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aInstitute of Computer Science, Polish Academy of Sciences
bFaculty of Mathematics and Information Science, Warsaw University of Technology

ORCID (Jan Mielniczuk): https://orcid.org/0000-0003-2621-2303, ORCID (Adam Wawrzeńczyk):
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Abstract. We introduce a new observational setting for Positive
Unlabeled (PU) data where the observations at prediction time are
also labeled. This occurs commonly in practice – we argue that the
additional information is important for prediction, and call this task
"augmented PU prediction". We allow for labeling to be feature de-
pendent. In such scenario, Bayes classifier and its risk is established
and compared with a risk of a classifier which for unlabeled data is
based only on predictors. We introduce several variants of the empir-
ical Bayes rule in such scenario and investigate their performance.
We put a special focus on dangers (and ease) of applying classical
classification rule in the augmented PU scenario – due to no pre-
existing studies, an unaware researcher is prone to skewing the ob-
tained predictions. We conclude that the variant based on recently
proposed variational autoencoder designed for PU scenario works on
par or better than other considered variants and yields advantage over
feature-only based methods in terms of accuracy for unlabeled sam-
ples.

1 Introduction

We consider Positive Unlabeled (PU) learning, that is a binary clas-
sification task in which information about class indicators is only
partially observable. More specifically, in the PU scenario some ob-
servations from a positive class are assigned labels, whereas the re-
maining observations from this class, as well as all negative obser-
vations, are unlabeled. PU data is collected in many practical situa-
tions, usually when obtaining reliable negatives is difficult or costly.
Under such scenario the most common Machine Learning task is
construction of a classification rule based only on predictors, which
will assign a new observation to a positive or a negative class. In ge-
netics, one can find some genes influencing a particular disease via
costly experiments, but it cannot be assumed that the other genes in
GenBank are not relevant for this disease [25]. Other typical uses
include e.g. ecology [23], survey analysis [1, 21], recommendation
systems [20, 22, 5, 18] and fraud detection [14]. PU framework can
be considered as a special case of data with noisy or partial labels
[16, 4, 13, 10, 3]. However, there are PU learning problems where the
data partial observability can be slightly loosened – in many applica-
tions we would like to perform classification on new PU observations
for which along with predictors, the labeling status is given.
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Such situations commonly happen. A typical example is occur-
rence of hypertension. People who check their blood pressure regu-
larly and when it is abnormal report that to a doctor, are treated for
hypertension. In such a case positive labels are assigned to them.
However, the remaining (unlabeled) group consists of those who
have abnormal blood pressure level but do not contact a doctor, and
those who are healthy. Another example is reporting episodes of cer-
tain illness (i.e. migraine) using dedicated software, see e.g. [19].
Here, some patients who experience such episodes, fail to report
them and thus they can not be distinguished from patients who do
not have them, whence both groups fall into unlabeled category. Note
that in the examples labeling may depend on characteristics of the pa-
tients: e.g. in the first one the better educated and thus more aware of
consequences of untreated hypertension are more likely to consult a
doctor, in the second, the age, influencing dexterity of using a ded-
icated smartphone application, may be an important factor. This is
called selection bias (or instance-dependent labeling) and correspond
to the fact that the distribution of selected (i.e. labeled) observations
is different from that of a positive class.

Note that in the considered examples labeling of new observations
occur naturally. In the first example above, in a new batch of patients,
for those who fail to report hypertension, one would like to detect
those who are likely to be positive. In the "migraine" example it is of
interest to detect patients who likely have failed to report migraine
episodes, in order to contact them. Of course, in such a case, assign-
ment is an issue for unlabeled observations only, as for the labeled
ones we know for sure that they belong to a positive class. For the
sake of distinguishing such task from the usual classification based
on predictors alone, we will call this problem prediction for aug-
mented PU observations or, in short, augmented PU prediction.To
the best of our knowledge the paper is the first approach discussing
this problem in the literature.

In the paper we establish the form of Bayes selection rule for de-
tection of positive observations among unlabeled ones and show that
it is more conservative than Bayes classification rule based solely
on predictors. The fact that we are less likely to classify items to a
positive class when they are unlabeled is understandable when one
realises that unlabeled class contains relatively less positive observa-
tions than the general population.

We calculate the Bayes risk for such scenario and bound the ex-
cess risk for an classification based solely on predictors, what sheds
light on advantage of using labeling information. Also we introduce
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empirical Bayes classifiers taking advantage of recent proposals for
posterior probability estimators in this context. We show that the
variant based on variational autoencoder designed for PU data works
promisingly when accuracy relative to unlabeled data is considered
as an evaluation metric.

2 Preliminaries

In the PU scenario, one considers a random vector (X,Y, S) with
a distribution PX,Y,S such that X ∈ R

p and Y, S are binary with
values 0 or 1. Y is a class indicator, with Y = 1 denoting a posi-
tive class and Y = 0, a negative one, whereas S = 1 and S = 0
mean that observation is either labeled or unlabeled, respectively.
The considered setting stipulates that only some positive observa-
tions are labeled, whereas the remaining positive observations and
negative ones are unlabeled. We adopt Selected At Random (SAR)
assumption, which states that probability of labeling positive obser-
vation depends on observed values of predictors corresponding to it.
Note that it is less stringent, and, as mentioned in the Introduction,
more realistic than assumption that labeling is random but indepen-
dent of an observation’s features (Selected Completely At Random
or SCAR assumption).

In single training-sample scenario adopted here it is also assumed
that random iid vectors (Xi, Yi, Si), i = 1, . . . , n are generated ac-
cording to PX,Y,S , but the observable data is T = {(Xi, Si), i =
1, . . . , n}. This is in contrast to case-control case when it is assumed
that two X samples are available, one pertaining to the positive class
(i.e. sampled from PX|Y =1) and the second corresponding to the
general population (that is, sampled from PX ).

The basic numerical quantities partially describing distribution
PX,Y,S are (unobservable) posterior probability of a positive class
y(x) = P (Y = 1|X = x) and (observable) posterior probability of
being labeled s(x) = P (S = 1|X = x). Note that since the con-
sidered mechanism ensures that P (S = 1|Y = 0, X = x) = 0, the
law of total probability implies the following relation between them

s(x) = P (S = 1|Y = 1, X = x)P (Y = 1|X = x)

:= e(x)y(x),
(1)

where e(x), probability of being labeled given that it is positive and
X = x, is called propensity score. Note that under SAR assumption
this is, usually not constant, function of vector of predictors x. Risk
bounds when e(x) is known are given in [6]. Under SCAR s(x) is
constant and equals probability of a positive element being labeled
P (S = 1|Y = 1), which will be denoted by c.

