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Abstract. Mechanism design is a well-established game-theoretic
paradigm for designing games to achieve desired outcomes. This pa-
per addresses a closely related but distinct concept, equilibrium de-
sign. Unlike mechanism design, the designer’s authority in equilib-
rium design is more constrained; she can only modify the incentive
structures in a given game to achieve certain outcomes without the
ability to create the game from scratch. We study the problem of
equilibrium design using dynamic incentive structures, known as re-
ward machines. We use weighted concurrent game structures for the
game model, with goals (for the players and the designer) defined as
mean-payoff objectives. We show how reward machines can be used
to represent dynamic incentives that allocate rewards in a manner that
optimises the designer’s goal. We also introduce the main decision
problem within our framework, the payoff improvement problem.
This problem essentially asks whether there exists a dynamic incen-
tive (represented by some reward machine) that can improve the de-
signer’s payoff by more than a given threshold value. We present two
variants of the problem: strong and weak. We demonstrate that both
can be solved in polynomial time using a Turing machine equipped
with an NP oracle. Furthermore, we also establish that these variants
are either NP-hard or coNP-hard. Finally, we show how to synthesise
the corresponding reward machine if it exists.

1 Introduction

Over the past decade, Nash equilibrium (NE) and other game-
theoretic concepts have been extensively used to analyse concurrent
and multi-agent systems (see e.g., [11, 5, 34, 12, 1]). In this research,
systems are modelled as games with agents acting rationally to fulfil
their preferences. While preferences are often expressed qualitatively
(e.g. by temporal logic formulae), many systems require more com-
plex models to capture quantitative aspects like resource consump-
tion, cost, or performance [13, 4, 2, 10]. Games with mean-payoff
objectives [35] provide such richer preference modelling.

The game-theoretical analysis of mean-payoff games (MPGs) is
a significant research area, especially in verifying their correct-
ness [31, 6, 7, 29, 15, 8]. This involves checking whether a formal
property is satisfied in some or all equilibrium outcomes. A perti-
nent question is: “what if the property is not satisfied in any equi-
librium outcomes?” Equilibrium design [14] addresses this question.
Inspired by the mechanism design paradigm [21, 17], equilibrium de-
sign offers a way to rectify equilibrium outcomes. However, unlike
mechanism design, the designer in equilibrium design cannot create
the game from scratch, but can only modify the incentive structures

of an existing game.
In [14], the authors proposed subsidy schemes to introduce equi-

libria in concurrent MPGs satisfying some LTL formula [28]. In that
setting, a subsidy scheme is modelled by a function mapping from
states and players to additional rewards. If a player visits a certain
state, the corresponding reward is paid to the player. In this paper,
we generalise this incentive model with reward machines [19]. Such
machines implement a reward mechanism that considers the execu-
tion history to dynamically assign rewards. Thus, at each iteration
of the game, every agent receives a utility combining the original
weight and an authoritative reward based on the current game state
and the internal reward machine state. As we will show later (see Ex-
ample 1), this generalisation allows us to obtain a more expressive
model of incentive.

We consider games where each agent has a weight function over
the states, with mean-payoff aggregation as their utility function. Ad-
ditionally, a global weight function measures the designer satisfac-
tion, also as a mean-payoff value over executions. We employ reward
machines to improve the designer satisfaction. Intuitively, these ma-
chines reconfigure weights after each iteration, thus reshaping the set
of equilibria. The objective is to improve the global payoff over the
set of equilibria by a fixed amount Δ. This can be achieved strate-
gically by synthesising and implementing an appropriate reward ma-
chine. To make the setting realistic, we assume the reward spent on
each agent in every iteration is subtracted from the global weight,
factoring the cost into the resulting global payoff.

In MPGs, infinite memory may be required to achieve optimal val-
ues [33]. As we will demonstrate later, infinite memory may be nec-
essary to achieve the optimal global payoff value. However, since
a reward machine is typically represented by a finite-state machine
(specifically, a Mealy machine in this work), there may be cases
where no finite-state reward machine can improve the global pay-
off by a given Δ. Therefore, we consider an approximate solution.
In particular, we aim to find a reward machine that can improve the
global payoff by a value ε-close to Δ for a given ε > 0. Moreover, ε
can be arbitrarily small, allowing for an arbitrary level of precision.

In general, a game may have multiple equilibria. Therefore, we
study the problem under both the optimistic and pessimistic settings.
Specifically, we consider the problem of improving the global mean-
payoff over the best possible NE by adopting an optimistic view
that agents will select the equilibrium most convenient for the de-
signer. We call this the weak improvement problem. Conversely, we
also consider improving the global mean-payoff over the worst pos-
sible NE, considering the pessimistic case when agents select the
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least convenient equilibrium for the designer. We call this the strong
improvement problem. Furthermore, we classify the complexity of
these problems. We show that both can be solved in PNP = ΔP

2 and
are at least NP-hard or coNP-hard. To our knowledge, this is the
first work that employs reward machines in the context of MPGs and
game-theoretic equilibria.

Related work As previously mentioned, this work is closely re-
lated to [14], but it differs in several key aspects. Firstly, our incen-
tive model is more expressive due to the use of reward machines.
Furthermore, we measure the global property using a quantitative
metric (i.e. mean-payoff value), as opposed to the qualitative prop-
erty in [14]. In this respect, we provide a richer modelling of global
preferences. Equilibrium design has a deep connection to mechanism
design, but the two are not exactly the same. Typically in mechanism
design, the designer is not given a predetermined game structure, but
instead is required to provide one. Moreover, in mechanism design,
the designer must ensure the reward structure is incentive compati-
ble with respect to some social choice function [24] as the designer
is primarily interested in the agents’ payoffs (via the social choice
function). This is not the case in equilibrium design, as the designer
here is only interested in the global payoff, which may be orthogonal
to the agents’ payoffs.

