
diversified explanation generator and an explanation-aware predic-
tor. It focuses on improvement from two perspectives: enhancing the
quality of generated explanations and fully utilizing the explanations.
In the first stage, DINEX introduces diverse training data through
two data augmentation methods: Semantic Similarity Sampling (SSS)
and Structure Variety Generation (SVG). SSS introduces explanations
from other datasets with similar semantic. We estimate the seman-
tic distribution of different datasets via Kernel Density Estimation
[34] to filter out semantically similar data. SVG utilizes a small-
scale (7B parameters) LLM for data augmentation through paraphrase
and back-translation instructions. This method produces explanations
with consistent semantics but varying structures. In the second stage,
Explanation-Aware Predictor allows contexts and explanations to cap-
ture complementary information, and applies Dynamic Perturbations
to against noise.

We evaluate DINEX on four different datasets: ECQA [4], OBQA
[28], e-SNLI [9] and ComVE [36]. The first two are designed for the
QA task, while the latter two focus on the Reasoning task. Experi-
mental results show that DINEX-SSS, which utilizes the Semantic
Similarity Sampling data augmentation method, achieves an average
performance improvement of 4.41%. Similarly, DINEX-SVG, em-
ploying the Structural Variety Generation method, records an average
performance gain of 5.29%. We also assess the impact of explanations
generated by different methods on LLMs performance. Evaluations
conducted on two open-source models, LLaMA2-7B [35] and Mistral-
7B [18], demonstrate that explanations produced by DINEX led to
an 8.4% performance improvement. Furthermore, we evaluate the
quality of explanations generated by DINEX under the same con-
ditions. Through human evaluators and powerful LLMs (GPT-4 [2]
and Claude 3 Sonnet [1]) assessments, the results indicate that ex-
planations generated by DINEX perform better in 62.4% of the test
samples. Our contributions can be summarized as follows:

1. We propose two distinct data augmentation methods: Semantic
Similarity Sampling (SSS) and Structure Variety Generation (SVG).
We are the first to show that introducing diverse data can improve
the quality of generated explanations.

2. We propose an explain-then-predict framework for the Interpretable
NLP, named DINEX. DINEX contains a diversified explanation
generator and an explanation-aware predictor.

3. Our experimental results show that DINEX outperforms strong
baselines on four datasets, and achieves SOTA on the ComVE
dataset. In addition, compared to previous data augmentation meth-
ods, the performance improvement of SSS and SVG is significant.

2 Related Work

2.1 Interpretable NLP

The black-box nature of language models is raising concerns. For
instance, it’s unclear whether a model’s good performance on datasets
is due to an understanding of the task or just relying on shortcuts in
the data. Moreover, enhancing the credibility of models in high-risk

fields such as healthcare and law is critically important. Given these
concerns, the Interpretable NLP has gained prominence. It demands
that each prediction be accompanied by an explanation. Through such
explanations, it becomes possible to quantify biases and fairness, un-
derstand the predictive behaviors of the models, and ensure robustness
[26].

There are two types of explanations in Interpretable NLP: 1) Ex-
tractive Rationales (ER), which focuses on selecting a subset of the
input as the crucial basis for predictions. ER is typically applied to
knowledge-intensive tasks such as reading comprehension and intent
recognition. Numerous regularization methods have been proposed to
align the rationales extracted by language models with those manually
annotated. 2) Natural Language Explanations (NLE), which generates
human-readable explanations. Compared to ER, NLE offers greater
flexibility in content, form, and length. Additionally, NLE is capable
of incorporating knowledge beyond the task-specific inputs.

Recent researches in NLE focus on Reasoning and QA tasks. The
Reasoning domain includes tasks such as NLI, Commonsense Valida-
tion, and Sentiment Classification. A notable characteristic of these
tasks is their labels are fixed. For example, NLI task includes three la-
bels (entail, contradict and neutral), while the labels of commonsense
validation task are true or false. Many studies suggest that explana-
tions could lead to label leakage [32, 16]. Specifically, if each question
is tied to a single explanation, the predictor might choose answers
by identifying overlaps between the explanation and candidates. To
address this problem, NILE [22] and LIREX [45] fine-tune an ex-
planation generator for each label, allowing the predictor to decide
which explanation to rely on. However, in QA task, the candidates
for each question are distinct, rendering it infeasible to construct a
specific explanation generator for each label. Therefore, PINTO [37]
leverages LLMs to generate a choice-specific explanation for each op-
tion through prompt. However, in most instances, the explanations for
incorrect candidates are unrelated to the corresponding one, thereby
failing to prevent label leakage.