We briefly discuss PU research in SAR setting and single-training-
sample (or censoring) scenario which gains momentum recently
due to its less stringent assumptions on labeling mechanism. The
main approach to model posterior probability of positive outcome
Y = 1 and propensity score as parametric functions. Furthermore,
treating Y as a hidden random variable one employs Expectation-
Maximization (EM) algorithm to estimate them [8]. It is also possi-
ble to alternately optimize estimates of their Fisher consistent expres-
sions [2]. Another approach avoids estimation of propensity function
and uses Empirical Risk Minimization method along with modelling
of posterior by deep NN to find a solution [17, 24]. Other meth-
ods use additional assumptions such as co-monotonicity of posterior
probabilities for Y and for S or some form of functional relation be-
tween posterior and propensity score [7]. We will use modified ver-
sion of variational autoencoder proposed in [24] to solve augmented
PU prediction problem discussed here. We also mention case-control
scenario, in which a selection bias is recently incorporated [11, 12].

3 Augmented PU prediction method and its
properties

We consider now augmented prediction for PU observations (aug-
mented PU prediction) scenario when a new observation (X,S) is
given and we want to predict the corresponding value of Y . Obvi-
ously, when S = 1 under assumed scenario we have Y = 1 and thus
we need to consider only the case S = 0. We introduce the following
prediction rule

dPU
B (x, s) =

⎧⎪⎨
⎪⎩
1, if s = 1{
1, if y(x) > 1+s(x)

2

0, otherwise,
if s = 0

(2)

where y(x) is posterior probability of positive class defined above
(1). We will investigate the loss of efficiency when label S, which
carries information about Y , is not available for classification. To
this end we consider Bayes rule dB(x) based solely on x:

dB(x) =

{
1, if y(x) > 1

2

0, otherwise.
(3)

Directly from the above definitions we have that dPU
B (X,S) is more

conservative on class S = 0 than dB(X) i.e. it less likely assigns
objects to the positive class:

P (dPU
B (X,S) = 1|S = 0) ≤ P (dB(X) = 1|S = 0).

Below we show that the rule dPU
B is optimal for 0-1 loss and calcu-

late its risk and the excess risk of dB(x). The fact that the optimal
rule is less likely to assign positive class to unlabeled observations
than dB is due to the fact that positive observations occur less fre-
quently among unlabeled ones than in general population. Note that
as dPU

B is more conservative, classification changes might occur for
both positive and negative examples – though in the expectation, the
precision gain should outweigh the lost recall. Also, it has practi-
cal consequences for recommendations on the thresholds applied for
classification in the follow-up studies involving PU data; see Section
5. The introduced approach is based on a simple observation that the
considered problem can be regarded as a problem of determining the
Bayes risk in the case when the vector of predictors is augmented
by an additional predictor S. This also motivates the name of the
problem. We let

ỹ(x, s) = P (Y = 1|(X,S) = (x, s)) (4)

be posterior probability of Y = 1 given the augmented vector of pre-
dictors. We also define the excess risk (or regret) of any augmented
PU prediction rule d(x, s) as (see e.g. [15]):

Δ(d) = P (d(X,S) �= Y )− P
(
dPU
B (X,S) �= Y

)
.

Theorem 1. (i) dPU
B (X,S) defined in (2) is the Bayes rule for Y

under PX,Y,S i.e. it is the classification rule yielding the smallest
misclassification error P (d(X,S) �= Y ). Moreover, dPU

B (X, 0)
is the Bayes rule for Y under PX,Y |S=0 yielding the smallest
classification error P (d(X) �= Y |S = 0).

(ii) Define w(x) = 1 + s(x) − 2y(x). Then Bayes risk of dPU
B (x, s)

equals

L∗
PU =

1

2

(
P (S = 0)− EX,S=0 |2ỹ(X, 0)− 1|

)

=
1

2

(
P (S = 0)− EX |w(X)|

) (5)
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(iii) We have for excess risk of dB(x):

EX

(
s(X)I

{
y(X) <

1

2

})
≤ Δ(dB) ≤ P (S = 1). (6)

The inequalities above are tight when P
(
y(X) < 1

2

)
= 1.

(iv) Odds ratio OR(x) for odds of Y = 1 in class {S = 0} and odds
of Y = 1 in a general population equals

OR(x) =
P (Y = 1|S = 0, X = x)

P (Y = 0|S = 0, X = x)

/
P (Y = 1|X = x)

P (Y = 0|X = x)

= 1− e(x).
(7)

Proof. (i) As we have

P
(
dPU
B (X,S) �= Y

)
= P

(
dPU
B (X,S) �= Y

∣∣S = 1
)
P (S = 1)

+ P
(
dPU
B (X,S) �= Y

∣∣S = 0
)
P (S = 0)

and the first term on RHS equals 0, it is enough to prove that the
second and the third line in (2) define Bayes rule on the strata
{S = 0}. The Bayes rule for this problem is given by assigning
Y = 1 when the following condition holds:

P (Y = 1|S = 0, X = x)

P (Y = 0|S = 0, X = x)
> 1.

Denoting by f(x) either the density of X or its probability mass
function at x we have, inverting conditional probabilities, that that
the ratio above equals

P (S = 0, Y = 1, X = x)

P (S = 0, Y = 0, X = x)
=

f(x)(y(x)− s(x))

f(x)(1− y(x))

=
y(x)− s(x)

1− y(x)
.

(8)

Then it is enough to note that

y(x)− s(x)

1− y(x)
> 1 ≡ y(x) >

1 + s(x)

2
. (9)

(ii) As dPU
B (x, s) is Bayes classifier its risk equals

L∗
PU = EX,S min

(
ỹ(X,S), 1− ỹ(X,S)

)
, (10)

where ỹ(x, s) is defined in (4). This is easily justified by not-
ing that if ỹ(x, s) > 1

2
and thus (x, s) is assigned to a positive

class by the Bayes classifier, it commits an error with probability
1− ỹ(x, s) = min (ỹ(x, s), 1− ỹ(x, s)). Moreover, we have that
ỹ(x, 1) = 1 and reasoning as in (8) we obtain

ỹ(x, 0) = P (Y = 1|(X,S) = (x, 0))

=
(
y(x)− s(x)

)
/
(
1− s(x)

)
.

In view of min(a, b) = (a+ b− |b− a|)/2 we have min(a, 1−
a) = (1− |2a− 1|)/2 and whence (10) implies that

L∗
PU =

1

2
− 1

2
EX,S

∣∣∣2ỹ(X,S)− 1
∣∣∣

=
1

2
− 1

2
EX,S=1

∣∣∣2ỹ(X, 1)− 1
∣∣∣

− 1

2
EX,S=0

∣∣∣2ỹ(X, 0)− 1
∣∣∣

=
1

2
− 1

2
P (S = 1)− 1

2
EX,S=0

∣∣∣2ỹ(X, 0)− 1
∣∣∣.

(11)

Thus we established the first equality in (5). Noting that

EX,S=0

∣∣2ỹ(X, 0)− 1
∣∣

=

∫ ∣∣2y(x)− s(x)− 1
∣∣

1− s(x)
f(x)(1− s(x)) dx

= EX |w(X)|

we establish the second one. We note that from the proof above it
follows that dPU

B (x, 0) is the Bayes classifier on the strata {S =
0} and its Bayes risk L∗0

PU equals

L∗0
PU =

L∗
PU

P (S = 0)
=

1

2
− 1

2
EX|S=0

∣∣2ỹ(X, 0)− 1
∣∣

=
1

2
− EX |w(x)|

P (S = 0)
.

