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Abstract. Efficiently learning unsupervised pixel-wise visual rep-
resentations is crucial for training agents that can perceive their en-
vironment without relying on heavy human supervision or abundant
annotated data. Motivated by recent work that promotes motion as
a key source of information in representation learning, we propose a
novel instance of contrastive criterions over time and space. In our ar-
chitecture, pixel-wise motion field and representations are extracted
by neural models, trained from scratch in an integrated fashion.
Learning proceeds online over time, exploiting also a momentum-
based moving average to update the feature extractor, without replay-
ing any large buffers of past data. Experiments on real-world videos
and on a recently introduced benchmark, with photorealistic streams
generated from a 3D environment, confirm that the proposed model
can learn to estimate motion and jointly develop representations. Our
model nicely encodes the variable appearance of the visual informa-
tion in space and time, significantly overcoming a recent approach
and it also compares favourably with convolutional and Transformer-
based networks, offline-pre-trained on large collections of supervised
and unsupervised images.

1 Introduction and Related Work

Several studies in the context of perception highlighted that the abil-
ity of biological systems to properly identify and segment visual pat-
terns into specific entities (objects, animals, etc.) largely improves in
presence of motion [37, 30]. This statement aligns with the Gestalt
Principles of common fate [44], stating that we perceive visual ele-
ments having similar motion as parts of a single stimulus. Recently,
motion-based principles are being exploited in computer vision to de-
velop visual skills [32, 25, 20, 4]. As a matter of fact, motion “con-
nects” different views, poses, orientations of the same entity along
the temporal dimension. Relating different views, although not rely-
ing on motion, is also popular in self-supervised techniques, usually
building image-level representations [23]. Self-supervised methods
specifically designed to learn pixel-level representations can highly
improve the spatial awareness of neural models, as briefly explored
by recent research [45], and this is the context in which we believe
motion-driven learning can play a major role.
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Learning from a single, continuous, stream of non-i.i.d. data rep-
resents an attractive challenge for designing agents that either learn
from scratch or that progressively adapt to the dynamics of the ex-
ternal stimuli over time [3]. It is widely known that the continual
learning setting implies concerns about the plasticity and stability
of neural models [31, 13], but it represents the most natural learn-
ing setting in the case of data streamed over time. Indeed, contin-
uous visual streams constitute the ideal workbench to devise novel
learning algorithms, capable of dealing with dynamically evolving
conditions without losing the relevant concepts acquired during the
learning process (i.e., without forgetting). In this setting, the addi-
tional cues brought by temporal information and, in particular, by
the motion field can be exploited to learn equivariant representations
[4].

Following these intuitions, in this paper we describe CMOSS
(Continual MOtion-based Self-Supervised Learning), a motion-
driven contrastive criterion over time and space. Frames are pro-
cessed in an online manner with a two-branch neural architecture,
continuously-and-jointly learning to extract pixel-wise (a) motion-
field and (b) visual features. Noteworthy, motion plays a dual role in
representation learning by favouring the development of features that
are consistent with the motion field and by driving our novel stochas-
tic spatio-temporal contrastive learning process. The contributions of
this paper are the following: (1) we propose a novel model that jointly
learns to estimate motion and to represent pixels, processing data
from a potentially lifelong video stream and without any supervision;
(2) we introduce a novel motion-based SSL contrastive criterion for
dense representations, designed with motion-induced sampling; (3)
we introduce ad-hoc integrated solutions to deal with continual learn-
ing. In the following, we highlight connections to existing literature.

Continual learning (CL). Despite the recent surge in research
on neural models capable of learning over time, most of the litera-
ture is about supervised CL, with few notable unsupervised excep-
tions [24, 35]. Multiple approaches have emerged [43, 29], namely
context-specific components, parameter or functional regularization,
replay, template-based methods. Here we focus on unsupervised long
visual experiences unrolling over time, learning in an online manner,
without replays and with motion-induced regularization.