On the other hand, the concept of a reward machine originated
from the field of reinforcement learning (RL). Much of the existing
work is within the domain of single-agent RL [18, 30, 19]. In [23],
the authors explored reward machines for multi-agent RL systems.
However, in this work, the reward machine is manually generated,
as opposed to being automatically synthesised. [32] tackles the prob-
lem of automatically synthesising reward machines in cooperative
multi-agent RL. Specifically, the reward machines are partly synthe-
sised from Alternating-time Temporal Logic (ATL) specifications.
However, this line of research focuses on RL systems, which dif-
fer from MPGs. Moreover, none of these papers consider any game-
theoretical solution concepts.

Another related line of work involves designing equilibria using
norms. Norm-based mechanism design has been studied in [9]. In
particular, they studied weak and strong implementability, which are
related to the problems addressed in our work in the sense that they
correspond to optimistic (“there is some good behaviour”) and pes-
simistic (“all behaviours must be good”) assumptions. In [16, 27, 3],
automata-based norms, referred to as dynamic norms, are consid-
ered. All of these works fall within the domain of normative systems,
which is different from the setting considered in this paper. We be-
lieve that an incentive-based equilibrium design provides a comple-
mentary approach to norm-based equilibrium design. This is because
in some circumstances, a norm may not be enforceable, but only in-
centives are possible (e.g., congestion/road pricing in the Ultra Low
Emission Zone (ULEZ) in London).

2 Preliminaries

In this section we introduce the basic notions that will be used
throughout the paper. We start with the definition of mean-payoff
value and multi-player mean-payoff games.

Mean-Payoff For an infinite sequence r ∈ Rω , let mp(r) be
the mean-payoff value of r, that is, mp(r) = lim infn→∞ avgn(r)
where, for n ∈ N \ {0}, we define avgn(r) =

1
n

∑n−1
j=0 rj , with rj

the (j+1)th element of r.

Multi-Player Mean-Payoff Game A multi-player mean-payoff
game is a tuple G =〈N,Ac, St, sin, (di)i∈N, tr, (wi)i∈N,wg〉 where

• N = {1, . . . , n}, Ac, and St are finite non-empty sets of players,
actions, and states, respectively;

• sin ∈ St is the initial state;
• di : St → 2Ac \ {∅} is a protocol function for player i returning

possible action at a given state;
• tr : St× �Ac → St is a transition function mapping each pair con-

sisting of a state s ∈ St and an action profile �a = (a1, . . . , an) ∈
�Ac = Acn, one for each player, to a successor state—we write �ai

for �a{i} and �a−i for �aN\{i}. For two decisions �a and �a′, we write
(�aC ,�a

′
−C) to denote the decision where the actions for players in

C ⊆ N are taken from �a and the actions for players in N \ C are
taken from �a′;

• wi : St → Z is player i’s weight function mapping, for every
player i and every state of the game into an integer number; and

• wg : St → Z is a global weight function mapping every state of
the game into an integer number.

We define the minimum and maximum weights appearing in G as fol-
lows.

Definition 1. For a given game G and its set of states St, define
MinWG

j = min{wj(s) | s ∈ St} and MaxWG
j = max{wj(s) |

s ∈ St}.

A path is an infinite sequence π = s0, s1, s2, ... ∈ Stω such
that for each k ∈ N, there is an action profile (in k-th step) �ak ∈∏

i∈N di(sk), such that sk+1 = tr(sk,�a
k). We write π≤k to denote

the prefix of π up to and including sk. Similarly, π≥k denotes the
suffix of π starting from sk. Let PathsG(s) be the set of all possible
paths in G starting from s.

A strategy for agent i is a Mealy machine σi = (Ti, t
0
i , St, γi, ρi),

where Ti is a finite and non-empty set of internal states, t0i is the
initial state, γi : St× Ti → Ti is a deterministic internal transition
function, and ρi : St × Ti → Aci an action function. We say that
a strategy σi is valid with respect to G if and only if ρi(s, tj) ∈
di(s). From now on, we restrict our attention to valid strategies, and,
unless otherwise stated, refer to them simply as strategies. We denote
Stri(G) the set of valid strategies for player i in G. Moreover, for a
given strategy σi and a finite sequence π̂ ∈ St∗, by σi(π̂) ∈ Ac
we denote the action prescribed by the action function ρi of σi after
the sequence π̂ has been fed to the internal transition function γi.
Note that the model of strategies implies that strategies have perfect
information and finite memory, although we impose no bounds on
memory size.

A strategy profile �σ = (σ1, . . . , σn) is a vector of strategies, one
for each player. As with actions, �σi denotes the strategy assigned to
player i in profile �σ. Moreover, by (�σB , �σ

′
C) we denote the combi-

nation of profiles where players in disjoint B and C are assigned
their corresponding strategies in �σ and �σ′, respectively. We denote
StrA(G) the set of strategy profiles for the set A of agents. We also
use Str(G) = StrN(G) to denote the strategy profiles for all the
agents in the game. Whenever the game is clear from the context, we
also simply use Str. Once a state s and profile �σ are fixed, the game
has an outcome, a path in G, denoted by π(�σ, s). Because strategies
are deterministic, π(�σ, s) is the unique path induced by �σ, that is, the
sequence s0, s1, s2, . . . such that

• sk+1 = tr(sk, (ρ1(sk, t
k
1), . . . , ρn(sk, t

k
n))), and

• tk+1
i = γi(s

k
i , t

k
i ), for all k ≥ 0.