(12)

(iii) Reasoning as above we have

L∗ = P (dB(X) �= Y ) =
1

2
− 1

2
EX

∣∣2y(X)− 1
∣∣

and in view of (11) we obtain

L∗ − L∗
PU =

1

2
P (S = 1)

+
1

2
EX

{∣∣2y(X)− s(X)− 1
∣∣− ∣∣2y(X)− 1

∣∣}.
RHS of (6) is obtained by using triangle inequality

∣∣2y(X) −
s(X) − 1

∣∣ − ∣∣2y(X) − 1
∣∣ ≤ s(x). To prove LHS of (6) we

note that we have the following refinement of triangle inequality
for b ≥ 0

|a− b| ≥ |a| − b+ 2b× I{a < 0}
Applying this to a := 2y(X)− 1 and b := s(X) we have that

∣∣2y(X)−s(X)−1
∣∣ ≥ ∣∣2y(X)−1

∣∣−s(x)+2s(X)I

{
y(X) <

1

2

}

and this implies the conclusion. Note that the lower bound equals
the upper bound when for all x we have y(x) < 1

2
. In this

case we note that P
(
dB(X) �= Y

)
= P (Y = 1) whereas

P
(
dPU
B (X,S) �= Y

)
= P (S = 0, Y = 1) and the excess risk is

thus P (Y = 1)− P (S = 0, Y = 1) = P (S = 1). The result in
(iii) is intuitive: dPU

B does not err on S = 1, whereas dB commits
an error on this stratum if y(x) < 1/2.

(iv) This follows by noting that in view of above derivations

OR(x) =
y(x)− s(x)

1− y(x)

/ y(x)

1− y(x)
=

y(x)− s(x)

y(x)
= 1−e(x).

Remark 1. (i) The threshold in (2) can be expressed as

y(x) >
1 + s(x)

2
≡ y(x) >

1

2− e(x)
.

When e(x) is large, then unlabeled element is less likely to be
positive and the threshold becomes larger.

(ii) We note that when labeling is independent of an object in a
positive class (SCAR assumption) and thus propensity score
e(x) ≡ c, we have (cf. (i)):

dPU
B (x, 0) = 1 ⇐⇒ y(x) >

1

2− c
.
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For situation of complete lack of labeling (c = 0) unlabeled
class is distributed according to PX and dPU

B (x, 0) coincides with
dB(x) in agreement with the last inequality. Note that since under
SCAR positive observations are labeled or not, regardless of the
predictors’ values, the threshold (2− c)−1 above is due solely to
the changed proportion of positives among unlabeled ones com-
pared with the general population.

(iii) The result can be generalised to strictly proper composite losses
�(s, y) such that corresponding Bayes classification function
equals φ(OR(x)) and φ is strictly increasing as e.g. for logis-
tic loss �logistic(s, y) = log(1 + exp(−sy)) for which φ(s) = s.
Then the Bayes rule on the class S = 0 assigns x to class Y = 1
when y(x) > (φ−1(1) + s(x))/(1 + φ−1(1)). In particular it is
equal to dPU

B (x) for logistic loss.

Below we calculate excess risk in (6) for a specific model.

Example 1. Let y(x) = Φ(x), X ∼ N(0, 1), and x ∈ R (univari-
ate probit model with standard normal predictor), and let propensity
score ea(x) = I{x > a} i.e. above threshold a ∈ R all positive ob-
servations are labeled. In this case the excess risk of dB(x) defined
in (3) for a > 0 equals (refer to appendix A for full derivation2)

Δ(dB) = EX

[
min

(
y(X), 1− y(X)

)]
− EX,S

[
min

(
ỹ(X,S), 1− ỹ(X,S)

)]

=
1

2
− Φ(a) +

Φ2(a)

2
=

1

2

(
Φ(a)− 1

)2 ≥ 0,

and for a < 0 equals 1
4
− Φ2(a)

2
≥ 0. Note that for a → ∞ excess

risk tends to 0 as PX,S=0 approaches PX in this case and dPU
B (x, 0)

tends to dB(x). For a → −∞ the excess risk tends to 1/4 (risk of
dB(x)) as the risk of dPU

B (x, s) tends to 0.

Example 2. Consider the situation when y(x) = σ(αx) and e(x) =
σ(βx) for x ∈ R and α, β ≥ 0. Then we have for ỹ(x, 0) defined in
(4)

ỹα,β(x, 0) =
y(x)− s(x)

1− s(x)
=

σ(αx)− σ(αx)σ(βx)

1− σ(αx)σ(βx)

=

1
σ(βx)

− 1
1

σ(αx)σ(βx)
− 1

=
1

1 + e−(α−β)x + e−αx
.

(13)

The plot of ỹα,β(x, 0) for α = 1 and various βs is shown on Figure
1. Note that for α = β we have ỹα,α(x, 0) = (2 + exp(−αx))−1

which tends to 1
2

when x → +∞, indicating the most difficult situa-
tion when ỹ(x, 0) is in a vicinity of 1

2
.

4 dPU
B applications – VAE-PU-Bayes

The proposed dPU
B rule uses are not limited to the direct applications

to the augmented PU prediction style data (where the observation
label is available for the test data). As a motivational example we
consider first a typical PU problem, with only predictors available at
the test time.

VAE-PU [17] classifier is a classifier based on variational autoen-
coder designed for PU data. It proved to be one of the most effective
recent contributions to modern PU learning due to usage of gener-
ated PU examples to offset scarcity of labeled examples for low la-
bel frequencies. VAE-PU+OCC [24] model improves on VAE-PU

2 Appendices are available at: https://arxiv.org/abs/2407.10309 and https://
github.com/wawrzenczyka/VP-Bayes-S

Figure 1. Values of ỹ1,β(x, 0) depending on β.

via more refined choice of artificial PU sample. The modification
consists of selecting most likely positive samples from unlabeled
dataset instead of using artificially generated examples directly as
it is done in VAE-PU [17]. For the selection task, usage of one-
class-classification (OCC) methods trained on labeled sample was
proposed. The modifications significantly improved of the baseline
VAE-PU especially in the middle label frequency area, in particular
in the case of the two recommended variants – combining VAE-PU
with the A3 and Isolation Forest models, respectively.

VAE-PU-Bayes aims to further improve upon VAE-PU+OCC per-
formance. Inner selection of the predicted positive examples is a cru-
cial part of the VAE-PU+OCC, but general purpose one-class clas-
sifiers are – on the whole – a relatively low power methods, as they
work with very limited information – only using the inlier sample
distribution. Note that even in the standard PU problem, we can
use more information than that, as we have access label information
for all of the training examples. This allows for training a classifier
which can be used for s(x) estimation. VAE-PU-Bayes combines
such a classifier with the VAE-PU y(x) estimation in order to apply
dPU
B rule. As here the aim is to only filter the unlabeled set, we have

S = 0 on it and can use the relevant part of the dPU
B rule. Note that

for the unlabeled stratum, we can rewrite it as follows (see Eq. (9)):

y(x) >
1 + s(x)

2
≡ y(x)− s(x)

1− y(x)
> 1.