2.2 Data Augmentation

Data augmentation is a technique that generates additional training
data by applying heuristic transformations to existing training exam-
ples, aiming to obtain more robust and accurate models [19]. A key
consideration for data augmentation is that the distribution of the
augmented data should be neither too similar nor too divergent from
the original data [13].

Training on examples that do not represent the given domain can
lead to increased overfitting or poor performance. Data augmenta-
tion has proven beneficial for many NLP tasks, and researchers have
proposed various data augmentation methods. For example, Zhang
[44] and Wei [40] introduce a wordlist-based replacement approach,
while Wang [38] and Kobayashi [21] adopt embedding-based word re-
placement techniques. Wei [40] and Xie [41] employ back-translation
methods to generate data. In recent years, more work has shifted to-
wards using generative models to create additional training examples
[23, 5].

3 DINEX

DINEX is a two-stage framework, contains a diversified explanation
generator and an explanation-aware predictor with regularization.
Figure 2 shows the architecture of DINEX. In the first stage, given
a context, the generator produces a variable number of explanations
depending on the task type. For tasks with fixed labels, such as NLI
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Figure 2: An overview of DINEX framework. The left part describes the fine-tuning and inference process of the explanation generator. The
training set is expanded by SSS or SVG methods, and the generator is fine-tuned through diverse explanations. The right part shows the predict
process of the explanation-aware predictor.

where each sample’s candidate labels are "entail," "contradict" and
"neutral," multiple generators are trained, each dedicated to producing
explanations for a specific label. The context of NLI consists of a
premise and a hypothesis. For tasks with non-fixed labels, such as QA
where each question has different candidates, only one generator is
trained to produce explanations. Its context is formed by concatenating
the question and candidates. In the second stage, the predictor makes
the final decision based on the context and the generated explanations.

3.1 Diversified Explanation Generator

Since the explanations in the dataset are annotated by the same group,
the explanation style is monotonous. Previous works primarily rely on
explanations from corresponding datasets to fine-tune the generator
[11, 27]. This approach limits the generator’s ability to learn diverse
representational structures, consequently reducing the quality of the
explanations. Therefore, it is necessary to incorporate data with varied
structures into the training set. Feng [13] suggests that the distribution
of augmented data should neither be too similar nor too divergent
from the original data. We further refine this idea, suggesting that the
augmented data should satisfy two specific conditions:
Semantic Similarity: The introduced samples should match the se-
mantic distribution of the main dataset. Excessive semantic changes
in the dataset can degrade the expressiveness of the model [42].
Structural Variety: The introduced explanations should adopt a dis-
tinct style from the main dataset to augment the expressive diversity.

Across different datasets, the representation structure of explana-
tions varies significantly, satisfying the need for Structural Variety.
We need to identify data from extra datasets that exhibit semantic
similarity to the main dataset. By conducting initial verification ex-

periments, we find that there are overlapping parts in the semantic
distributions of different datasets. Therefore, we first train a regres-
sion scoring model Mscorer to quantify the similarity. And then we
implement a filtering algorithm to choose the semantically similar
data.

Training Mscorer requires a specially designed dataset. To construct
this training set Dscorer, we randomly select m samples from each
of the main dataset Dmain and the extra dataset Dextra , totaling 2m
samples:

Dscorer = {(xi, yi) | 1 ≤ i ≤ 2m} (1)

xi is the explanation of the i-th data, and yi depends on the source of
this data:

yi =

{
1, xi ∈ Dmain

0, xi ∈ Dextra
(2)

Then we train the regression model Mscorer with Dscorer. After that,
all samples from Dmain and Dextra are rated by the Mscorer to obtain the
sets Smain and Sextra:

