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Abstract. Spiking neural networks (SNNs) have the potential to
simulate sparse and spatio-temporal dynamics observed in biologi-
cal neurons, making them promising for achieving energy-efficient
artificial general intelligence. While backpropagation through time
(BPTT) ensures reliable precision for training SNNs, it is hampered
by high computation and storage complexity and does not conform
to the instantaneous learning mechanism in brains. On the contrary,
online training algorithms, which are biologically interpretable, offer
low latency and memory efficiency, and are well-suited for on-chip
learning applications. However, recent research exhibit a deficiency
in the scientific comprehension of online gradients, which leads to
certain limitations. To address this issue, we conduct an in-depth
analysis of the calculation deviation in chain derivations induced by
weight update and find two pivotal factors that affect the accuracy
of online gradients: completeness and timeliness. To further enhance
the performance of online training leveraging these findings, we pro-
pose spatio-temporal online learning (STOL), which substantially
ameliorates the accuracy of the online gradients and demonstrates
superior computation and memory efficiency. Our experiments on
CIFAR-10, CIFAR-100, ImageNet, CIFAR10-DVS, and DVS128-
Gesture datasets demonstrate that our method achieves state-of-the-
art performance across most of these tasks. Besides, it shows a great
improvement compared with existing online training algorithms.

1 Introduction

Spiking neural networks (SNNs), hailed as third-generation neural
networks [25], are designed with the objective to reduce power usage
and to execute highly brain-like neuromorphic computation [24, 30].
Recent works on surrogate gradient (SG) which assigns approximate
derivatives to the non-differentiable spiking step function [23, 27],
have significantly improved the performance of training deep SNNs
across a variety of tasks using BPTT [10]. However, BPTT performs
learning only once within the whole time interval T [34, 35], which
is inconsistent with the inherent online learning mechanism in bi-
ological brains [39]. This learning strategy also incurs substantial
memory occupation and training latency, rendering it unsuitable for
neuromorphic hardware applications [13, 36]. Furthermore, due to
the imprecision of SG in SNNs, increasing the depth in spatial and
temporal dimensions is more likely to exacerbate issues of vanishing
and exploding gradients [39], further limiting the algorithm’s perfor-
mance.

Online learning presents a more advanced learning paradigm that
facilitates continuous real-time learning from temporally continuous
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Figure 1: Comparison of the backpropagation paths of gradient for
three online learning algorithms. Red, blue and yellow arrows repre-
sent THG, SHG and the current gradient, respectively.

data streams [19], aligning with our conventional comprehension of
biological learning mechanisms. Simultaneously, it can address those
problems associated with BPTT mentioned above. However, related
work on online training algorithms in SNNs either engender intricate
computation due to the approximation of the BPTT gradient [32], or
overlook crucial gradient information, leading to a decline in training
performance [36]. Consequently, they fail to fully exploit the bene-
fits of online learning. As identified through our in-depth analysis,
we attribute this to a lack of comprehensive understanding of online
gradients, which should involve the following two crucial factors:
(For clarity of our description, we refer to the backpropagation of
error in time as history or historical gradient, the number of propa-
gated time steps as the length of history, and categorize it into two
components: temporal historical gradient (THG) and spatial histori-
cal gradient (SHG), which are visually represented by red and blue
arrows in Figure 1, respectively.)

• Completeness: Incorporating both THG and SHG into online
training is crucial to ensure the most accurate gradient descent
direction. SNNs possess spatio-temporal information processing
capabilities, which require corresponding learning rules to estab-
lish spatial and temporal relationships within the network. Simpli-
fied processing, as seen in studies such as [39], may not offer such
assurance.

• Timeliness: Incorporating long-term history into online gradient
calculation is unreasonable as it will interfere with the online
training process. This is mainly because it amplifies computational
imprecision significantly with instant weight updating. Addition-
ally, it contradicts the inherent temporal locality of the learning
rules observed in biological neural systems [6].

Drawing upon these two principles, we propose spatio-temporal
online learning (STOL), an online training algorithm that executes a
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complete backpropagation within the scope of the last two time steps
at each moment. To provide a more intuitive comparison between
our approach and some existing classical online training algorithms,
we illustrate their respective error backpropagation paths in Figure 1.
In accordance with our theory, OTTT [36] contravenes both require-
ments of completeness and timeliness, while FPTT [39] infringes
upon the requirement of completeness, which impacts their training
effectiveness. On the contrary, STOL satisfies both completeness to
ensure an accurate gradient and timeliness to avoid the interference
of outdated history, therefore improving the performance of online
training. Besides, it also exhibits superior computation and memory
resource utilization and enhanced structural versatility.