Unsupervised learning by motion cues. The idea of exploiting
motion cues to support learning has been exploited for designing pre-
text tasks in the unsupervised learning community [25], aligning the
similarity between pairs of feature vectors to the similarity between
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(a) (b)
Figure 1. (a) The architecture of CMOSS at inference time. (b) Contrastive criterion. (b–top) Given a pair of frames (It−1, It) in which a cat moves

rightward and a pen moves leftward, the motion field Δt is computed by network m, and some pixels (white circles) are sampled (sampling involves static
pixels as well, not shown for clarity). Displacements for the sampled pixels are represented with green arrows. (b–bottom) Contrastive loss Ωf consists of two
motion-dependent instances of Ω′

c. One is about spatial relationships (left), the other is about spatio-temporal relationships (right). Positive pairs are solid-red
(nearby points with similar motion) while negative pairs are dashed-yellow (distant points with dissimilar motion). Thinner links are more uncertain.

corresponding flow vectors or using segments [32] from low-level
motion-based grouping to train CNNs. [42] train models in video
streams, exploiting a given motion cue to enforce uniform represen-
tations over moving entities along an attention trajectory (external
component)[41]. Conversely CMOSS is trained by a more sophis-
ticated self-supervised objective that is not limited to an attention
trajectory, and, noticeably, our approach also learns to estimate the
motion field [26], without any additional inputs. Our learning crite-
rion is driven by the idea of bridging motion prediction and feature
extraction while jointly learning such skills over time, that, to our
best knowledge, is a novel direction.

Contrastive self-supervised learning (SSL). Many existing ap-
proaches rely on memory banks or large batches where to sample
positive and negative pairs [9], while a few recent works have re-
placed negative pairs with asymmetries in the way features are ex-
tracted [15, 10], with still limited but improving theoretical under-
standing [10, 49]. There exist just a few recent works on contrastive
SSL for pixel-wise features [46, 45], even if trained offline on large
scale data or learning in a latent space at smaller resolution, thus not
at a truly pixel-wise level. Differently, CMOSS is designed to learn
pixel-wise representations from a single long video stream, work-
ing in a continual manner, which is also different from the literature
on SSL that typically exploits collections of different videos, such
as small clips, that are offline-processed by stochastic optimization
[33].

2 Model

We are given a sequence of frames (a video stream S) as our unique
source of information. At a generic time step t > 0, frame It is
yielded from S, at the resolution of w × h pixels. We use the nota-
tion Itx to indicate the color representation (e.g., RGB) of the pixel
of It located at the 2-dimensional coordinates x ∈ X , with X the
set of valid pixel coordinates. Frames are continuously streamed at
a constant frame rate, without any temporal limits (t could be po-
tentially ∞) and they smoothly change over time, thus they are not

independent. We propose a model that, for each pixel of the input
frame, computes both (i.) visual features and (ii.) motion estima-
tion. Such information is strongly coupled, since the visual feature
extractor and the motion estimator are learned in a joint manner. In
particular, motion is the only driving signal for the development of
the visual feature extractor, which conquers equivariance properties
naturally induced by the motion field. The model continuously learns
from the video stream by means of self-supervised learning, without
any external supervision signals. A neural network f , named feature
extractor, with weights and biases collected in θt, processes the cur-
rently available input frame It, returning a set Φt of wh pixel-wise
representations, also referred to as feature vectors, each of them of
length d,

Φt = f(It, θt). (1)

We indicate with Φt
x the feature vector of the pixel of It whose coor-

dinates are x. Another neural net m, named motion estimator, with
learnable parameters γt, estimates the apparent motion field between
It−1 and It , i.e., the optical flow. In particular, following common
implementations [14, 26], m returns the displacement vectors of the
frame pixels,

Δt = m(It−1, It, γt), (2)

being Δt
x the 2-dimensional displacement vector at x, time t. We in-

troduce the short-hand notation x(Δt) = x+Δt
x to indicate the co-

ordinates of the pixel in frame It that corresponds to x of frame It−1.
As a result, frame It−1 can be approximately reconstructed by warp-
ing It with Δt, thus setting the value of It−1

x to the one of Itx(Δt),
applying an appropriate interpolation procedure for non-integer dis-
placements and handling border issues [6]. The whole pipeline is
shown in Fig. 1 (a). Learning proceeds by connecting the extracted
features with the predicted motion, processing pairs of consecutive
frames in an online manner, with a single-pass on each pair and with-
out additional memory buffers. Of course, replays or other continual
learning strategies could be added to our approach, but it goes be-
yond the study of this paper, that is about the more challenging but
also more natural scenario of plain continual online learning [42]. At
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each time step t, parameters θt+1 and γt+1 are obtained by updating
θt and γt, with the goal of minimizing the loss function L,

L(Φt−1,Φt,Δt) = Lf (Φ
t−1,Φt,Δt) + λmLm(Δt). (3)

The first term in the right-hand side of Eq. 3 drives the development
of the feature extractor, while the second one is about learning how
to predict motion (with λm > 0). The notation highlights the pres-
ence of the motion signal Δt in both the components, as well as the
dependence on the time-related index t. This opens to the follow-
ing sections, that are about Lf , Lm (Section 2.1), and continuously
learning over time (Section 2.3), respectively.