An important consideration is that for numerical reasons, the pro-
portions in the training dataset are crucial to VAE-PU training (refer
to [24] for details) – due to that, the number of selected likely posi-
tives should reflect the true portion on unlabeled positives present in
the dataset. Thus, instead of choosing all unlabeled elements satis-
fying y(x)−s(x)

1−y(x)
> 1 as likely positives, we calculate an example’s

score as y(x)−s(x)
1−y(x)

and select the appropriate number of examples
with the highest score as an approximation of internal true PU sam-
ple. This approach to PU sample generation is consistent with the
decision rule proposed in the paper, and can significantly outperform
OCC-based models due to more powerful classification approach.

5 Numerical experiments

To check the effectiveness of the proposed approach, we prepared
an extensive suite of experiments. We considered 4 synthetic and 6
real-world datasets:

• All synthetic datasets are generated using a mixture of two 20D
Gaussian distributions (with different means 0 and μ and unit co-
variance I , except Variant 3) as a feature vector. This implies that
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indicator Y of an element of a mixture is drawn from the logis-
tic distribution with parameter β (β is equal to direction of LDA
boundary between feature clusters; we use intercept value which
ensures π = 0.5). The following variants were used:

– Variant 1. Propensity score for each positive example e1(x)
equals σ(γTx+ r), σ(·) being the logistic function, parameter
vector γ = [γ1, γ2, ..., γp] = [0.5, 0.5, ..., 0.5]) and intercept
r is tuned to ensure correct label frequency. Intercept tuning
uses the assumed label frequency error as the objective, which
is minimized using differential evolution algorithm.This allows
us to construct synthetic datasets with both required labeling
probabilities and label frequencies.

– Variant 2. Propensity score: e2(x) = e1(x)
10 which approxi-

mates step-wise function and has been considered in [9].

– Variant 3. In this variant, covariance matrix is diagonal, non-
unit matrix in order to obtain non-logistic data (the diagonal
vector equals: [1, 2, 1, 2, ..., 1, 2]), e3(x) = e1(x),

– Variant 4 (SCAR). Constant propensity score, equal to label
frequency: e4(x) = c (equivalent to the SCAR assumption).

• Real-world (characteristics of the data sets are given in the Ap-
pendix B, their prior probabilities π range from 0.4 to 0.53):

– MNIST3 – two different tasks, 3 versus 5 (images of digit 3 are
positive, 5 – negative, abbreviated to 3v5) and OvE (images of
odd digits are positive, even – negative),

– CIFAR-104 – two different tasks, CT (automobile (car) images
are positive, truck – negative) and VA (vehicles (airplane, auto-
mobile, ship and truck) images are positive; animals (bird, cat,
deer, dog, frog and horse) – negative),

– STL-105 – identical classes (but more complex images) as in
CIFAR-10, only VA (Vehicle-Animal) split is considered,

– CDC-Diabetes6 – original class split (rebalanced).

We performed experiments for multiple label frequencies (c ∈
{0.02, 0.1, 0.3, 0.5, 0.7, 0.9}) in order to account for various PU task
difficulties and labeling scenarios. To obtain such datasets, we syn-
thetically generated label vectors S corresponding to each label fre-
quency. For synthetic datasets, we use a labeling described above;
for real-world datasets, we used feature-based labeling based on ex-
amples’ properties. For MNIST datasets, examples are labeled de-
pending on digit "boldness" – a portion of most bold (measured by
average pixel value) examples are labeled; for CIFAR-10, a "red-
ness" measure is used – the most red (according to the measure
r(x) = (R(x) − G(x)) + (R(x) − B(x)), where R(·), G(·), B(·)
correspond to mean R, G and B channel pixel values of input image
x) examples are labeled; STL-10 uses labeling identical to CIFAR-
10. "Maximal value" labeling (taking a portion of the dataset with the
highest measure values) as opposed to probabilistic sampling (with
probabilities based on those measures) aims to obtain a maximally
difficult problem – note that in that case, labeled positive examples
are maximally different from the unlabeled positive examples ac-
cording to the labeling metric. While this deviates from the proba-
bilistic, propensity score based labeling assumed by the methods, it
also helps to measure robustness of the method against assumption
violations. CDC-Diabetes aims to simulate a more practical, real-

3 http://yann.lecun.com/exdb/mnist/
4 https://www.cs.toronto.edu/~kriz/cifar.html
5 https://cs.stanford.edu/~acoates/stl10/
6 https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators

world PU scenario – there, labeling (diagnosis) probability scales
with age (quadratically) and education level (linearly with subse-
quent stages of education) to model health awareness increase for
senior citizens and more educated people.

We propose the following variants of the three popular no-SCAR
PU methods:

• LBE+S. LBE [9] method is a natural candidate due to explicit
modeling of both posterior probability y(x) of Y = 1 and propen-
sity score e(x) (recall that we can obtain posterior probability of
S = 1 by using s(x) = e(x)y(x)). After training the LBE classi-
fier, we use both fitted components as plug-in estimators of y(x)
and s(x) values in dPU

B rule.
• VAE-PU+S (abbrev. VP+S). We use VAE-PU [17] classifier (de-

scribed in section 4) as the base. As this model does not natively
use the notion of propensity score in contrast to LBE, we intro-
duce a separate feed-forward neural network for s(x) estimation,
trained separately from VAE-PU in the additional training step.
Its predictions are then fed (together with VAE-PU’s y(x) estima-
tions) to the proposed decision rule.

• VAE-PU-Bayes+S (abbrev. VP-B+S). We use a newly introduced
VAE-PU-Bayes classifier (described in section 4) as the base. Sim-
ilarly to VAE-PU, s(x) estimator is trained and provided exter-
nally using available (Xi, Si)

n
i=1 sample.

Note that for synthetic datasets, we can obtain accurate values of both
y(x) and s(x); for those datasets we will additionally show results
of the following two pseudo-methods:

• S-Prophet. Corresponds to the application of dPU
B rule (2) with

exact y(x) and s(x).
• Y-Prophet. Corresponds to a "naive" approach, where a re-

searcher infers Y = 1 for test labeled examples with S = 1;
but then (as one would in the standard PU task) blindly applies (3)
to all other examples. Note that we assume knowledge of y(x).

We also define a "naive" versions of LBE+S, VAE-PU+S and VAE-
PU-Bayes+S in a similar way (as LBE, VAE-PU and VAE-PU-
Bayes) – by assuming Y = 1 for labeled test examples, and using
the simple dB rule for the unlabeled examples.

In order to evaluate the performance, we focus on the "U-metrics",
that is metrics calculated for unlabeled stratum. As prediction for la-
beled test examples is trivial, omitting them in the evaluation results
paints clearer picture of the true, underlying decision performance.
As an example, U-Accuracy is an Accuracy calculated only on the
S = 0 stratum: U-ACC = nU

−1 ∑
xU∈U I{d(xU , s) = yU}.