In conclusion, our contributions to this work can be summarized
as follows:

1. We conduct a rigorous analysis of the gradient in online training
algorithms, identify the pivotal issues therein, and substantiate our
findings through both theoretical derivation and experimental val-
idation.

2. We propose a novel online training algorithm for spiking neural
networks, named spatio-temporal online learning (STOL), which
enables online training with enhanced precision, liberates the se-
vere memory burden, and improves the computational efficiency
of the devices.

3. We conduct experiments on CIFAR-10, CIFAR-100, ImageNet,
CIFAR10-DVS and DVS128-Gesture datasets, and the results
show that our method outperforms the existing online learning ap-
proaches and achieves the state-of-the-art performance on most of
these tasks.

2 Related Work

Although gradient descent and error backpropagation have enabled
deep neural networks to thrive [15, 22], training SNNs directly in this
way is difficult due to the discontinuous nature of spikes. Numerous
research efforts have successfully approximated the derivatives of
spikes and trained SNNs as recurrent neural networks (RNNs) [38].
To further improve training performance, tdBN [40] normalizes the
input in both time and batch dimensions; SEW-ResNet [10] and MS-
ResNet [16] investigate suitable deep residual learning strategies for
it, effectively alleviating the problems of vanishing and exploding
gradients; Diet-SNN [29] employs direct encoding as opposed to rate
based encoding, thus minimizing information loss; TET [9] refines
the approach to assess the objective function, leading to a smoother
decrease in error.

Based on these research, the development of online training al-
gorithms has been further advanced. Deep continuous local learning
(DECOLLE) employs local error functions and truncated backpropa-
gation through time (TBPTT) [31, 33] for online learning, which has
no memory overhead during gradient computation [19]. While, the
constraint of spatial locality hampers its efficacy in complex tasks.
Local tandem learning (LTL) follows the teacher-student learning
approach by mimicking the intermediate feature representations of
a pre-trained ANN [37] and benefits from spatio-temporal locality.
However, it also encounters challenges with accuracy degradation
when applied to complex tasks. Real-time recurring learning (RTRL)
[32] facilitates online training and eliminates the need to cache the
previous activations. Nevertheless, this approach incurs significant
computational overhead, rendering it unsuitable for application to
large-scale networks. E-prop [2] integrates synaptic plasticity and
monitors the trace from local activity to facilitate online training of

the SNNs without requiring temporal backpropagation of the error
signal. Althrough e-prop’s demonstrated efficacy across numerous
benchmark problems, a discernible gap persists between e-prop and
BPTT [39]. Online spatio-temporal learning (OSTL) [3] decouples
the computation of gradients in spatial and temporal to facilitate the
derivation of weight updates online. This approach allows networks
to process and learn new input data simultaneously, thereby address-
ing the issues of weight symmetry and update lock [28]. OSTL has
shown results comparable to BPTT on tasks like language model-
ing and speech recognition, however, it is notably computation and
memory intensive for general RNNs [28].

Another alternative idea for online training involves the selection
of effective components of the gradient. Online training through time
(OTTT) [36] backpropagates error in time independently in each
layer, enabling iterative updates of the historical states. However, this
approach limits the application of batch normalization (BN) [17],
leading to the adoption of the normalization-free [4, 5] method as an
alternative to BN, resulting in a compromise on flexibility. Besides,
the structure-independent temporal backpropagation also limits the
learning ability of this algorithm. Forward propagation through time
(FPTT) [18] substitute novel dynamic regularization part for error
backpropagation in time, [39] integrates FPTT and liquid spiking
neurons (LSN), exhibits a performance that surpasses BPTT on some
specific sequence tasks. However, the performance of this approach
in broader application scenarios remains to be further validated, and
the incorporation of LSN also introduces certain complexities. For
online training algorithms based on this concept, the crux lies in ac-
curately identifying the significant components of the history. The
aforementioned two algorithms do not provide scientific solutions to
this issue. Instead, our method gives a more reasonable explanation
for the historical gradient. Furthermore, our approach can be directly
applied to general SNNs which is not limited by the network and
neuron structure.