Smain = {(xj , sj) | 1 ≤ j ≤ m}
Sextra = {(xk, sk) | 1 ≤ k ≤ m} (3)

sj , sk ∈ [0, 1] is the semantic similarity score.
After obtaining Smain and Sextra , we apply a filtering algorithm to

construct the final auxiliary dataset DSSS , with the details as follows:

1. Apply Gaussian Kernel Density Estimation to sj and sk re-
spectively, resulting in probability density functions f̂main(s) and
f̂extra(s). Formulas 4, 5, and 6 describe only the fitting process for
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Figure 3: An example of f̂main(s) and f̂extra(s). The red dot is the
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lower right of it represents the part of Dextra whose semantics can be
accepted by Dmain.

f̂main(s). The calculation process for f̂extra(s) is identical, therefore,
it does not require separate formulas.
a) Set the kernel function for Dmain:

Kmain(s− sj) =
exp

(
− (s−sj)

2

2h2
main

)
√
2πhmain

(4)

hmain is the bandwidths chosen by Silverman’s rule:

hmain =

(
4σ̂5

main

3m

)1/5

(5)

σ̂main is the standard deviations of Dmain.
b) Perform Kernel Density Estimation and calculate the fitted func-
tions:

f̂main(s) =
1

m

m∑
j=1

Kmain (s− sj) (6)

2. Calculate the intersection point of f̂main(s) and f̂extra(s), and note
the corresponding score as st. An example is illustrated in the
Figure 3.

3. Construct the auxiliary dataset DSSS :

Dsss = {(cl, xl) | (xl, sl) ∈ Sextra, sl ≥ st} (7)

where xl is the explanation, and cl is the context for this data.

In addition, we introduced a hyperparameter λs to control the size
of DSSS for preventing excessive influence on the semantics of Dmain.

|DSSS | ≤ λs|Dmain| (8)

3.1.1 Structure Variety Generation

Structure Variety Generation (SVG) aims to rewrite explanations
within the main dataset, providing multiple stylistic explanations for a
question. The process of rewriting alters the form while preserving the
semantic. Through a small-scale LLM, SVG employs two different
instructions for rewriting: paraphrase and back-translation. Specifi-
cally, the paraphrase instructs the LLM to rephrase explanations as

much as possible without changing the meaning. The back-translation
instruction involves an "English → French → English" translation
process.

SVG creates an auxiliary dataset DSVG, and introduces a hyperpa-
rameter λv to limit its size:

|DSV G| ≤ λv|Dmain| (9)

3.2 Explanation-Aware Predictor

In the second stage, the predictor receives a piece of context along
with explanations. For tasks with fixed labels, the predictor employs
contexts and explanations corresponding to different labels for the de-
cision. For tasks with non-fixed labels, the predictor utilizes contexts
and a single explanation to predict the final outcome. It is important to
acknowledge that the presence of a single explanation in QA tasks can
lead to potential label leakage issues. To prevent shortcut problems
that may arise from "overlap", the explanation fed into the predictor
is randomly inserted among various candidates. For more detailed
experimental procedures, refer to Section 4.1.

3.2.1 Explanation-Awareness

In previous studies, the predictor’s input for each question is s =
[context, explanation]. However, direct concatenating may fail to
accurately represent the information between the question and expla-
nation. To address this, we divide the input into s1 and s2:

s1 = [context, explanation] s2 = [explanation] (10)

The pretrained model encodes s1 and s2, respectively. Then the en-
coded vectors are fed to the fusion module, which contains a cross-
attention and GRUs. The cross-attention captures the associated se-
mantics of them, which are then integrated by GRUs. Finally, the
ouput is calculated via a linear layer.

3.2.2 Dynamically Perturbed Explanation

In the early epochs of training, the predictor may fit to the noise in
the explanations such as spurious correlations [7, 15]. To ensure the
predicting follows the explanation semantics faithfully, we implement
a regularization algorithm to dynamically perturb the explanations in
s1 and s2 during training.

We randomly choose an explanation from s1 or s2, and each to-
ken has a probability p of being masked. The value of p decreases
gradually in each epoch:

p =
porigin

1 + γ · epoch (11)

where porigin is the initial probability, γ is the decay coefficient, and
epoch is the current number of epochs. This approach avoids the
model from fitting noise in the early epochs.