We prove the effectiveness of the proposed modification in two
steps. First, we show which of the proposed variants (relying on
dPU
B rule) performs the best on our benchmark tasks. We then go

on to compare the best variant with its naive counterpart, showing
the benefits of applying our proposed decision rule. Each experiment
(defined as a combination of dataset, label frequency and method)
was performed 10 times, each time initialized with a different ran-
dom seed (equal to experiment number). All code used for method
implementation and performed experiments is publicly available7.

The result section will also contain a brief comparison of VAE-
PU-Bayes (abbrev. VP-B) method with the baseline VAE-PU (ab-
brev. VP) and two recommended VAE-PU+OCC variants – A3 (ab-
brev. VP-A3) and Isolation Forest (abbrev. VP-IF). Those experi-
ments were performed without test label availability, and use accu-
racy as the main metric. The other experimental settings do not differ

7 https://github.com/wawrzenczyka/VP-Bayes-S
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Table 1. Accuracy values – VAE-PU-Bayes (traditional PU setting)

c Method MNIST 3v5 MNIST OvE CIFAR CT CIFAR VA STL VA CDC Diabetes

0.02

VP 79.67 ± 0.90 70.00 ± 1.76 87.31 ± 0.58 90.51 ± 0.52 81.64 ± 0.44 50.82 ± 0.22
VP-A3 79.01 ± 0.70 74.89 ± 1.62 83.67 ± 1.05 90.73 ± 0.27 79.62 ± 0.55 53.77 ± 1.33
VP-IF 79.07 ± 0.75 76.87 ± 0.99 89.98 ± 1.23 89.99 ± 0.36 79.98 ± 1.06 52.38 ± 1.20
VP-B 78.65 ± 0.87 73.13 ± 1.70 91.74 ± 0.90 93.70 ± 0.17 84.68 ± 0.65 57.92 ± 1.31

0.10

VP 83.57 ± 0.59 77.08 ± 0.92 91.22 ± 0.19 91.54 ± 0.31 85.31 ± 0.32 51.37 ± 0.25
VP-A3 89.91 ± 0.32 83.14 ± 1.41 90.35 ± 0.47 92.35 ± 0.28 84.91 ± 0.44 59.78 ± 1.36
VP-IF 90.12 ± 0.30 83.60 ± 1.28 92.26 ± 0.39 90.21 ± 0.57 85.52 ± 0.56 57.24 ± 1.51
VP-B 90.76 ± 0.54 85.72 ± 1.05 93.73 ± 0.17 94.39 ± 0.14 88.44 ± 0.28 63.46 ± 0.83

0.30

VP 86.77 ± 0.48 83.71 ± 0.27 92.96 ± 0.28 93.72 ± 0.13 88.23 ± 0.27 54.32 ± 0.26
VP-A3 92.65 ± 0.22 90.49 ± 0.23 89.88 ± 0.68 93.45 ± 0.12 86.38 ± 0.37 68.32 ± 0.38
VP-IF 92.73 ± 0.22 90.59 ± 0.23 93.37 ± 0.21 92.02 ± 0.44 87.11 ± 0.51 67.72 ± 0.44
VP-B 92.98 ± 0.34 90.88 ± 0.27 94.22 ± 0.13 94.95 ± 0.06 89.99 ± 0.26 69.87 ± 0.19

0.50

VP 88.32 ± 0.55 80.87 ± 1.35 92.91 ± 0.31 88.19 ± 0.37 88.57 ± 0.49 60.58 ± 0.37
VP-A3 93.28 ± 0.59 91.88 ± 0.42 88.03 ± 1.16 93.44 ± 0.12 87.46 ± 0.24 70.97 ± 0.19
VP-IF 93.40 ± 0.55 91.59 ± 0.35 93.74 ± 0.13 92.04 ± 0.26 87.91 ± 0.35 70.66 ± 0.22
VP-B 93.92 ± 0.38 92.10 ± 0.28 94.46 ± 0.17 94.99 ± 0.05 90.57 ± 0.30 71.79 ± 0.12

0.70

VP 91.58 ± 0.60 91.17 ± 0.29 94.20 ± 0.20 94.67 ± 0.08 90.12 ± 0.34 65.91 ± 0.25
VP-A3 93.89 ± 0.46 94.10 ± 0.28 88.93 ± 1.41 93.99 ± 0.07 89.06 ± 0.28 72.01 ± 0.07
VP-IF 94.21 ± 0.39 94.39 ± 0.25 93.99 ± 0.16 93.74 ± 0.10 89.27 ± 0.32 71.93 ± 0.15
VP-B 94.59 ± 0.57 94.78 ± 0.16 94.51 ± 0.18 95.28 ± 0.04 91.01 ± 0.24 72.42 ± 0.07

0.90

VP 94.63 ± 0.17 93.15 ± 0.25 94.49 ± 0.14 94.79 ± 0.13 91.14 ± 0.23 71.02 ± 0.17
VP-A3 95.35 ± 0.15 95.90 ± 0.10 91.12 ± 0.34 94.69 ± 0.09 91.03 ± 0.24 72.21 ± 0.07
VP-IF 95.70 ± 0.18 95.80 ± 0.12 94.48 ± 0.19 94.58 ± 0.08 91.29 ± 0.29 72.45 ± 0.13
VP-B 95.29 ± 0.16 95.96 ± 0.11 94.29 ± 0.22 95.12 ± 0.13 91.16 ± 0.27 72.20 ± 0.13

from the augmented PU prediction experiments. The code for this
method is a modification of the original VAE-PU+OCC code, also
publicly available in a separate repository8.

5.1 Results of experiments

VAE-PU-Bayes. First, we show the effectiveness of VAE-PU-Bayes
in traditional PU setting. Table 1 presents the accuracy comparison
between the newly introduced variant and previously existing VAE-
PU and VAE-PU+OCC. In the vast majority of cases it outperforms
the other VAE-PU variants, often by a very large margin – up to
5 percentage points (pp.). The only exceptions are the lowest label
frequency c = 0.02, where is it outperformed on MNIST datasets,
and c = 0.9, where even in this case it is roughly comparable to
the best alternative. As VAE-PU+OCC was shown to achieve state-
of-the-art level performance when compared to non-generative alter-
natives [24], VAE-PU-Bayes can be recommended as an improved
variant of this model for traditional PU learning problems.