2.1 Motion-driven Learning

The concept of learning features that are consistent with motion has
been explored in several works [5, 32]. The recently proposed the-
ory of vision in [4] formalized the notion of “conjugate field with
respect to motion”, described by constraints that model the relation-
ships between a set of arbitrary pixel-wise properties Ψ and the mo-
tion signal. Each constraint is fulfilled when motion is predicted con-
sistently with the selected field over space/time, and vice-versa, i.e.,
when pixel-wise properties Ψ are computed such that they are equiv-
ariant with respect to the motion field Δ. In the discrete case this
corresponds to Ψt−1

x − Ψt
x(Δt) = 0, for all the frame pixels, that

is the minimum of the following loss function with an appropriate
penalty ρ,

L��

(
Ψt−1,Ψt,Δt) =

1

wh

∑
x

ρ
(
Ψt−1

x − Ψt
x(Δt)

)
. (4)

We select ρ to be the generalized Charbonnier photometric distance,
ρ(a) = (‖a‖2 + ε)ζ [38], with ε = 0.001 and ζ = 0.5, as in [26].
Now we are going to exploit this general loss function to relate pixel
intensities I , representations Φ and the motion field Δ.

Learning motion. Learning to estimate motion with a neural
model can be achieved as in classic optical flow approaches, mini-
mizing L�� given the original frames It−1 and It as properties Ψ
in Eq. 4, paired with an additional term Ω(Δt) that favours spatial
regularity of the displacements [17]. Following previous work [18],
we define Lm of Eq. 3 as

Lm(Δt) = L��

(
It−1, It,Δt)+ βmΩm(Δt), (5)

where Ωm(Δt) = (wh)−1 ∑wh
i=1 ‖∇

(
Δt

x,1

) ‖2 + ‖∇ (
Δt

x,2

) ‖2,
being ∇ the discrete spatial derivative operator, and Δt

x,j the j-th
component of Δt

x, j ∈ {1, 2} (horizontal, vertical). Since It and
It−1 are given, Ωm makes the learning problem well-defined [17].
The weighing coefficient βm > 0 affects the extent of regularization:
smaller βm’s yield more fine-grained estimations, while larger βm’s
favour larger blobs with similar motion. We embraced a minimal-
ist strategy for flow estimation, assuming that movements between
consecutive frames are generally small or slow. Of course, employ-
ing a multi-scale/pyramidal architecture could enhance the estima-
tion of larger displacements, and our approach would remain appli-
cable. Additionally, there are no inherent limitations on the dynamics
or frequency with which objects enter or exit the scene, even if intro-
ducing the agent to a strongly dynamical scene from the early stages
could harness the robustness of motion estimation.

Learning pixel-wise representations. As discussed in [4], di-
rectly minimizing Eq. 4 evaluated with learnable Φ is not enough
to effectively learn motion and features, since trivial solutions do ex-
ist (e.g., spatially uniform features that do not change over time are

perfectly consistent with every motion field, even a random one; tem-
porally constant features and null motion are another solution). For
this reason, both features and motion must be specifically character-
ized by introducing additional constraints in the learning process. In
particular, there are two terms that contribute to the definition of the
proposed Lf in Eq. 3, that drives learning of the pixel-wise feature
extractor, i.e.,

Lf (Φ
t−1,Φt,Δt) = L��

(
Φt−1,Φt,Δt)

+ βfΩf (Φ
t−1,Φt,Δt),

(6)

with βf > 0. The leftmost term, L�� favours the development of
features that are consistent with the motion signal Δt. The rightmost
term, Ωf , is what correctly characterizes the learned features, avoid-
ing trivial solutions. Differently from Eq. 5, a bare spatial regularity
penalty would not be appropriate for Ωf , since Φt−1 and Φt are sub-
ject to the effects of the learning procedure (differently from It−1

and It in Eq. 5, which are given), and that would easily lead to spatio-
temporally uniform features. As regularization, we propose to intro-
duce a novel motion-based contrastive learning approach, whose loss
function is Ωf , the rightmost term in Eq. 6. Differently from com-
mon contrastive approaches that work at image-level [23, 9], here we
tackle the case of pixel-wise features.