4 Experiment Setup

We conducted experiments on two Interpretable NLP tasks to demon-
strate the effectiveness of DINEX.
Question Answering: This task requires the model to answer specific
questions. Importantly, the candidates differ for each question. We
utilize two datasets:
ECQA[3]: A dataset constructed from the CommonsenseQA bench-
mark [33], which contains explanations supporting correct answers.
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OBQA[28]: A four-choice Scientific QA dataset based on open books,
where each question contains one fact that supports the correct an-
swer.
Reasoning: This task requires the model to reason answers based on
varying contexts, such as the premises and hypotheses in NLI tasks,
while all samples have the same set of candidate labels. We use two
datasets:
ComVE[36]: A two-choice commonsense validation dataset that con-
tains two statements, and one of them violates commonsense. The
model needs to reason which statement is against commonsense.
e-SNLI[9]: A classic NLI dataset consists of premises paired with
hypotheses. The model is required to reason about their relationship,
determining whether it is neutral, contradict, or entail.

4.1 Implementation Details

For the Question Answering task, we train one generator and one
predictor. The generator receives the question along with all candi-
dates, and generates an explanation. Typically, the explanation have
lexical overlap with the correct answer. The predictor may exploit the
overlap to make a prediction, if the explanation and candidates are
both provided as input to the predictor. This phenomenon is referred
to as "overlap shortcut". To prevent the predictor from it, we randomly
insert candidates from the question into the the explanation, ensuring
that each explanation contains multiple candidates. Therefore, the pre-
dictor cannot rely on the "overlap shortcut" to determine the correct
answer. For the Reasoning task, we train a generator for each label,
which only generates explanations relevant to it, avoiding the issue of
label leakage [22]. Similar to the QA task, we train only one predictor.

In terms of the specific backbone selection, we choose Flan-T5
[12] as the explanation generator, which is an encoder-decoder model
pretrained with instructions. We select the large version with 780M
parameters for a balance between generative ability and fine-tuning
cost. When applying the SSS approach, each dataset selects semanti-
cally similar data from other datasets. Considering the SVG approach,
Mixtral-7B [18], a small-scale LLM, is utilized to rewrite 50% of the
samples in each dataset. For the explanation-aware predictor, we use
a pre-trained model – RoBERTa-Large [24] with 340M parameters.
The replacement rate of dynamic perturbations ranges between 10%
and 30%.

4.2 Baselines

Our experiments consider a representative range of strong baselines.
w/o NLE: Fine-tune a RoBERTa model to select the answer without
any explanation.
w/ gold NLE: Fine-tune a RoBERTa model using the gold explana-
tions provided in the training set to predict the answer.
We also compared recent related work:
EASE[43]: An LLM-based in-context learning framework integrating
explanations into the ensemble procedure through soft probabilities.
FLamE[46]: A two-stage few-shot learning framework utilizing GPT-
3 and RoBERTa.
PINTO[37]: A prompted pipeline framework employing a GPT-NeoX
to generate explanations.
KNIFE[11]: It distills NLE knowledge from a teacher LM to a stu-
dent LM.
REFER[26]: An end-to-end rationale extraction framework that opti-
mizes for faithfulness, plausibility, and performance.
NILE[22]: It is an explan-than-predict framework, a classical ap-

proach for using explanations to assist in NLP tasks. It employs
GPT-2 as the generator and RoBERTa as the predictor.

4.3 Data Augmentation Methods

In DINEX, we enable the generator to learn the diversity of natural
language through data augmentation methods (SSS and SVG). There-
fore, we compare three other data augmentation methods, the details
of which are as follows:
EDA[40]: Randomly insert, delete, and swap 30% of the tokens in an
explanation to obtain new data.
REP[44]: Replace words in the explanation with synonyms. Specifi-
cally, this method uses the Wordnet implementation from NLTK. We
replace 30% of the words in the explanation with synonyms.
C&R[29]: Mask (Corrupt) 30% of the tokens in the explanation and
a BERT model is used to make predictions (Reconstruct), thereby
generating a new explanation.