Augmented PU prediction. The rest of the result section focuses
on augmented PU prediction scenario (with available test label). We
stress that the aim here is to choose the best performing method
among possible proposals for the new scenario. Tables 2 and 3 ag-
gregate experiments performed with dPU

B rule for synthetic and real-
world datasets, respectively. The best U-Accuracy is marked in bold
for each dataset and label frequency combination. The results for
Balanced Accuracy are given in the Appendix C (note that the ratio
of positives to negatives among unlabeled equals π(1 − c)/(1 − π)
and may be small for c = 0.7, 0.9). For synthetic datasets, VP-B+S
is the top performer in the low frequency region; LBE+S does not
work well for low label frequencies, but tends to overtake VP-B+S
for c = 0.7 – then it levels off and falls off for c = 0.9. Even
though VP+S is better that VP-B-S for c = 0.9, it is outperformed
by it for all other label frequencies. For real-world datasets, VP-B+S
shows even better performance, dominating in the vast majority of
test cases, except for high label frequencies c = 0.5, 0.7 in the case
of CDC Diabetes (where it is outperformed by LBE-S). Overall, we
find that VP-B+S is the empirical variant of rule (2) most suited for
general recommendation and use, thus we will use it in the further re-
sults’ presentation. We also note that the dependence of performance
on labeling frequency c is much less pronounced here than in classi-
cal PU inference. This is due to the fact that large value of c means
in general relatively smaller number of positive observations among
unlabeled ones and they are harder to detect.

8 https://github.com/wawrzenczyka/VAE-PU-Bayes

Table 2. U-Accuracy values – Method comparison – Synthetic datasets

c Method Synth. 1 Synth. 2 Synth. 3 Synth. SCAR

0.02

S-Prophet 73.29 ± 0.35 73.24 ± 0.35 71.37 ± 0.35 73.48 ± 0.35
VP+S 60.55 ± 2.48 59.15 ± 2.62 59.77 ± 2.40 63.19 ± 1.75
VP-B+S 61.23 ± 2.35 59.35 ± 2.66 60.16 ± 2.36 63.45 ± 1.82
LBE+S 50.32 ± 0.50 50.59 ± 0.50 50.66 ± 0.49 50.29 ± 0.47

0.10

S-Prophet 72.63 ± 0.30 72.16 ± 0.35 70.61 ± 0.30 73.74 ± 0.34
VP+S 67.18 ± 0.42 65.96 ± 0.58 67.02 ± 0.57 67.64 ± 0.42
VP-B+S 67.71 ± 0.49 66.63 ± 0.60 67.49 ± 0.59 68.37 ± 0.50
LBE+S 52.72 ± 0.47 53.45 ± 0.50 53.04 ± 0.45 52.39 ± 0.53

0.30

S-Prophet 71.70 ± 0.42 70.83 ± 0.48 69.45 ± 0.39 74.30 ± 0.46
VP+S 67.77 ± 0.57 65.29 ± 0.64 66.90 ± 0.55 70.20 ± 0.45
VP-B+S 68.51 ± 0.54 66.41 ± 0.57 67.27 ± 0.47 71.03 ± 0.42
LBE+S 61.05 ± 0.36 60.80 ± 0.43 61.03 ± 0.31 58.80 ± 0.52

0.50

S-Prophet 72.78 ± 0.57 71.96 ± 0.46 70.75 ± 0.59 76.93 ± 0.56
VP+S 66.87 ± 0.41 65.04 ± 0.47 66.07 ± 0.67 69.78 ± 0.68
VP-B+S 67.90 ± 0.45 65.57 ± 0.46 67.01 ± 0.51 72.31 ± 0.38
LBE+S 68.72 ± 0.51 67.72 ± 0.50 68.45 ± 0.45 70.86 ± 0.48

0.70

S-Prophet 78.79 ± 0.40 78.37 ± 0.35 77.70 ± 0.50 81.31 ± 0.37
VP+S 67.28 ± 0.88 66.38 ± 0.88 66.05 ± 0.78 69.34 ± 1.27
VP-B+S 70.49 ± 0.54 68.91 ± 0.51 69.04 ± 0.48 73.57 ± 0.59
LBE+S 74.74 ± 0.42 73.50 ± 0.52 73.57 ± 0.42 81.03 ± 0.38

0.90

S-Prophet 91.20 ± 0.49 91.26 ± 0.50 91.42 ± 0.44 91.83 ± 0.36
VP+S 85.54 ± 0.49 86.00 ± 0.76 85.64 ± 0.70 87.97 ± 0.55
VP-B+S 84.00 ± 0.42 84.48 ± 0.69 83.90 ± 0.56 86.50 ± 0.54
LBE+S 74.76 ± 0.46 74.53 ± 0.47 73.57 ± 0.55 78.14 ± 0.48

Table 3. U-Accuracy values – Method comparison – Real-world datasets

c Method MNIST 3v5 MNIST OvE CIFAR CT CIFAR VA STL VA CDC-Diabetes

0.02
VP+S 77.74 ± 1.10 68.47 ± 1.18 87.19 ± 0.49 90.32 ± 0.25 81.43 ± 0.66 49.76 ± 1.49
VP-B+S 78.74 ± 1.53 74.91 ± 1.51 92.45 ± 0.43 94.11 ± 0.09 84.54 ± 0.67 51.15 ± 1.74
LBE+S 47.38 ± 0.32 49.82 ± 0.14 50.50 ± 0.40 60.67 ± 0.22 60.55 ± 0.28 50.47 ± 0.20

0.10
VP+S 80.21 ± 0.61 73.96 ± 1.43 91.42 ± 0.33 91.93 ± 0.33 86.36 ± 0.38 56.57 ± 0.79
VP-B+S 84.32 ± 0.76 83.12 ± 1.24 93.45 ± 0.19 94.37 ± 0.12 88.74 ± 0.30 61.01 ± 0.69
LBE+S 49.81 ± 0.34 51.55 ± 0.15 53.19 ± 0.39 62.81 ± 0.29 62.93 ± 0.28 52.55 ± 0.20

0.30
VP+S 80.66 ± 0.73 78.38 ± 0.96 92.95 ± 0.30 93.49 ± 0.16 88.93 ± 0.20 51.76 ± 0.94
VP-B+S 86.95 ± 0.52 87.98 ± 0.64 94.32 ± 0.14 95.22 ± 0.07 89.90 ± 0.30 62.63 ± 0.89
LBE+S 56.26 ± 0.34 57.11 ± 0.15 63.07 ± 1.04 74.37 ± 2.36 71.53 ± 1.13 58.72 ± 0.20

0.50
VP+S 82.25 ± 0.78 81.15 ± 0.93 94.39 ± 0.20 94.63 ± 0.26 90.85 ± 0.26 48.01 ± 0.85
VP-B+S 89.20 ± 0.81 90.25 ± 0.56 95.13 ± 0.20 95.65 ± 0.12 91.44 ± 0.30 66.88 ± 0.37
LBE+S 64.23 ± 0.33 64.80 ± 0.23 80.81 ± 1.68 85.35 ± 1.18 84.15 ± 1.00 72.39 ± 0.81

0.70
VP+S 86.42 ± 0.65 85.88 ± 0.67 95.32 ± 0.22 95.53 ± 0.18 93.27 ± 0.29 42.13 ± 1.05
VP-B+S 92.19 ± 0.47 92.76 ± 0.43 95.73 ± 0.18 96.23 ± 0.12 93.27 ± 0.21 71.74 ± 0.49
LBE+S 74.84 ± 0.40 76.65 ± 0.22 93.86 ± 0.57 95.16 ± 0.25 92.17 ± 0.38 77.12 ± 0.79