3 Method

In this section, we establish the formulas for forward computation
and backpropagation used in this research. Based on this, we will
prove our theory about timeliness and then introduce the STOL algo-
rithm. As the concept of completeness is fairly straightforward, we
only give its validation within the experimental phase.

3.1 Forward and Backward Propagate Rules

Spiking neurons, serving as a fundamental element in spiking neural
networks, have diverse state equations for various neural dynamics.
In this research, we adopt the leaky integrate and fire (LIF) model,
the differential equation it employs to delineate membrane potential
u is presented below:

τm
du

dt
= −(u− Vreset) +R · I(t), (1)

where Vreset is the resting potential, I(t) is the input current, τm and
R are hyperparameters that control the behavior of the neuron. To
accommodate the utilization of prevailing deep learning frameworks,
Equation (1) is typically articulated in a discrete variant, culminating
in the subsequent form:

ul
t = ul

t−1 · (1− slt−1)/τm + f(wl, sl−1
t ), (2)

slt = H(ul
t − Vth), (3)
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where the superscript l denotes the number of layers, the subscript
t denotes the time step; s, w and Vth denote the output spikes, the
network weights and the firing threshold, respectively; f represents
the synaptic operation (e.g. convolution and fully connected layers,
etc), and H(x) is the Heaviside step function.

In backpropagation, to enable the computation of the parameters’
gradient in each layer using the chain rule, it is necessary to employ
surrogate function for spike generation, which usually takes the fol-
lowing form:

H
′
(x) =

{
0, |x| > 1

α
,

−α2x+ α, |x| ≤ 1
α
,

(4)

where α serves as a control parameter dictating the smoothness of
the function and is usually set to 1.0.

As delineated by Equation (2), the membrane potential u imparts
both spatial and temporal effects due to the involvement in potential
iteration and the propagation to the subsequent layer. Therefore, error
backpropagation can be manifested as the backpropagation along the
spatio-temporal axis. In this way, the gradient of ul

t can be calculated
like:

∂L
∂ul

t

=
∂L

∂ul
t+1

∂ul
t+1

∂ul
t

+
∂L

∂ul+1
t

∂ul+1
t

∂slt

∂slt
∂ul

t

, (5)

where L donates the loss.

3.2 Deviation in Gradient Calculation
Our core idea timeliness emphasizes that the computation of long
term historical gradients will interfere with online training, which is
contrary to the conventional understanding to some extent. So, in this
subsection, we will give the proof of this claim.

To streamline our notation, we utilize δlt to represent the actual
value of ∂Lt

∂ul
t

while δ̂lt signifies its calculated counterpart. The devia-

tion between these two quantities is denoted by εlt, which can be zero
or any other value. Then the problem of timeliness comes from:

Theorem 1. The instantaneous update in weight w leads to a devi-
ation between the calculated gradient and its actual value, and the
deviation between time j and i at layer l is:

εlj =
i∑

τl=j

(
clτl +

(
...

i∑
τL=τL−1

∂uL
τL

∂uL
τL−1

cLτL
)
wl+1

i θlτl
)∂ul

τl

∂ul
j

, (6)

where clj = δ̂l+1
j

∑i−1
τ=j Δwl+1

τ θlj , and θlj = H
′
(ul

t − Vth), L is the
depth of the neural network. This value will increase exponentially
as the time interval between j and i increases, eventually causing the
wrong gradient δ̂lj .

Proof. Suppose the current time step is i, and our objective is to
calculate the gradient at time j. As per Equation (5), we can derive:

δlj = δl+1
j wl+1

j θlj + δlj+1

∂ul
j+1

∂ul
j

, (7)

which is determined by weight at time j. But in calculation we only
have weight wl

i at time i, which equals wl
j +

∑i−1
τ=j Δwl

τ , so the
calculated gradient is:

δ̂lj = δ̂l+1
j

(
wl+1

j +

i−1∑
τ=j

Δwl+1
τ

)
θlj + δ̂lj+1

∂ul
j+1

∂ul
j

. (8)

The difference between Equations (7) and (8) gives the gradient bias
as follows:

εlj =
(
clj + εl+1

j wl+1
i θlj

)∂ul
j

∂ul
j

+ εlj+1

∂ul
j+1

∂ul
j

, (9)

which demonstrates exponential increase due to the combination
of εl+1

j and εlj+1. Firstly, do the recursion in temporal dimension
by expanding εlj+1 using Equation (9), which yields εlj =

(
clj +

εl+1
j wl+1

i θlj
) ∂ul

j

∂ul
j

+
(
clj+1 + εl+1

j+1w
l+1
i θlj+1

) ∂ul
j+1

∂ul
j

+ εlj+2
∂ul

j+2

∂ul
j

.