For a subset of agents C ⊆ N and strategies �σC , we say that a
path π is compatible with �σC if, for every k ∈ N, there exists an
action profile �ak with aki = σi(π≤k) for each i ∈ C, such that
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sk+1 = tr(sk,�a
k). Intuitively, π is compatible with �σC if it can be

generated when the agents in C play according to their respective
strategies. We denote by outG(s, �σC) the set of paths starting from s
and compatible with �σC . Observe that PathsG(s) can also be written
as outG(s,∅).

Given a game G and a strategy profile �σ, a path π(�σ) induces,
for each player i, an infinite sequence of integers wi(π(�σ)) =
wi(sin)wi(s1) · · · . Similarly, π(�σ) also induces such a sequence of
integers for the global weight function wg(·). The payoff of player i
in game G is payGi (�σ) = mp(wi(π(�σ))), and the global payoff of G
is payGg (�σ) = mp(wg(π(�σ))). Whenever the game is clear from the
context, we simply use payi(�σ) and payg(�σ), respectively.

Nash Equilibrium Using payoff functions, we can define the
game-theoretic concept of Nash equilibrium [25]. For a multi-player
game G, a strategy profile �σ is a Nash equilibrium of G if, for every
player i and strategy σ′

i for player i, we have

payi(�σ) ≥ payi((�σ−i, σ
′
i)) .

We also say that �σ is a j-fixed Nash Equilibrium [20] if payi(�σ) ≥
payi((�σ−i, σ

′
i)) for every player i �= j different from the fixed j.

Let NE(G) and NEj(G) be the set of Nash Equilibria
and j-fixed Nash Equilibria of G. We define bestNE(G) =
sup�σ∈NE(G){payg(�σ)} as the best global payoff over the set of pos-
sible outcomes sustained by a Nash Equilibrium in the game. Equiva-
lently, we define worstNE(G) = inf�σ∈NE(G){payg(�σ)} as the worst
global payoff over the set of possible outcomes sustained by a Nash
Equilibrium in the game. In the case of NE(G) is empty, in order
to make the values of bestNE(G) and worstNE(G) well defined, we
assume that bestNE(G) = worstNE(G) = MinWG

g .

3 Reward Machines for Equilibrium Design

In this section, we introduce a type of finite state machine, called a
reward machine (RM). A RM takes a path π as input, and outputs
a sequence of vectors �v0, �v1 · · · ∈ (Nn)ω that corresponds to the
reward granted to the players at each step of the path. Formally, a
RM is defined as a Mealy machine:

Definition 2 (Reward Machine). A RM is a Mealy machine M =
〈QM, qM0 , δM, τM〉, where QM is a finite (non-empty) set of states,
qM0 the initial state, δM : QM × St → QM a deterministic transi-
tion function, and τM : QM × St → Nn a reward function where
τM
i (q) = τM(q)(i) is the reward in the form of a natural number
k ∈ N imposed on player i if the play visits (s, q) ∈ St × QM.
Sometimes, when it is clear from the context, the elements of the RM
are denoted without superscripts.

Reward Machine implementation. For a given game G =
〈N,Ac, St, sin, (di)i∈N, tr, (wi)i∈N,wg〉, the implementation of M
on G is the game

G†M =〈N,Ac, St×Q, (sin, q0), (d
M
i )i∈N, tr

M, (wM
i )i∈N,w

M
g 〉,

where: (i) dMi (s, q) = di(s), for each agent i ∈ N;
(ii) trM((s, q),�a) = (tr(s,�a), δ(s, q)); (iii) wM

i (s, q) = wi(s) +
τi(s, q); (iv) wM

g (s, q) = wg(s)− ||τ(s, q)|| 1.
For a given natural number β ∈ N, a β-RM, denoted Mβ , is RM

such that ||τ(s, q)|| ≤ β for each (s, q) ∈ St × Q. In this paper,
we consider a budget β being fixed and restrict our attention only to
β-RMs.

1 By ||�v|| = ∑
i∈N |vi| we denote the classic Manhattan distance.
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Figure 1. Graphical representation (left) and game arena (right) for
Example 1.

Definition 3 (Global payoff improvement problems). For a given
game G, a budget β, and a threshold Δ. The global payoff weak
improvement problem consists in deciding whether there exists a β-
RM M such that:

bestNE(G †M)− bestNE(G) > Δ.

The global payoff strong improvement problem consists in decid-
ing whether there exists a β-RM M such that:

worstNE(G †M)− worstNE(G) > Δ.

Henceforth, for simplicity, we will use the term improvement prob-
lem to refer to the global payoff improvement problem.

At this point, it is important to note that the optimal values of
bestNE and worstNE may not be achievable with finite-state strate-
gies and reward machines. As such, to guarantee termination, we
compute the approximate values instead. Moreover, our approach al-
lows the values to be approximated to an arbitrary level of precision.
We discuss this in detail in Section 5.

Reward Machines vs Subsidy Schemes. As previously men-
tioned, the reward model in this paper is a generalisation of the
one considered in [14], which is referred to as a subsidy scheme in
that paper. A subsidy scheme is defined as a function κ : St →
Nn. This can be trivially expressed by a reward machine M =
(QM, qM0 , δM, τM) where QM = {q}, qM0 = q, and for all
s ∈ St, δM(s, q) = q, τM(s, q) = κ(s). In other words, subsidy
schemes belong to the subclass of “memoryless” reward machines2.
However, there are some cases in which memory is required. To il-
lustrate this, consider the following simple example.