4.4 DINEX Variants

We aim to explore the impact of different modules on the performance
of the DINEX framework. Therefore, we modify and replace some
modules, resulting in several DINEX variants. The first variant is
Standard. It is a basic explain-then-predict framework that only uti-
lizes a Flan-T5 as the explanation generator and a RoBERTa as the
predictor. This variant does not use any data augmentation methods
or Explanation-Awareness.

The first phase of DINEX requires a data augmentation method.We
explore multiple variants employing different data augmentation meth-
ods. Alongside the two methods we proposed (SSS and SVG), these
variants also incorporated other data augmentation approaches (EDA,
REP, and C&R) for comparative purposes. For fairness, each auxiliary
dataset produced by the data augmentation methods is at most 25%
the size of the main dataset.

In the second phase of DINEX, we use an Explanation-Aware
Predictor to make choice. To assess its impact, we replace the
Explanation-Aware Predictor (EAP) with a Basic Predictor (BP) as a
new variant. BP directly leverages a RoBERTa model for prediction.
In addition, we conduct experiments on a special variant: In the first
phase, it does not generate explanations using a generator, but directly
use the Gold explanations from the dataset. In the second phase, it
use EAP for prediction. This special variant can be used to observe
the effectiveness of Explanation-Awareness on Gold explanations.

5 Results

5.1 Main Results

In Table 1, we illustrate the performance comparison between DINEX-
Best and previously representative work across four datasets. Table
2 shows the performance of different DINEX variants introduced
in Section 4.4. We summarize the following conclusions from the
results.

Firstly, incorporating explanations as additional signals can signifi-
cantly improve performance. On four datasets, the accuracy with gold
NLE (w/ gold NLE) far exceeds that without NLE (w/o NLE), with the
improvement in the ECQA dataset reaching an impressive 41.07%.

Secondly, increasing the diversity of explanations within the train-
ing set significantly enhances the task’s performance. As shown in
Table 2, when using the Basic Predictor (BP), SSS and SVG meth-
ods exhibit average improvement of 2.67% and 4.20% respectively,
compared to the Standard variant. Among other data augmentation
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Method
QA(Accuracy) Reasoning(Accuracy)

ECQA OBQA ComVE e-SNLI

w/o NLE 55.93±2.14 56.31±2.54 88.60±0.97 85.21±0.84
w/ Gold NLE 97.00±0.64 65.34±1.56 92.51±0.53 94.21±0.61

FLamE 45.11 46.23 80.24 84.98
EASE 60.45 64.43 86.84 86.79
PINTO 73.50 58.85 90.23 90.91
KNIFE 90.10 61.53 92.87 91.25
REFER - - - 90.48
NILE 88.31 59.72 91.71 91.86

Standard 89.06±0.61 59.03±0.82 90.31±0.40 89.92±0.74
DINEX-Best 93.75±0.51 67.88±0.41 97.50±0.54 91.15±0.62

Table 1: Main Results. This table reports the performance of each
strong baseline and DINEX best results on the four datasets. We report
the mean and standard deviation (std) of accuracy over random seeds
for the results, using the format "mean ± std". We bold the best results
for each dataset for methods that used generated explanations.

methods, the rule-based Easy Data Augmentation (EDA) has a nega-
tive impact on performance, by disrupting the semantic information of
sentences. Conversely, the synonym replacement method (REP) and
the corrupt-and-reconstruct method (C&R) both enhance the diversity
of explanations in terms of structure and style, resulting in improved
performance to a certain extent.

Thirdly, table 2 reveals that SVG performs better on average than
SSS. This may be due to the data generated by the SVG method
remains semantically consistent with the original data. In contrast,
the data introduced by SSS inevitably differs from the main dataset.
However, SSS leverages existing datasets at a lower cost, whereas
SVG requires a LLM to generate data, resulting in more time and
computational overhead.

Finally, Explanation-Awareness has a positive impact on perfor-
mance. Table 2 shows that variants using the Explanation-Aware
Predictor (EAP) achieve an average performance improvement of
1.62% compared to the Basic Predictor (BP). However, it is notewor-
thy that Explanation-Awareness does not perform well on the ECQA
dataset. This may be due to the high quality of explanations in ECQA,
which allows the BP to perform well. The high quality of explanations
in ECQA is evident from Table 1, where w/ gold NLE outperform w/o
NLE by 41.07%.