As the current time is i, εli =
(
cli + εl+1

i wl+1
i θli

) ∂ul
i

∂ul
i

, so finally we
can derive:

εlj =
i∑

τ=j

(
clτ + εl+1

τ wl+1
i θlτ

)∂ul
τ

∂ul
j

. (10)

Based on Equation (10), spatial recursion can be completed. Sub-
stituting εl+1

τ yields εlj =
∑i

τl=j

(
clτl +

(∑i
τl+1=τl

(
cl+1
τl+1

+

εl+1
τl+1

wl+2
i θl+1

τl+1

) ∂ul+1
τl+1

∂ul+1
j

)
wl+1

i θlτl
) ∂ul

τl

∂ul
j

. Unrolling to layer L in this

way gives the result shown in Equation (6).

For ease of description, we consider f as linear transformation,

therefore ∂ul+1
t

∂slt
= f

′
w(w

l+1, slt) = wl+1. The above proof shows

that the change in weights, Δwl+1, gives rise to a fundamental bias
clj . This bias, inherent to each state, progressively accumulates across
all states from time j to i, spanning from layer l to L, finally leading
to a discrepancy εlj . Notably, when the interval between j and i is
substantial, clj becomes large due to the significant Δwl+1, causing
the failure of gradient δ̂lj and interfering with the training.

3.3 Spatio-Temporal Online Learning
In the preceding subsection, we highlighted substantial inaccuracies
in the computation of long-term historical gradients. Given these
findings, it is reasonable to mitigate these inaccuracies and simplify
the computational process by disregarding long-term historical gra-
dients. Motivated by this insight, we propose STOL, a method that
facilitates high-precision online training and further optimizes the
performance of computing devices with enhanced efficiency.

The central idea of our approach is to propagate the instantaneous
loss, which is computed from the predicted output at each time step
and the ground truth, back to the neuron states of the two most recent
time steps. Then the gradients of these two time steps are accumu-
lated to update the network parameters. The specific calculation rules
rely on the chain derivative and the error backpropagation described
in Subsection 3.1. We employ the same prediction strategy as in TET,
wherein the output layer is a linear transformation without neuron
activation, and the loss function is the combination of cross-entropy
and mean square error, which is defined as:

Lt = (1− λ)CE(ŷt, y) + λMSE(ŷt, y). (11)

where ŷt is the prediction at time t, y is the ground truth, and the
hyper-parameter λ is set to 0.05.

Algorithm 1 gives the complete procedure of our approach, which
defines the details of the forward and backward computation, as well
as the data interaction in the overall flow. The derivative calculation
in the backward process depends on three key formulas for chain

rule, which are ∂ul
t

∂sl−1
t

= f
′
s(w

l, sl−1
t ), ∂ul

t

∂wl = f
′
w(w

l, sl−1
t ), and
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Algorithm 1 Spatio-temporal online learning

Require: Input data xt at time t, label y of the input.
1: Forward:

2: for l = 1 to N do

3: if l == N then

4: Calculate predicted output yt = f(wl, sl−1
t ).

5: else

6: Calculate ul
t and slt using Equations (2), (3).

7: Save the states ul
t, slt, slt−1, ul

t−1.
8: end if

9: end for

10: Backward:

11: Calculate loss Lt depend on yt, y and Equation (11).
12: for l = N downto 1 do

13: if l == N then 	 Output layer, no activation.
14: ∂Lt

∂wl ← ∂Lt
∂yt

f
′
w(w

l, sl−1
t ), ∂Lt

∂sl−1
t

← ∂Lt
∂yt

f
′
s(w

l, sl−1
t )

15: ∂Lt

∂sl−1
t−1

← 0 	 Initialize to zero for iterating.