Example 1. Consider a scenario where a robot is situated in an
environment shown in Figure 1 left, in which there are four locations
t, l, r,m. The robot can move from one location to another and is not
allowed to stay in the same location for two consecutive time steps.
There are three doors separating the locations, and they can only be
passed according to their respective arrows. For instance, the robot
can only move from m to t through the middle door, and not the other
direction. Thus, the robot can reach m from t only through l or r.
However, location r is still under maintenance, and it is best to avoid
passing through it. Suppose that the designer wants to incentivise the
robot to deliver goods from t to m infinitely often. We can model this
as a game G with N = {1}. The game graph is shown in Figure 1
right. In each state, the actions available to the player correspond

2 We note that the semantics of the budget used here is slightly different to the
one used in [14]. In this work budget can be thought as “capacity” of addi-
tional reward in each time step, whereas in [14] it is the total “commitment”
of reward in the game.
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to the outgoing edges and their respective labels. Let t be the initial
state, and w1(v) = 0 for all v ∈ St = {t, l,m, r}. Moreover, let
wg(t) = wg(r) = 0,wg(l) = 1,wg(m) = 2; the designer receives
reward of 2 when the robot visits m from t, furthermore, she receives
extra reward of 1 when the robot uses corridor l. Suppose that β =
1. Observe that worstNE(G) = 0 corresponding to the sequence
p(t, r)ω for some finite prefix p. Suppose that we want to synthesise
M such that given Δ = 1

2
, the strong improvement problem returns

a positive answer. That is, worstNE(G †M)− worstNE(G) > 1
2

.

q0

q3q1 q2

l, 0 r, 0

m, 1 m, 0

t, 0
t, 0 t, 0

Figure 2. Reward machine
M.

A reward machine that satisfies
the constraint in Example 1 is as fol-
lows: only give rewards of 1 when
the robot visits m from l. More for-
mally, the reward machine is shown
in Figure 2 where τM

1 (q1,m) = 1
and τM

1 (q, t) = 0 for all (q, t) �=
(q1,m). The set of Nash equilib-
ria in (G † M) corresponds to the
sequence p(t, l,m)ω for some finite prefix p. As such, we have
worstNE(G†M) = 2

3
. Observe that such an incentive requires mem-

ory, since it needs to remember which path leading to m is taken by
the robot. This is not possible with memoryless reward machine.

4 Reward Engineering

In this and the next section, we show how to solve global payoff
improvement by constructing an auxiliary game that allows to look
at the problem as an equilibrium verification per se. More specifi-
cally, such construction regards reward machines as the strategies of
a designated agent in the game, whose weight function corresponds
to the global weights of the original game updated with the rewards
spent on the others at each iteration. First we provide the definition of
such auxiliary game, which is inspired from the constructions given
in [27, 3].

Definition 4. Given a game G and a budget β ∈ N, we define its aux-
iliary game G′ = 〈N′,Ac′, St′, s′in, (di)i∈N′ , tr′, (w′

i)i∈N′〉, where
(i) N′ = {0} ∪ N,Ac′ = Ac ∪ βn, St′ = St × βn, s′in = (sin,�0);
(ii) tr′((s, �v), (�a, �v′)) = (tr(s,�a), �v′); (iii) d′i(s,�v) = di(s), i ∈ N;
(iv) d′0(s,�v) = {�v : ||�v|| ≤ β}; (v) w′

i(s, �v) = wi(s) + �vi;
(vi) w′

0 = wg − ‖�v‖.

Intuitively, we are adding agent 0 to the original game G, whose
actions are n-dimensional vectors representing the possible rewards
assigned to every other agent. All the other components of the auxil-
iary game are defined accordingly. The protocol function remains the
same for every original agent, whereas the one for agent 0 prescribes
that the amount of reward distributed to the agents at each iteration
does not exceeds the budget β. The set of states is augmented to
record the amount of reward received by each agent, which is then
reflected in the corresponding weight function w′

i. Finally, the global
weight function is updated by subtracting the amount of reward es-
tablished by agent 0 in the current iteration.

In the next two constructions, we show how to transform a β-RM
for G into a strategy for agent 0 and viceversa.

Construction 1 (RM to Strategy). Given a RM M =
〈QM, q0M, δM, τM〉 of G † M, we define the strategy of player 0
in G′ as σM = 〈T0, t

0
0, St

′, γ0, ρ0〉 where T0 = QM, t00 = q0M, and
the internal transition and action functions defined as

• γ0((s,�v), t) = δM(s, t)
• ρ0((s,�v), t) = τM(s, t)

for every (s,�v) ∈ St′ and t ∈ T0.

Intuitively, the strategy σM uses the same internal states of the
RM M, while the transition and action functions of σM are defined
by modifying those of M to match with the types required to be
considered a strategy for 0 in G′. Such construction can be reverted
by carefully modifying the types, in order to move from a strategy of
agent 0 in G′ to a RM for G, as it is shown in the following.

Construction 2 (Strategy to RM). Given a strategy σ0 =
〈T0, t

0
0, St

′, γ0, ρ0〉 in G′, we define the RM for G as Mσ0 =
〈QMσ0

, q0Mσ0
, δMσ0

, τMσ0
〉 where QMσ0

= T × βn, q0Mσ0
=

(t00,�0), and the transition and reward functions defined as

• δMσ0
(s, (t, �v)) = (γ0((s, �v), t), ρ0((s, �v), t))

• τMσ0
(s, (t, �v)) = ρ0((s, �v), t)

for every s ∈ St and (t, �v) ∈ QMσ0
.