Figure 4: Comparison results of explanation quality between SVG-

G, SSS-G, and Standard-G.

Variants
QA(Accuracy) Reasoning(Accuracy)

ECQA OBQA ComVE e-SNLI

Standard 89.06±0.61 59.03±0.82 90.31±1.12 89.92±0.34

Gold+EAP 97.13±0.13 68.42±3.08 95.27±1.76 94.56±0.30
Gold+BP 97.00±0.64 65.34±1.56 92.51±1.53 94.21±0.61

EDA+EAP 85.43±0.86 57.78±0.93 88.09±1.06 87.34±0.29
EDA+BP 83.40±0.66 56.82±1.02 87.28±1.54 87.01±0.54
REP+EAP 89.92±1.24 62.11±0.89 92.33±0.92 89.34±0.22
REP+BP 88.44±0.99 62.01±0.77 91.87±1.39 89.07±0.19
C&R+EAP 90.93±0.75 63.23±2.30 91.67±0.73 89.96±0.45
C&R+BP 90.62±0.79 62.08±1.44 91.03±0.85 89.63±0.32

SSS+EAP 92.17±0.70 65.42±1.09 97.50±0.54 90.86±0.31
SSS+BP 91.44±0.84 64.23±0.63 93.26±1.10 89.24±0.44
SVG+EAP 93.20±0.42 67.88±0.41 97.23±0.42 91.15±0.49

SVG+BP 93.75±0.51 65.82±0.42 93.60±1.51 91.11±0.32

Table 2: Results of DINEX variants. We name the DINEX variants
using the following format: "Data augmentation method used in the
first stage + predictor used in the second stage". The predictors are
categorized into Explanation-Aware Predictor (EAP) and Basic Pre-
dictor (BP).

5.2 Analysis Results

5.2.1 Quality of DINEX-Generated Explantions

The Main Results (5.1) have demonstrated that both the SSS and SVG
methods enhance the performance of downstream tasks. In this section,
we further investigate the quality of the explanations generated by
these methods through a more direct way. We evaluate the quality of
explanations generated by three distinct generators:
SSS-G: The generator fine-tuned using a dataset created with the SSS
method.
SVG-G: The generator fine-tuned using a dataset created with the
SVG method.
Standard-G: The generator fine-tuned with the original training set.

At first, we randomly select 50 samples from the test set and use
these generators to produce corresponding explanations for the each
sample. Then, we organize these explanations into three pairwise
comparative sets: SSS-G vs Standard-G, SVG-G vs Standard-G, and
SSS-G vs SVG-G. Each comparative set is evaluated by human eval-
uators2 and two powerful LLMs (GPT 4 and Claude 3 Sonnet) to
determine which explanation is better. Specifically, the outcomes of
each comparison are labeled as "win," "tie," or "lose." We observe
that the agreement rate between humans and LLMs reaches 86%.

Consequently, we evaluate 500 samples. To save costs, this time
we conduct the evaluations only through LLMs. As shown in Figure
4, the results indicate that both SSS-G and SVG-G outperform the
Standard-G, with an average win rate of 62.4%, a tie rate of 21.4%,
and a loss rate of 16.2%. The results substantiate that the SSS and
SVG data augmentation methods significantly improve the quality
of generated explanations. Moreover, SVG slightly outperforms SSS,
reinforcing the observations from Section 5.1 that SVG contributes to
more enhancements in performance.

5.2.2 Necessity of Semantic Similarity

In Section 3.1, we propose that diverse explanations should meet the
requirement of Semantic Similarity. In this section, we conduct an

2 The Human evaluators were hired from https://www.upwork.com/hire/
data-annotation-specialists/.
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Figure 5: The performance curves for each dataset after the introduction of random data. The dashed lines represent the performance with
semantically similar data introduced, while the solid lines show the performance after introducing random data at different proportions.

analysis experiment to validate its necessity. When introducing new
data from other datasets, we no longer consider whether it satisfies
Semantic Similarity, but instead choose randomly. Specifically, we
replace a certain proportion (0%, 25%, 50%, 75%, and 100%. 0%
represents using the original DSSS) of the data in DSSS with random
data from other datasets. Figure 5 illustrates the performance curves
on four datasets. The dashed lines represent the performance of intro-
ducing semantically similar data, while the solid lines represent the
performance of randomly introduced data. The reaults show that the
method considering Semantic Similarity (SSS) is significantly better
than the method of random introduction. It is noteworthy that we ob-
serve a very limited impact of random data on e-SNLI. This is because
the large size of the its training set ensures that the introduction of a
small amount of random data does not disrupt the semantic integrity.