0.90
VP+S 91.90 ± 0.35 90.91 ± 0.35 96.65 ± 0.16 96.76 ± 0.15 95.83 ± 0.19 42.56 ± 2.15
VP-B+S 94.07 ± 0.25 95.73 ± 0.23 96.47 ± 0.16 97.11 ± 0.09 95.37 ± 0.24 83.53 ± 0.33
LBE+S 90.00 ± 0.27 87.03 ± 0.97 94.21 ± 0.48 94.69 ± 1.25 94.01 ± 0.85 71.09 ± 1.63

In Tables 4 and 5, we aim to capture the impact of using dPU
B rule-

based VP-B+S instead of its naive counterpart, VP-B. For synthetic
datasets, where we have access to true y(x) and s(x) value, we con-
trast them with the analogous, reference S-Prophet and Y-Prophet
methods. In this case, we also introduce the "semi-Prophet" meth-
ods – VP-B+S with true s(x) and VP-B+S with true y(x), where
the true values replace the corresponding VP-B+S probability esti-
mation. First thing to note is that S-Prophet is nearly equivalent to Y-
Prophet in low label frequency setting. When there is a small number
of labeled examples, it leads to low in expectation predicted label-
ing probability s(x). As the rules dPU

B and dB are equivalent when
s(x) = 0, for low label frequencies the change in predicted class is
relatively infrequent. As the label frequency increases, so does the
discrepancy between prophet methods – culminating in the drastic
difference of 20 pp. for c = 0.9. The differences between VP-B+S
and VP-B are not as big, and also tend to increase jointly with la-
bel frequency. However, p-value of the binomial test for testing H0:
P(U-acc. of VP-B > U-acc. of VP-B+S)≥ 1/2 against the opposite
hypothesis, equals to 1.8× 10−5 (corresponding to 2 wins in 24 tri-
als) for Table 4 and 1.1×10−7 in case of Table 5. Using the correct
decision rule via VP-B-S we obtain U-Accuracy increase in almost
every test scenario, though the margin here is much smaller than in
the case of Prophets, and more pronounced for synthetic datasets.
Inspecting semi-Prophet results gives us additional insights into the
dPU
B components. Note that when using true y(x), the VP-B+S semi-

Prophet’s accuracy does not deviate significantly from S-Prophet’s –
even though the estimation of s(x) was fairly crude, it is good enough
when combined with accurate y(x) estimations to improve results
significantly. The same does not hold true for VP-B+S semi-Prophet
using true s(x) values, which indicates that y(x) estimation inaccu-
racy is a major contributor to the performance drop compared with

J. Mielniczuk and A. Wawrzeńczyk / Augmented Prediction of a True Class for Positive Unlabeled Data Under Selection Bias2730



Table 4. U-Accuracy values – Decision rule comparison – Synthetic
datasets

c Method Synth. 1 Synth. 2 Synth. 3 Synth. SCAR

0.02

S-Prophet 73.29 ± 0.35 73.24 ± 0.35 71.37 ± 0.35 73.48 ± 0.35
Y-Prophet 73.31 ± 0.36 73.24 ± 0.35 71.40 ± 0.36 73.50 ± 0.35
VP-B 61.00 ± 2.40 59.62 ± 2.56 60.14 ± 2.38 63.37 ± 1.77
VP-B+S 61.23 ± 2.35 59.35 ± 2.66 60.16 ± 2.36 63.45 ± 1.82
VP-B+S + true s(x) 60.65 ± 2.41 59.15 ± 2.69 59.98 ± 2.39 63.14 ± 1.76
VP-B+S + true y(x) 73.29 ± 0.37 73.21 ± 0.35 71.44 ± 0.35 73.46 ± 0.33

0.10

S-Prophet 72.63 ± 0.30 72.16 ± 0.35 70.61 ± 0.30 73.74 ± 0.34
Y-Prophet 72.63 ± 0.35 72.19 ± 0.37 70.68 ± 0.37 73.66 ± 0.33
VP-B 67.81 ± 0.48 66.42 ± 0.53 67.38 ± 0.60 68.35 ± 0.48
VP-B+S 67.71 ± 0.49 66.63 ± 0.60 67.49 ± 0.59 68.37 ± 0.50
VP-B+S + true s(x) 67.64 ± 0.50 66.33 ± 0.51 67.16 ± 0.62 68.07 ± 0.48
VP-B+S + true y(x) 72.71 ± 0.34 71.92 ± 0.39 70.61 ± 0.35 73.73 ± 0.32

0.30

S-Prophet 71.70 ± 0.42 70.83 ± 0.48 69.45 ± 0.39 74.30 ± 0.46
Y-Prophet 71.06 ± 0.39 70.08 ± 0.39 69.00 ± 0.37 73.56 ± 0.34
VP-B 68.25 ± 0.47 66.27 ± 0.62 67.14 ± 0.52 70.56 ± 0.43
VP-B+S 68.51 ± 0.54 66.41 ± 0.57 67.27 ± 0.47 71.03 ± 0.42
VP-B+S + true s(x) 68.19 ± 0.54 66.02 ± 0.63 67.06 ± 0.51 70.72 ± 0.44
VP-B+S + true y(x) 71.26 ± 0.46 70.56 ± 0.52 69.19 ± 0.43 74.32 ± 0.48

0.50

S-Prophet 72.78 ± 0.57 71.96 ± 0.46 70.75 ± 0.59 76.93 ± 0.56
Y-Prophet 69.87 ± 0.40 68.83 ± 0.39 67.81 ± 0.43 73.26 ± 0.35
VP-B 67.07 ± 0.40 65.18 ± 0.45 66.14 ± 0.65 70.43 ± 0.46
VP-B+S 67.90 ± 0.45 65.57 ± 0.46 67.01 ± 0.51 72.31 ± 0.38
VP-B+S + true s(x) 67.58 ± 0.38 65.36 ± 0.51 66.67 ± 0.63 71.99 ± 0.46
VP-B+S + true y(x) 72.06 ± 0.59 71.11 ± 0.61 69.83 ± 0.62 76.34 ± 0.62

0.70

S-Prophet 78.79 ± 0.40 78.37 ± 0.35 77.70 ± 0.50 81.31 ± 0.37
Y-Prophet 69.39 ± 0.41 68.79 ± 0.43 67.44 ± 0.47 73.42 ± 0.35
VP-B 66.46 ± 0.59 65.69 ± 0.56 65.25 ± 0.65 68.76 ± 0.71
VP-B+S 70.49 ± 0.54 68.91 ± 0.51 69.04 ± 0.48 73.57 ± 0.59
VP-B+S + true s(x) 69.95 ± 0.58 69.16 ± 0.49 68.88 ± 0.53 73.09 ± 0.58
VP-B+S + true y(x) 77.42 ± 0.45 77.11 ± 0.39 75.95 ± 0.61 80.46 ± 0.46