We write π�St to denote the sequence in Stω obtained from π by
projecting the component in St and τ(π) the sequence in (Zn)ω ob-
tained from wM

1 (π), . . . ,wM
n (π).

In the following Lemma, we prove that the constructions presented
above correctly translate RMs into strategies and viceversa, meaning
that they make a connection between paths of G †M and outcome of
G′ when agent 0 uses the corresponding strategy and viceversa.

Lemma 1. For a given G †M and its associated auxiliary game G′

the following hold:

(1) for every path π ∈ PathsG†M((sin, q
0)), there is a path π′ =

(π�St, τ(π)) ∈ outG′((sin,�0), σM), and wM
i (π) = w′

i(π
′) for

all i ∈ N and wM
g (π) = w′

0(π
′);

(2) for every path π′ ∈ outG′((sin,�0), σ0), there is a path π =

(π′
�St, δMσ0

(π′)) ∈ PathsG†Mσ0
((sin, q

0)), and w
Mσ0
i (π) =

w′
i(π

′) for all i ∈ N and w
Mσ0
g (π) = w′

0(π
′).

Proof. We prove the first item only, as the other has a similar proof.
Observe that the path π′ is uniquely identified from π. Moreover,

from the definitions of Mσ0 and w′
0, it immediately follows that

wM
g (π) = w′

0(π
′). Therefore, we only need to prove that π′ belongs

to outG′((sin,�0), σM). We do it by induction on k ∈ N by showing
that every prefix π′

≤k of π′ can be extended compatibly with σM.
For the base case k = 0, we have that π′

≤0 = (s0,�0) which is
trivially extendable to any path in outG′((sin,�0), σM).

For the induction case k > 0, assume that π′
≤k is extend-

able to a path in outG′((sin,�0), σM). Then, consider π≤k and
�a the joint action such that πk+1 = tr(πk,�a), which exists
since π ∈ PathsG†M((sin, q

0)). Clearly, it holds that π′
≥k+1 =

tr′(π′
≥k, (σM(π′

≥k,�a))), which makes π′
≤k+1 extendable compat-

ibly with σM.

Similarly to the correspondence between RMs and agent 0’s strate-
gies, a connection between strategies of any other agent i in G † M
and G′ exists. In other words, once a RM M and its corresponding
strategy σM are fixed, every strategy σi for agent i in G †M can be
translated into a strategy σ′

i.

Construction 3 (G † M to G′). For a game G † M and a strategy
σi = 〈Ti, t

0
i , γi, ρi〉 in it, we define a strategy σ̂i = 〈T̂i, t̂

0
i , γ̂i, ρ̂i〉 in

the corresponding game G′ as follows:
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• T̂i = T ×QM, and t̂0i = (t0i , q
M
0 );

• γ̂i : (T × QM) × (St × βn) → (T × QM) such that
γ̂i((t, q), (s,�v)) = (γi(t, (s, q)), δM(s, q));

• ρ̂i : (T × QM) × (St × βn) → (T × QM) such that
ρ̂i((t, q), (s, �v)) = ρi(t, (s, q)).

By θG†M(σi) = σ̂i we denote the strategy for player i in G′ ob-
tained from σi by applying the construction above.

On the other hand, once a strategy σ0 for agent 0 in G′ and the
corresponding RM Mσ0 are fixed, the translation from strategies for
agent i in G′ to strategies in G †Mσ0 is possible.

Construction 4 (G′ to G † M). For a game G′ and a strategy
σ̂i = 〈T̂i, t̂

0
i , γ̂i, ρ̂i〉, we define a strategy σi = 〈Ti, t

0
i , γi, ρi〉, in

the corresponding game G †M as follows:

• T̂i = T ×QM, and t̂0i = (t0i , q
M
0 );

• γ̂i : (T × QM) × (St × βn) → (T × QM) such that
γ̂i((t, q), (s,�v)) = (γi(t, (s, q)), δM(s, q));

• ρ̂i : (T × QM) × (St × βn) → (T × QM) such that
ρ̂i((t, q), (s, �v)) = ρi(t, (s, q)).

By θG′(σ̂i) = σi we denote the strategy for player i in G † M
obtained from σ̂i by applying the construction above.

The following two lemma shows that the connection among strate-
gies in between the games also preserves the payoff of agents.

Lemma 2. For a given game G, RM M, and strategy profile �σ ∈
Str(G †M), it holds that

payG†M
i (�σ) = payG

′
i (σM, θG†M(�σ))

Proof. Observe that the path π = π(�σ, (sin, q
0)) belongs to the set

PathsG†M((sin, q
0)). Moreover, by Construction 3, the path π′ =

π((σM, θG†M(�σ)), (sin, q
0)) is exactly the one such that wM

g (π) =
w′

0(π
′) as proved in the Item 1 of Lemma 1. This straightforwardly

shows that payG†M
i (�σ) = payG

′
i (σM, θG†M(�σ)).

Lemma 3. For a given game G, a strategy σ0 ∈ Str0(G′), and
strategy profile �σ ∈ StrG†M, it holds that

payG
′

i (σ0, �σ) = pay
G†Mσ0
i (θG′(�σ))

Sketch. The proof is similar to the one of Lemma 2, with the use of
Construction 4 and Item 2 of Lemma 1.