2.2 Self-Supervised Learning

For any pixel x, all frame’s spatial coordinates are evaluated to iden-
tify positive and negative examples. CMOSS leverages the motion
field Δ, assuming [44] that nearby pixels moving like x are likely to
belong to the same object, thus they should have similar representa-
tion. Differently, what moves in a dissimilar manner and is far away
from x is likely to belong to a different object, suggesting differ-
ent representations. Of course, this criterion is not expected to hold
strictly (a non-rigid object will have different motion patterns in dif-
ferent parts of its surface, or there could be a static clone of a moving
instance, etc.), but this heuristic guides motion-driven pixel-wise rep-
resentation development [23, 42]. Thus, a pair that is composed of x
and one of the nearby pixels with similar motion is a positive pair,
while a a distant pixel with different motion forms a negative pair.
Handling the uncertainty of the process is crucial. We indicate with
px,y(Δ) the positive-pair confidence score, while nx,y(Δ) denotes
the negative-pair confidence score, both in [0, 1]. Using cosine simi-
larity sim(a, b) := a · b/(‖a‖‖b‖), with Euclidean norm ‖ · ‖:

nx,y(Δ) = [sim(Δx,Δy) ≤ τn]
‖x− y‖√
h2 + w2

, (7)

px,y(Δ) = [sim(Δx,Δy) > τp]

(
1− ‖x− y‖√

h2 + w2

)
(8)

where [·] is 1 if the condition in brackets is true, otherwise it is 0.
Thresholds τp, τn ∈ [−1, 1] are selected to filter out pairs with un-
certain similarities, with the condition τp ≥ τn which ensures that
p and n are non-zero in a mutually-exclusive manner. The rightmost
operands of the products in Eq. 8 are the distance between x and y
scaled in [0, 1] and 1 minus such a distance, respectively.2

Constrastive loss Ωf . For each point x and a positive pair in
which it is involved, say (x, y), the loss function enhances the simi-
larity of the representations of x and y and the dissimilarities of the

2 Motion direction is not significant for static points (motion vector is smaller
than a fixed threshold τm): a moving point and a static point are marked
as dissimilar with maximum confidence score, independently on their dis-
tance, while a pair of static points is neither similar nor dissimilar. See also
Fig. 1 (b).

M. Tiezzi et al. / Bridging Continual Learning of Motion and Self-Supervised Representations 2775



representations in the negative pairs (x, ·). Similarity scores are nor-
malized to a probability distribution (softmax with temperature τ >
0) and the loss is evaluated for all the pixel coordinates involved in
positive pairs, with terms weighted according to the confidence esti-
mated by p, n. We consider both the case in which the representations
of the components of each pair belong to the same frame (spatial
links) and when they belong to consecutive frames (spatio-temporal
links). Formally, with s(u, v,Φ, Φ̃,Γ) := τ−1sim(Φu, Φ̃v(Γ)) the
τ -scaled motion-aware similarity:

Ω′
c(Φ, Φ̃,Δ,Γ) =

−
∑

x,y∈X

px,y(Δ)

Z
log

es(x,y,Φ,Φ̃,Γ)

es(x,y,Φ,Φ̃,Γ)+
∑
z∈X

nx,z(Δ)es(x,z,Φ,Φ̃,Γ)
, (9)

for representations Φ, Φ̃ and motion fields Δ,Γ, with normalization
factor Z =

∑
u,v∈X pu,v(Δ).3 If representations belong to the same

frame, then Δ = 0 (tensor with all-zeros, i.e., null motion). Now we
are ready for the comprehensive definition of contrastive term Ωf in
Eq. 6:

Ωf (Φ
t−1,Φt,Δt) = Ω′

c(Φ
t−1,Φt−1,Δt,0)

+ Ω′
c(Φ

t−1,Φt,Δt,Δt),
(10)

that is the sum of a spatial contrastive loss applied to the single frame
t − 1 and a spatio-temporal contrastive criterion computed on the
current frame pair (t− 1, t). See also Fig. 1 (b-bottom).