5.2.3 Impact of DINEX-Generated Explanations on LLMs

In this section, we investigate whether explanations generated by
DINEX can influence LLMs. We continue to use the three generators
introduced in Section 5.2.1 (SSS-G, SVG-G, Standard-G). Firstly,
we concatenate explanations generated by these generators with the
context of the task to form prompts. Then, we input these prompts
into LLMs (Mixtral-7B and Llama2-7B) to observe their performance
on downstream tasks. On the ECQA dataset, we test 500 samples,
with each LLM making three rounds of predictions per sample. The
experimental results are shown in the table 3. We find that the average
performance of SSS and SVG improved by 7.3% over the standard
method, demonstrating that high-quality explanations can enhance
the predictive accuracy of LLMs.

LLM SSS-G SVG-G Standard-G

LlaMa2 - 7B 91.3 89.5 82.6
Mixtral - 7B 93.2 94.7 87.1

Table 3: Impact of DINEX-Generated Explanations on LLMs. We
evaluate two small-scale LLMs on the ECQA dataset.

5.2.4 Ablation Study of EAP

In Section 3.2.2, We mention that during the initial epochs of training
predictors, the model may fit to the noise in the explanations. We in-
troduce Dynamic Perturbation (DP) to counteract this negative impact.
To test whether DP can make the model more robust when facing
noise, we construct an erroneous dataset, Dnoise, to train the Basic
Predictor. In Dnoise, each data point is paired with an explanation
from another data point instead of its own explanation. We compare

the performance of Basic Predictors with and without DP across four
datasets. As shown in Table 3, the Predictor with DP outperforms
the Predictor without DP. These results confirm that DP substantially
enhances the robustness of the predictor.

We expect that the cross-attention mechanism will facilitate a more
effective interaction between the query and the explanation, hence
we have designed an ablation study for it. Table 5 presents the per-
formance across four datasets. The results indicate a pronounced
decrement in performance in the absence of cross-attention. This ob-
servation confirms the necessity of cross-attention, which integrates
query and explanatory information in a manner that significantly
augments the predictive proficiency.

Predictor
Accuracy

ECQA OBQA ComVE eSNLI

Basic Predictor w/ DP 42.26 46.02 77.35 72.17

Basic Predictor w/o DP 37.98 41.2 71.12 65.64

Table 4: Perturbation Results. This table shows the performance of
Basic Predictor with or without dynamic perturbation (DP) in the face
of incorrect explanations.

Method
Accuracy

ECQA OBQA ComVE e-SNLI

SSS + EAP 92.17 65.42 97.50 90.86
SSS + EAP w/o CA 91.58 64.51 93.18 89.42
SVG + EAP 93.20 67.88 97.23 91.15

SVG + EAP w/o CA 93.06 66.15 93.84 91.09

Table 5: Ablation Study on Cross-Attention. Performance compari-
son of different variants across various datasets, where "CA" repre-
sents Cross-Attention.

6 Conclusion

In this paper, we propose two data augmentation methods to increase
the diversity of explanation structures: Semantic Similarity Sampling
(SSS) and Structure Variety Generation (SVG). Furthermore, we pro-
pose a two-stage Interpretable NLP framework, named DINEX. Its
explanation generator produces explanations that are more consistent
with human expression via SSS and SVG approaches. And its pre-
dictor enables context and explanations to capture complementary
information.

The experiment results show DINEX surpasses strong baselines on
four datasets, and achieves SOTA performance on the ComVE dataset.
Additionally, evaluations by humans and LLMs have demonstrated
that DINEX can generate explanations of higher quality.
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