By having the same set of payoffs, it simply follows from
Lemma 1, Lemma 2, and Lemma 3, that the games G † M and G′,
where agent 0 is bound to the use of σM share the same set of Nash
Equilibria.

Theorem 4. For a given game G and a budget β, the two following
hold:

1. For every β-RM M and strategy profile �σ in G †M, it holds that

�σ ∈ NE(G †M) iff (σM), �̂σ) ∈ NE0(G′).

2. For every strategy profile (σ0, �σ) in G′, it holds that

(σ0, �σ) ∈ NE0(G′) iff θG†Mσ0
(�σ) ∈ NE(G †Mσ0)

q0q1q3 q2q4q5q6
l, 0 r, 0m, 0s, 0l, 0m, 1

s, 0

s, 0

s, 0

∗, 0

Figure 3. Reward machine M′.

5 Solving Improvement Problems

In this section, we present a technique for solving the weak and
strong improvement problems. We also demonstrate how to synthe-
sise the RM, if it exists. With the definition of the improvement
problems, it makes sense to start with the problems of computing
worstNE and bestNE. To this end, we introduce NE threshold prob-
lem [31] that we will use as a subroutine in our algorithms. This
problem asks whether there exists a NE in G, such that the payoffs
for the players fall between two vectors �x and �y.

Definition 5 (NE Threshold Problem). Given a game G and vector
�x, �y ∈ (Q ∪ {±∞})n, decide whether there is �σ ∈ NE(G) with
xi ≤ payi(�σ) ≤ yi for every i ∈ N.

When the players have pure strategies, the NE threshold problem
can be solved in NP [31].

We begin with the following observation. For a given game G, it
holds that MinWG

g ≤ worstNE(G) ≤ MaxWG
g and MinWG

g ≤
bestNE(G) ≤ MaxWG

g . Moreover, it also holds that for a given G′,
we have MinWG′

0 ≤ worstNE(G′) ≤ MaxWG′
0 and MinWG′

0 ≤
bestNE(G′) ≤ MaxWG′

0 . As such, by using binary search and the
NE threshold problem subroutine, we can compute the values of
worstNE and bestNE for G and G′.

As we previously discussed, the optimal values of worstNE(G)
and worstNE(G †M) may not be achievable with finite-state strate-
gies and RMs. To see this, consider again Example 1. Suppose that
we have a RM M′ shown in Figure 3, where τM′

1 (q5,m) = 1 and
τM′
1 (q, s) = 0 for all (q, s) �= (q5,m). Intuitively, player 1 is only

given a reward of 1 after it finishes two cycles of deliveries. Clearly
the set of NE still corresponds to the same sequence p(s, l,m)ω .
However, since now the designer only needs to pay 1 unit for ev-
ery two cycles, we have worstNE(G † M′) = 5

6
, which is strictly

greater than worstNE(G †M) = 2
3

obtained by the RM in Figure 2.
In fact, we can increase the number of cycles needed to be done be-
fore giving 1 unit of reward by adding more states in the RM, thus
obtaining strictly greater worstNE value. Since the size of RM is not
bounded, we can do this indefinitely. A similar argument can also be
given for the optimal value of worstNE(G), the complete explanation
can be found in the extended version [22] of this paper. Observe that
by multiplying payg with −1, we can also use the example above to
analogously reason about bestNE.

The above arguments shows that the binary search for computing
the values of worstNE and bestNE may not terminate. To ensure
termination, we compute approximate values instead.

Definition 6. Given ε > 0, an approximate value of worstNE (resp.
bestNE) is a value a such that a − ε < o, where o is the optimal
value of worstNE (resp. bestNE). We refer to such an approximate
value as ε-worstNE (resp. ε-bestNE).

We provide Algorithm 1 for computing ε-worstNE given G and ε
encoded in binary. The check in Line 4 corresponds to the NE thresh-
old problem from Definition 5. Notice that the threshold vectors �x, �y
are not explicitly given, as we are not interested in these values. Thus,
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Algorithm 1 Computing ε-worstNE
input: G, ε

1: a1 ← MinWG
g ; a2 ← MaxWG

g

2: while a2 − a1 ≥ ε do

3: a′ ← a1+a2
2

;
4: if ∃�σ ∈ NE(G), a1 ≤ payg(�σ) ≤ a′ then

5: a2 ← a′

6: else

7: a1 ← a′

8: end if

9: end while

10: return a2

we fix xi = MinWG
i , yi = MaxWG

i for each i ∈ N, i.e., they can
be of any possible values. On the other hand, we are interested in
payg , which in fact does not correspond to the payoff of any player.
However, we can easily modify the underlying procedure for solv-
ing the problem in [31] to handle this. Specifically, by [31, Lemmas
14 and 15], we can specify an additional linear equation correspond-
ing to the value of payg being in between a1 and a′, thus yielding a
procedure that is also in NP. Algorithm 1 can also be used to com-
pute ε-worstNE(G′) with the following adaptation: Line 4 is slightly
modified into ∃�σ ∈ NE0(G), a1 ≤ pay0(�σ) ≤ a′, that is, the NE
set corresponds to the 0-fixed NE. Just as with payg , pay0 is not the
payoff of any player in N. Therefore, we modify the underlying pro-
cedure for the NE threshold problem using the same approach as the
above.

To compute ε-bestNE, we can employ a similar technique. We
make the following modification to Algorithm 1: in each iteration,
instead of checking the left-half part, we check the right-half part
(i.e., instead of minimising, we are maximising). This is done in
Lines 4-8 of the algorithm by checking whether ∃�σ ∈ NE(G), a′ ≤
payg(�σ) ≤ a2. If the check returns true, we set a1 ← a′, otherwise
a2 ← a′. Again, as with worstNE, we slightly modify Line 4 in order
to compute bestNE(G′).