Sampling. To tackle computational costs arising from the
quadratic relationship with pixel count in Ωf , we propose a selective
criterion guided by motion and representations. We ensure that (i.)
sampling probability of sampling in moving areas is the same as sam-
pling in static areas, and that (ii.) the probability of sampling in areas
where the j-th feature has the strongest activation (absolute value) is
the same for all j’s. We aim to (i.) bias sampling towards motion ar-
eas even in mostly static shots (critical for motion-based contrastive
loss), and (ii.) encourage the development of all the d features, fos-
tering rich and compact visual descriptions. We sample 
 > 1 pixel
coordinates for each t, collecting them into X t (see Appendix A.1 in
[1]). Then, x, y, z values involved in the sums of Eq. 9 are restricted
to X t ⊂ X , making the computation viable also in low-latency set-
tings, that are typical of models learning from streamed data. In Fig. 1
(b) white circles illustrate elements of X t (toy example).

Remarks. While the contrastive term (Eq. 10) and L�� in Eq. 6
share space-time consistency, both serve distinct purposes. The con-
trastive loss of Eq. 10 (i.) applies solely to sampled coordinates and
(ii.) only focuses on feature direction (due to the cosine similarity).
L�� spans the whole frame area, additionally constraining the length
of the representations. Minimizing L�� in Eq. 6 aligns features with
predicted motion and vice versa, while the contrastive term lacks dif-
ferentiability with respect to motion.

2.3 Learning Over Time

Learning involves a single parameter update given frames It and
It−1 (cached), at each time step t, with the goal of minimizing the
total loss (Eq. 3). Such a loss function gains inherent temporal reg-
ularization from L�� terms in Eqs. 5, 6, making it a natural instance

3 Notice that, due to the mutual exclusivity of p and n, the term nx,z in Eq. 9
also acts as a mask that excludes all the points z that are not considered
dissimilar to x.

of regularization-based approaches to continual learning. Our con-
trastive loss (Eq. 10) also contributes a spatio-temporal bridge effect
on sampled points.

To enhance protection against forgetting, we draw inspiration from
models utilizing Exponential Moving Average (EMA) for weight up-
dates [39, 16, 7, 2]. Such models employ an EMA-updated teacher
network while ensuring consistency with a continuously updated
student network via gradient descent. The EMA-updated network
acts as a slowly progressing encoder, with parameters that evolve
smoothly [16], and it can be employed both to stabilize the learning
of the student network and to better preserve information from the
past. In our method, we extract (It−1) features with network f us-
ing weights θtGRA, and It) features with an EMA-updated network
with the same architecture and weights θtEMA (illustrated in Ap-
pendix A.2 in [1]). The networks are naturally connected through loss
function L (Eq. 3), that enforces motion-driven coherence. While
the GRA network is updated by the gradient of L and learning rate
αf > 0, the other network is updated by EMA with coefficient
ξ ∈ [0, 1),

θt+1
GRA = θtGRA − αf∇θL(Φt−1, Φ̂t,Δt), (11)

θt+1
EMA = ξθtEMA + (1− ξ)θt+1

GRA, (12)

where ∇θL is the gradient with respect to the second argument of f
and Φ̂t indicates that Φt is treated here as a constant value (it is the
output of the EMA net). We recall that, at each t, the proposed model
outputs features computed by the EMA net. This choice is motivated
by the fact that the EMA net is characterized by a smoother devel-
opmental process, which we found to be appropriate in the continual
unsupervised learning scenario, with the purpose of reducing issues
related to stability and forgetting. Differently, specific CL methods
are not needed [26] for the motion estimator m. The learning pro-
cedure is further illustrated in Appendix A.2 in the supplementary
materials [1]. We empirically found the EMA net to be helpful in our
goal to bridge motion and feature learning over time. Other CL tech-
niques [29] can be used as well, but it goes beyond what we propose.

3 Experiments

We implemented CMOSS using PyTorch,4 running experiments on
a Linux machine–NVIDIA GeForce RTX 3090 GPU (24 GB). We
investigate the capability of CMOSS to develop pixel-wise represen-
tations and motion field in a continual online self-supervised man-
ner, following the recent experimental framework of [42], devised to
evaluate pixel-wise features in continual learning.