0.90

S-Prophet 91.20 ± 0.49 91.26 ± 0.50 91.42 ± 0.44 91.83 ± 0.36
Y-Prophet 71.30 ± 0.44 71.17 ± 0.45 69.25 ± 0.47 73.33 ± 0.48
VP-B 69.71 ± 0.37 69.47 ± 0.41 68.16 ± 0.49 71.76 ± 0.42
VP-B+S 84.00 ± 0.42 84.48 ± 0.69 83.90 ± 0.56 86.50 ± 0.54
VP-B+S + true s(x) 84.12 ± 0.56 83.89 ± 0.55 83.56 ± 0.65 87.03 ± 0.49
VP-B+S + true y(x) 90.44 ± 0.41 90.69 ± 0.47 89.72 ± 0.37 90.82 ± 0.24

Table 5. U-Accuracy values – Decision rule comparison – Real-world
datasets

c Method MNIST 3v5 MNIST OvE CIFAR CT CIFAR MA STL MA CDC-Diabetes

0.02 VP-B 78.75 ± 1.44 74.53 ± 1.49 92.40 ± 0.41 93.94 ± 0.10 84.50 ± 0.66 51.07 ± 1.76
VP-B+S 78.74 ± 1.53 74.91 ± 1.51 92.45 ± 0.43 94.11 ± 0.09 84.54 ± 0.67 51.15 ± 1.74

0.10 VP-B 84.14 ± 0.65 82.67 ± 1.30 93.32 ± 0.18 94.29 ± 0.12 88.54 ± 0.30 61.25 ± 0.80
VP-B+S 84.32 ± 0.76 83.12 ± 1.24 93.45 ± 0.19 94.37 ± 0.12 88.74 ± 0.30 61.01 ± 0.69

0.30 VP-B 86.64 ± 0.56 87.89 ± 0.65 94.18 ± 0.17 95.11 ± 0.07 90.11 ± 0.26 63.44 ± 0.81
VP-B+S 86.95 ± 0.52 87.98 ± 0.64 94.32 ± 0.14 95.22 ± 0.07 89.90 ± 0.30 62.63 ± 0.89

0.50 VP-B 88.75 ± 0.84 90.19 ± 0.54 94.87 ± 0.22 95.44 ± 0.11 91.35 ± 0.25 66.52 ± 0.31
VP-B+S 89.20 ± 0.81 90.25 ± 0.56 95.13 ± 0.20 95.65 ± 0.12 91.44 ± 0.30 66.88 ± 0.37

0.70 VP-B 91.84 ± 0.48 92.73 ± 0.39 95.30 ± 0.20 95.94 ± 0.10 92.64 ± 0.24 67.73 ± 0.43
VP-B+S 92.19 ± 0.47 92.76 ± 0.43 95.73 ± 0.18 96.23 ± 0.12 93.27 ± 0.21 71.74 ± 0.49

0.90 VP-B 93.90 ± 0.25 95.45 ± 0.21 95.68 ± 0.16 96.51 ± 0.05 93.54 ± 0.26 68.13 ± 0.34
VP-B+S 94.07 ± 0.25 95.73 ± 0.23 96.47 ± 0.16 97.11 ± 0.09 95.37 ± 0.24 83.53 ± 0.33

the Prophet methods. This is evident by contrasting the results with
the S-Prophet – Y-Prophet pair, where using true s(x) for dPU

B rule
proved to increase performance dramatically for high label frequen-
cies. Note that sometimes even a slight variation of y(x) might lead
to a change of dPU

B influencing the final example label or leaving it
unchanged.

Results above shows that in real-world scenarios, the performance
gain obtained by using the proposed decision rule over dB rule is
systematic but relatively small; this is especially apparent when com-
paring it to Prophets’ improvements. Figure 2 aims to illustrate one
of the potential causes of that problem. For the sake of this example,
we will plot those values only for samples from S = 0 stratum. Note
that for this stratum, dB rule is equivalent to I{y(x) > 0.5}, whereas
dPU
B – to I{y(x)− s(x)

2
> 0.5}. This formulation provides us with

a matching threshold 0.5 for both rules.
The example orders the test samples according to increasing

y(x) (blue color, basis of dB rule). In the figure, we introduce
one additional dot for each test instance, which now corresponds to
y(x) − s(x)

2
(basis of dPU

B rule). Those dots are colored based on
their test class (positive examples in green, and negative – in red).
As y(x)− s(x)

2
is always lower or equal to y(x), in order for the dB

and dPU
B classification rules to differ on the S = 0 stratum (i) the

blue dot for the given test example must be above black boundary
line (y = 0.5), and (ii) the other dot (green or red) must be lying
below it. The area in the chart where this is possible is shaded gold,
and only examples falling there fulfill both conditions. The important
thing to note is that the amount of examples falling in the golden area
is relatively small, due to approximated y(x) tending to the extremes

Figure 2. Classification rules for test instances, CIFAR VA, c = 0.9,
S = 0 stratum (colored by test class).

of 0 and 1 – which might not hold true for the true y(x) distribution.
This limits the benefits of applying the dPU

B rule, as even though the
examples in the golden area are mostly negative (resulting in decreas-
ing of the number of false signals), and the green, positive unlabeled
samples are concentrated in the high y(x) area, the limited number
of affected samples by rule’s modification lowers the impact of the
correction on the metrics such as U-Accuracy.

6 Conclusions

The contribution of this paper is twofold: firstly, we highlight a pre-
viously unexplored area of PU learning (augmented PU prediction)
where samples’ labels at prediction time are available. Secondly, we
propose a novel dPU

B decision rule tailored for this setting. We study
the basic properties of the proposed rule and contrast it with the prop-
erties of the usual Bayes rule based solely on samples’ features. We
also show that dPU

B ’s usefulness is not limited to the augmented PU
prediction scenario, and it can be employed also in e.g. in traditional
PU setting as a part of VAE-PU-Bayes model. The latter half of the
paper focuses on the practical experiments, combining dPU

B rule with
preexisting PU models. We start off by showing the substantial im-
provements of VP-B over the VAE-PU+OCC baseline for traditional
PU tasks. In augmented PU prediction setting, we identify VP-B+S
model as the most promising among the newly constructed methods.
By comparing it with its naive counterpart, VP-B, we show that us-
ing dPU

B rule systematically improves accuracy on the test dataset.
However, results for the two Prophet methods (which use perfect
knowledge of y(x) and s(x)), as well as semi-Prophets (utilizing the
perfect knowledge of only one of those variables) indicate that those
improvements could be potentially significantly larger, especially for
the high label frequencies. As this paper introduces a new, practi-
cal setting for PU data, it naturally presents researchers with a rich
opportunities for further work. One of those possibilities involves
better modeling of y(x), which currently is not sensitive enough to
corrections via dPU

B rule in direct, practical applications. Proposing
new classifiers relying on estimators of both y(x) and s(x) directly
(similarly to LBE) is an important challenge. Moreover, an excellent
performance of VAE-PU-Bayes in traditional setting encourages fur-
ther work on this model, or incorporating dPU

B rule as a component
of more PU models.
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