Theorem 5. Given a game G (resp. G′) and ε > 0, the problems
of computing ε-bestNE(G) and ε-worstNE(G) (resp. ε-bestNE(G′)
and ε-worstNE(G′)) are FPNP-complete.

Proof. The upper bounds follows from Algorithm 1. The while loop
runs in polynomial number of steps (i.e., logarithmic in |G| · 1

ε
),

and in each step calls a NP oracle. Observe that ε can be arbitrar-
ily small (i.e., arbitrary precision). For the lower bound we reduce
from TSP COST which is FPNP-hard [26]. Given a TSP COST in-
stance (G, c), G = (V,E) is a graph, c : E → Z is a cost function,
we construct a game G such that the ε-worstNE(G) corresponds to
the value of optimum tour3. Let G be such a game where

• N = V ,
• St = {(e, v) : e ∈ E ∧ v = trg(e)} ∪ {(
, sink)},
• s0 can be chosen arbitrarily from St \ {(
, sink)},
• for each state (e, v) ∈ St and each player i ∈ N

– di((e, v)) = {out(v)} ∪ {
} if i = v

– di((e, v)) = {◦, 
}, otherwise;

• for each state (e, v) ∈ St and action profile �Ac

– tr((e, v), �Ac) = (av, trg(av)) if v �= sink and ∀i ∈ N, ai �=

;

3 For auxiliary game G′, we can easily adapt the reduction by substituting wg

with w0.

– tr((e, v), �Ac) = (
, sink), otherwise;

• for each state (e, v) ∈ St and player i ∈ N

– wi((e, v)) = |V |, if v = i and v �= sink,

– wi((e, v)) = 0, if v �= i and v �= sink,

– wi((e, v)) = 1, if v = sink;

• for each state (e, v) ∈ St

– wg((e, v)) = max{c(e′) : e′ ∈ E} · |V |, if v = sink

– wg((e, v)) = c(e) · |V |, otherwise;

where ◦, 
, sink are fresh symbols. We also set ε = 1. The construc-
tion is complete and polynomial to the size of (G, c).

We argue that �ε-worstNE(G)� is exactly the value of optimal
valid tour. First, observe that for any �σ ∈ NE(G), it holds that ei-
ther (1) π(�σ) visits every v ∈ V (i.e., visits every city), thus a valid
tour, or (2) π(�σ) enters (
, sink) and stays there forever. Case (1)
holds because if π(�σ) does not visit v ∈ V , then payv(�σ) = 0
thus player v will deviate to (
, sink) and obtain better payoff. In
fact, �σ visits each city exactly once, because otherwise, there is a
player who gets payoff strictly less than 1, and deviates to (
, sink).
Case (2) is trivially true; however, assuming that the costs are not
uniform (otherwise TSP COST becomes trivial), it cannot be a solu-
tion to ε-worstNE. Let o be the optimal tour cost, and suppose for
a contradiction that �ε-worstNE(G)� < o. Let �̂σ be a correspond-
ing strategy profile. By the construction of G, this means that �̂σ does
not visit some cities or visits some cities more than once. However,
by (1) above, �̂σ cannot be in NE(G)—a contradiction. We can ar-
gue in a similar manner for �ε-worstNE(G)� > o; it is not possible
because either the corresponding strategy does not form a valid tour
(and by (1) above, it is not a NE), or it is not the optimal solution
to ε-worstNE; again a contradiction. Finally, since ε-worstNE ap-
proaches worstNE from the right, we have �ε-worstNE(G)� = o.

For bestNE, we can use the same construction but with the fol-
lowing modification to wg:

• wg((e, v)) = −(max{c(e′) : e′ ∈ E} · |V |), if v = sink

• wg((e, v)) = −(c(e) · |V |), otherwise;

and use similar argument as the above.

Approximate improvement problems We define the approximate
improvement problems as follows.

Definition 7 (ε-improvement problem). Given a game G, a budget
β, a threshold Δ, and ε. The Γ ε-improvement problem, with Γ ∈
{strong,weak}, decides whether there exists a β-RM M such that:

ε-ΓNE(G †M)− ε-ΓNE(G) > Δ.

Having the procedures for computing ε-worstNE and ε-bestNE
for both G and G′, we can then directly solve the ε-improvement
problem with the following procedure.

1. Build the auxiliary game G′;
2. Compute ε-ΓNE(G) and ε-ΓNE(G′);
3. If ε-ΓNE(G′) − ε-ΓNE(G) > Δ, then return “yes”; otherwise

return “no”.

Theorem 6. Strong and weak ε-improvement problems are ΔP
2 .

Proof. The upper bounds follow from the procedure described
above. Steps 1 and 3 can be done in polynomial time, Step 2 only
needs two calls to an FPNP oracle. Thus we have a decision proce-
dure that runs in PNP = ΔP

2 .
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Theorem 7. Strong and weak ε-improvement problems are NP-hard
and coNP-hard, respectively.

Proof. To show that strong ε-improvement problem is NP-hard, we
reduce from HAMILTONIAN PATH problem: given a directed graph
G = (V,E), is there a path that visits each vertex exactly once; this
problem is NP-hard [26]. We build a game G and fix β,Δ and ε
such that the strong ε-improvement problem returns yes if and only
if HAMILTONIAN PATH returns yes. Given a HAMILTONIAN PATH

instance G = (V,E), we construct a game G as follows.