Data. The first benchmark consists of three 256 × 256 streams,
obtained by rendering three different photo-realistic scenes from the
3D Virtual Environment SAILenv [27, 28] (samples from the streams
are depicted in the first row of Fig. 7-right). In each of them, some
target objects, one at a time, perform different complete routes (here-
inafter referred to as lap) around their starting locations. Objects per-
form complex movements consisting in rotations/scale/pose varia-
tions with respect to a fixed camera. EMPTYSPACE is about a room
with uniform background and four moving objects (i.e., chair, lap-
top, pillow, ewer). It includes a grayscale (-BW suffix) and an RGB
(-RGB) stream. SOLID consists of three white 3D shapes (cube, cylin-
der, sphere) moving in a gray-scale environment. LIVINGROOM (-
BW/-RGB) is a complex scene with the same four objects of EMP-
TYSPACE that move around. It features a heterogeneous background
composed of non-target objects (i.e., couch, tables, staircase, door,

4 https://github.com/sailab-code/cmoss
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floor) and static copies of the EMPTYSPACE objects. The second
benchmark includes two real-world videos, RAT (256 × 128) and
HORSE (256 × 192), proposed by [21], where the objects of inter-
est are rat and horse+jockey, respectively. These videos5 are used to
demonstrate CMOSS’s ability to generalize to real-world scenarios,
with non-fixed camera.

Setup. We compared CMOSS against the recently proposed model
of [42] in pixel-wise classification, following the experimental con-
ditions defined in the considered benchmark: unsupervised learning
for 30 laps per object, where during the last 5 laps 3 supervised rep-
resentations (templates) per-object are saved, one every 100 frames.
Such external cues are used for a distance-based open-set class in-
cremental evaluation procedure, and they do not affect representa-
tion learning. In the case of CMOSS, we used the first 5 laps to only
start training the neural motion estimator.6 Performance is measured
in a last additional lap per object, computing the F1 score (averaged
over the available object categories and the background class) over
all the pixels of the frames. Following the evaluation protocol of the
selected benchmark, the optimal values for the hyperparameters are
determined by maximizing the F1 along the trajectory (1 pixel per
frame) of a (given) human-like attention model. We report in Ap-
pendix A.4 (see [1]) the parameter grid we explored and the optimal
parameter values we found.

Compared models. We implemented CMOSS using UNet-like
[36] networks for both the functions m and f . In particular, we took
the so-called RESUNET from [42], reducing the number of convolu-
tional filters in every layer by a factor of 4. We compared CMOSS
to the learning approach by [42], considering the two models pre-
sented therein, i.e., RESUNET and FCN-ND (6 convolutional layers,
no downsampling) —see Appendix A.3 in [1] for further details. For
reference, we compared also to state-of-the-art models pre-trained in
semantic segmentation tasks and in self-supervised learning, with-
out any attempts to overcome results from such large-scale offline-
trained models. We selected the ResNet101-based DEEPLABV3 [8]
and a Dense Prediction Transformer - DPT [34], evaluating both the
upsampled representations from the backbones (-B suffix, trained
on ImageNet-1M) or from the classification heads (-C suffix, task-
specialized higher-level features trained on COCO [22] and ADE20k
[50]), and the features yielded by the pre-trained backbones (ResNet-
50) of recent self-supervised methods, i.e. MOCO V1-3 [16, 11, 12],
PIXPRO [45]. For the sake of completeness, we also report the per-
formances achieved by our CMOSS approach when the stream is
processed in an offline manner (i.e. the frames are randomly shuf-
fled). Additionally, we consider the baseline RAW IMAGE, i.e., the
original pixel representations (brightness) as features.

Main result. Table 1 reports the results of our comparison. Focus-
ing on the related continual self-supervised competitors (bottom part
of the table), the proposed CMOSS significantly overcomes them
in all the video streams, with the exception of EMPTYSPACE-BW,
where it is on par with the best competitor. We remark that CMOSS
learns to estimate motion from scratch, while the competitors are us-
ing a pre-computed motion signal that is flawlessly produced by the
rendering engine (or by pretrained optical flow SOTA model in the
case of real-world videos [40]). Notice that CMOSS also uses a re-
duced number of output features with respect to the competitors (32
vs. up-to-128), and is characterized by a number of learnable pa-

5 https://www.kaggle.com/datasets/gvclsu/long-videos
6 Considering only the last term in Eq. 3, i.e., λmLm(Δt). We performed

some preliminary experiments which showed, as expected, that activat-
ing the constrastive criterion with a randomly-initialized motion estimator
slightly hinders the final outcome of the learning process.