• N = V ∪ {n+ 1, n+ 2}, where V = {1, ..., n},
• St = {(e, v) : e ∈ E∧v = trg(e)}∪{(
, sink), (
,�), (
,�)},
• sin can be chosen arbitrarily from St\{(
, sink), (
,�), (
,�)},
• for each state (e, v) ∈ St and each player i ∈ N

– di((e, v)) = {out(v)} ∪ {
} if i = v

– di((e, v)) = {◦, 
}, otherwise;

• for each state (e, v) ∈ St and action profile �Ac

– tr((e, v), �Ac) = (av, trg(av)) if v �= sink and ∀i ∈ V, ai �=

;

– tr((e, v), �Ac) = (
, sink), if v �= sink and ∃i ∈ V, ai = 
;

– tr((e, v), �Ac) = (
,�), if v = sink and an+1 = an+2;

– tr((e, v), �Ac) = (
,�), if v = sink and an+1 �= an+2;

– tr((e, v), �Ac) = (
, v), if v ∈ {�,�};

• for each state (e, v) ∈ St and player i ∈ {1, ..., n}
– wi((e, v)) = |V |, if v = i and v �∈ {sink,�,�},

– wi((e, v)) = 0, if v �= i and v �∈ {sink,�,�},

– wi((e, v)) = 1, if v ∈ {sink,�,�};

• for each state (e, v) ∈ St and player i ∈ {n+ 1, n+ 2}
– wi((e, v)) = 0;

• for each state (e, v) ∈ St

– wg((e, v)) = 0, if v ∈ {sink,�,�}
– wg((e, v)) = |V |, otherwise;

where ◦, 
, sink,�,� are fresh symbols. We also set β = 1, ε =
1,Δ = 1

2
. The construction is complete and polynomial to the size

of G.
Observe that worstNE(G) = 0, where the play goes to either

(∗,�) or (∗,�) and stays there forever. However, with β = 1,
the designer can pay player n + 1 (resp. player n + 2) with a
payment of 1 when the play reaches (∗,�) (resp. (∗,�)). Essen-
tially, forcing n + 1 and n + 2 to play a matching pennies game,
a game with no Nash equilibrium. Thus, the play that goes to ei-
ther (∗,�) or (∗,�) no longer part of NE(G). Now, consider a
run that visits each v ∈ V exactly once, this is a Nash equilib-
rium. The reasoning is the same as the one provided in the proof
of Theorem 5. And by construction, such a run can only be possi-
ble if and only if there is a Hamiltonian path in the corresponding
graph G. Let π be such a run, now we have payg(π) = 1 and thus,
ε-worstNE(G †M)− ε-worstNE(G) = 1− 0 > 1

2
.

The proof for weak ε-improvement problem is similar: through a
reduction from the complement of HAMILTONIAN PATH. The proof
is included in the extended version of this paper [22].

Synthesis of Reward Machines Given a game G, a budget β, a
threshold Δ, and ε, if the strong (resp. weak) ε-improvement prob-
lem returns a positive answer, then we can synthesise the correspond-
ing RM M as follows. From the auxiliary game G′, find a strategy
profile (σ0, �σ) ∈ NE0(G′) such that payG

′
0 (σ0, �σ) = worstNE(G′)

(resp. payG
′

0 (σ0, �σ) = worstNE(G′)). Using Construction 2, we ob-
tain the RM Mσ0 from σ0, which corresponds to the required RM.

6 Conclusion

In this paper, we examined games where each agent had a weight
function over states, with their utility determined by the mean-
payoff aggregation. A global weight function was used to gauge de-
signer satisfaction, also measured through mean-payoff value. We
utilised reward machines to enhance designer satisfaction, reconfig-
uring weights after each iteration to reshape the equilibrium set. Our
aim was to boost the global payoff over equilibria by at least a given
value Δ, achieved by strategically synthesising a suitable reward ma-
chine.

Among the other results, we first demonstrated that reward ma-
chines are strictly more effective than subsidy schemes. However,
we also found that in some cases, although no reward machine
could improve the global payoff by the required value Δ, an ε-
approximation could be found. Thus, we introduced and addressed
the ε-improvement problem as a more general approach to equilib-
rium design.

Since multiple equilibria are possible in these games, we analysed
the synthesis problem from both optimistic and pessimistic perspec-
tives. We aimed to enhance the global mean-payoff over the best and
worst possible Nash Equilibria, considering scenarios where agents
select the most or least convenient equilibrium from the designer’s
viewpoint, respectively. We also provided complexity classifications
for these problems, demonstrating that each could be solved in ΔP

2

and were at least NP-hard and coNP-hard.

Future work Several directions are possible from this. First, ex-
tensions of designers and agents’ objectives should be considered.
For example, in [14, 13] the agents’ goals are represented as a com-
bination of LTL and mean-payoff objectives, arranged in a lexico-
graphic fashion. Also multi-valued logic such as LTL[F] are con-
sidered for rational verification [4]. It would be interesting to find
out how to employ reward machines to boost the satisfaction value
for this case. Last but not least, an excursion into normative systems
should be considered. Although dynamic norms as defined in [16] are
of the same type of reward machines [19], their implementation to
games provide very different effects. On the one hand, norms disable
agents’ actions. On the other hand, reward machines do not strictly
forbid agents to execute their actions in the game, but rather reward-
incentivise those that are more convenient from the global standpoint.
It would be interesting to combine the two approaches, finding the
right balance between obligation and recommendation modalities.
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