rameters that is way smaller than the best (on average) competitor
(1.1M vs. 17.8M, third column of Tab. 1), confirming its capabil-
ity of developing informed but more compact representations. Our
method achieves competitive performance even when compared to
offline-pre-trained large architectures, with several millions of pa-
rameters (upper part of the table—we recall that our goal is not to
overcome these large-scale massively offline-trained models, since
we learn from scratch in an online manner). Interestingly, CMOSS
beats all these competitors in EMPTYSPACE-RGB and in general
demonstrates superior performance compared to several competitors
(e.g. PIXPRO, DEEPLAB-C). These results confirm its capability of
adapting to the properties of the considered learning environment.
Moreover, they are not far from the offline-trained CMOSS, where
the training data (pairs of frames) were shuffled. In Fig. 2 (left) we
report a qualitative showcase of the predictions on two frames sam-
pled from EMPTYSPACE-RGB, HORSE (similar conclusions hold for
the other streams). The features produced by CMOSS allow the clas-
sification procedure (not involved in the feature learning process) to
almost completely disentangle all the different objects and their parts.
Conversely, in Appendix A.8 (see [1]) we show that the selected com-
petitor is not able to correctly classify the chair legs/thinner segments
or the surface of the pillow, that get partially confused with the ewer.
We notice that CMOSS-based predictions tend to be slightly thicker
with respect to the ground-truth object borders. This is mostly due to
the quality of the estimated motion field, that is not always perfect
(while competitors uses a flawless/given motion field). In fact, mo-
tion guides the learning process, having an impact also in the sam-
pling procedure of our stochastic contrastive criterion. Fig. 2 (right)
reports examples of motion estimations obtained for two streams
(RGB and BW). Noticeably, the estimated motion fields (second col-
umn) are very similar to the ground truth motion yielded by the 3D
environment (third column), although a bit thicker, coherently with
our previous comment. It should be noted that optical flow methods
inherently find very challenging to extract motion on nearly texture-
free surfaces, as the ones of the cylinder in the SOLID dataset. Con-
versely, the 3D engine possesses a complete understanding of the
actual 3D motion field. Moreover, we did not leverage any specific
trick to improve the flow prediction (e.g., spatial pyramids, occlusion
handling, etc. [48]), for simplicity, as in [26].

Ablation studies. We ablated key components of CMOSS to as-
sess their impact on results (findings in Fig. 3 and more results in
Appendix A.7 – see [1]). The motion-feature coherence term L�� in
the loss function (Eq. 6) improved all streams (Fig. 3-a), particularly
in EMPTYSPACE. It also improves stability among the different runs
(reduced std). Adopting a specific contrastive term sampling strat-
egy (see Sec. 2.2) (Fig. 3-b)), guided by both Motion and Features
(M.F.), influenced the metrics notably. Motion-only biased sampling
(Mot.) can still outperform uniform sampling strategy (Plain), by fo-
cusing on small moving areas. Omitting the stabilizing EMA network
(Fig. 3-c) systematically lowered performance, aligned with litera-
ture in contrastive and continual learning. The learning process is
however still effective, thanks to regularization effects by the spatio-
temporal loss terms, albeit less stable. We assessed the effect of sam-
pled locations 
 (Fig. 3-d): 
 = 100 proved effective while very dif-
ferent values reduced F1, with a milder impact than other discussed
hyperparameters. This outcome stems from stream properties, where
more dense sampling offers limited gains due to large static or uni-
form areas.

Online learning and stability. Given the considered open-world
task-free scenario, where a few supervisions are provided in a short
session after a longer unsupervised training stage, measuring the
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Figure 2. Left: frames from EMPTYSPACE-RGB, HORSE-RGB. The features extracted by CMOSS demonstrate effective classification capabilities, as
depicted in the second column. Right: frames from EMPTYSPACE-RGB, SOLID-BW (first column), the ground truth dense motion fields from the 3D

environment (second column) and motion estimated by CMOSS (third column).

Table 1. F1 scores (10 runs, mean ± std), over seven different video streams (EMPTYSPACE, SOLID, LIVINGROOM, RAT, HORSE) with some -BW variants.
Bottom: the main competitors of the proposed model, including the raw-image (degenerate) baseline. The top part of the table collects reference results

obtained with large offline-pretrained models, publicly available, and an offline-trained version of CMOSS.

# Params EMPTYSPACE SOLID LIVINGROOM RAT HORSE
BW RGB BW BW RGB RGB RGB

O
FF

L
IN

E
P

R
E

-T
R

A
IN

E
D DPT-C [34] 121M 0.66 0.67 0.64 0.35 0.39 0.59 0.83

DPT-B [34] 120M 0.71 0.69 0.68 0.39 0.39 0.58 0.87
DEEPLAB-C [8] 58.6M 0.49 0.61 0.57 0.31 0.34 0.56 0.86
DEEPLAB-B [8] 42.5M 0.70 0.65 0.66 0.34 0.44 0.57 0.81
MOCO V1 [16] 8.5M 0.73 0.73 0.74 0.33 0.35 0.70 0.66
MOCO V2 [11] 8.5M 0.75 0.76 0.74 0.41 0.43 0.59 0.79
MOCO V3 [12] 8.5M 0.76 0.76 0.76 0.41 0.44 0.58 0.64
PIXPRO [45] 8.5M 0.31 0.46 0.41 0.30 0.22 0.59 0.70
CMOSS (Offline) 1.1M 0.64 0.82 0.65 0.43 0.40 0.69 0.81

C
O

N
T

IN
U

A
L RAW IMAGE - 0.50 0.45 0.18 0.10 0.23 0.52 0.66

HOURGLASS [42] 17.8M 0.55±0.03 0.71±0.03 0.50±0.01 0.31±0.04 0.25±0.07 0.59±0.08 0.71±0.07

FCN-ND[42] 0.1M 0.60±0.05 0.51±0.07 0.48±0.03 0.24±0.01 0.28±0.03 0.42±0.05 0.50±0.08

CMOSS 1.1M 0.60±0.06 0.78±0.06 0.62±0.02 0.33±0.03 0.34±0.05 0.61±0.05 0.75±0.06
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Figure 3. Ablation (F1 score) of the model components on selected
streams (E, S, L stands for EMPTYSPACE, SOLID, LIVINGROOM). (a)
features-motion consistency term L��; (b) sampling strategy; (c) EMA
network; (d) number of sampled points �. See the main text for details.
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Figure 4. Evolution of the learning process (EMPTYSPACE) right after the
time in which results of Tab. 1 were measured and until each object has

performed an additional lap (avg of 10 runs). Lines are the F1 of
object-specific predictors (ewer, pillow, laptop, chair) and the overall F1
(Global, with std reported as a semitransparent overlay). Vertical colored

bands indicate when each object is moving.
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usual forward/backward transfer would not be meaningful. How-
ever, to better asses the model performances over time, we provide in
Fig. 4 a detailed analysis of the selected EMPTYSPACE-RGB model.
Following prior experiments, we extended learning with an extra
lap, tracking F1 evolution. Colored vertical bands depict time inter-
vals of object motion. Given the influence of moving entities on the
sampling process, representation capability subtly shifts over time,
leading to slight F1 oscillations. Nonetheless, the variability band
(overlaid in Fig. 6 (b)) around the averaged F1 (Global) is relatively
small, comparable to the std range in Tab. 1. Notably, the ewer class’s
object-specific predictor exhibits more prominent variations (max-
min), as expected due to its smaller size, where border errors carry
greater impact.

4 Conclusions and Future Work

We introduced CMOSS, a method to jointly learns to extract mo-
tion and pixel-wise representations from scratch, processing a single
stream of data in an online, continual, manner. Motion is the key
element of a novel contrastive criterion that, when exploited in con-
tinual replay-free online learning, successfully deals with the vari-
able appearance of visual information in space and time. Experi-
mental results on recent benchmarks and on real-world videos show
that CMOSS significantly overcomes its main competitor [42], and
it also performs similarly to CNNs and Transformer-based networks
(offline-pretrained on large datasets), at a fraction of the parameters.
CMOSS (as well as its main competitor) is designed to learn in envi-
ronments where background areas are characterized by motion pat-
terns that are different from the ones of objects to which semantics
are expected to be attached. We showed that the relatively slow cam-
era motion in the real-world videos can be easily handled by using a
larger τm or setting it to the average length of motion vectors in the
current frame, as we did in our implementation. However, strongly
moving cameras (e.g., egomotion) might lead to less discriminative
features. Finally, more advanced continual learning strategies might
be required to avoid forgetting issues in significantly longer streams
or with many more object categories. Such limitations will be the
subject of future studies.
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