16: else

17: ∂Lt

∂ul
t
← ∂Lt

∂slt

∂slt
∂ul

t
, ∂Lt

∂ul
t−1

← ∂Lt

∂slt−1

∂slt−1

∂ul
t−1

+ ∂Lt

∂ul
t

∂ul
t

∂ul
t−1

18: ∂Lt

∂wl ← ∂Lt

∂ul
t

∂ul
t

∂wl +
∂Lt

∂ul
t−1

∂ul
t−1

∂wl

19: ∂Lt

∂sl−1
t

← ∂Lt

∂ul
t

∂ul
t

∂sl−1
t

, ∂Lt

∂sl−1
t−1

← ∂Lt

∂ul
t−1

∂ul
t−1

∂sl−1
t−1

20: end if

21: Update parameters wl using gradient descent algorithm.
22: end for

∂ul
t+1

∂ul
t

=
(
1 − slt − ul

t · H
′(
ul
t − Vth

))
/τm. This procedure is

performed ad each time step, thus suitable for online time stream
learning. And for offline batch training, due to STOL requires state
preservation for error backpropagation, it is imperative to reset ul

t−1

and slt−1 of each layer to 0 at the start of each batch to update the
inconsistent neuron states, which will further ensure the accuracy.

STOL also guarantees the condition of completeness because it
performs complete spatial temporal backpropagation in recent two
moments. Therefore, our approach provides a more reasonable online
gradient computing paradigm to obtain a better performance. And for
offline tasks which usually simulate a time interval with length of T ,
STOL updates the parameters T times, whereas BPTT updates only
once. Consequently, our approach demonstrates swifter convergence
and proficiently minimizes the loss function towards a smaller local
minima.

3.4 Deviation in STOL
To enhance our comprehension of STOL, we proceed to derive its
gradient deviation in detail. The results exhibit that the gradient de-
viation in STOL is almost negligible, primarily because we ensure
minimal bias accumulation and weight inconsistency.

Firstly, as STOL disregards the long-term historical gradients,
which is

∑t−2
τ=0 δ

l
τ , there might be problem of precision loss. How-

ever, this effect is deemed to be negligible due to the pervasive issue
of gradient vanishing that occurs due to the spatio-temporal depths in
neural networks, especially in SNNs that have inaccurate surrogate
gradient.

In Subsection 3.2, we establish the general deviation equation,
now consider i = t, j = t − 1, which is the situation of STOL,
so the total deviation should be εl = εlt−1+ εlt. As Δwl

t = 0, we can
get clt = 0 and εlt = 0. Plugging these conditions into Equation (9)

yields εlt−1 = clt−1+ εl+1
t−1w

l+1
t−1θ

l
t−1, expanding this recursion to the

output layer L eventually yields:

εl = εlt−1 =
L∑
i=l

cit−1

i−1∏
j=l

wj+1
t θjt−1, (12)

this result can also obtained by directly expanding Equation (6).
Since the magnitude of weight change Δwl+1

t−1 produced by each
single-step gradient descent is minimal, the influence of clt−1 is con-
sidered negligible. However, the error εlt−1, accumulated spatially
due to the deepening of the layers, may exert an impact on initial
layers of the network, which is a common problem of online training
algorithms.

We can see from above that STOL effectively reduces the gradient
deviation from the complex form given by Equation (6) to a negligi-
ble effect. This is consistent with our expected results.

4 Experiments

Datasets and Models

In order to enable a more straightforward comparison with other
studies, we employ the VGG and ResNet models, which are fre-
quently used in contemporary research, and the latter encompasses
MS-ResNet and SEW-ResNet. In the rest of this paper, we use
ResNet to refer to MS-ResNet. Our experiments are carried out on
a variety of benchmark tasks in static image recognition and neuro-
morphic visual classification.
CIFAR-10: The CIFAR-10 [21] dataset consists of 60,000 natural
images in 10 classes, with 6,000 images per class. The number of
training images is 50,000, and that of test images is 10,000. We uti-
lize the ResNet18 model to conduct our experiments on the CIFAR-
10 dataset. This choice of model aligns with current standards in the
field and allows for a fair comparison of results.
CIFAR-100: The CIFAR-100 dataset [21] is just like the CIFAR-10,
except it has 100 classes containing 600 images each. There are 500
training images and 100 testing images per class. We also employ the
ResNet18 model to conduct our experiments on this dataset.
ImageNet: The ImageNet [8] has more than 1250k training images
and 50k test images. The utilization of this large-scale dataset serves
as a robust means to validate the applicability of our method in
complex tasks. For this experiment, we employ the SEW-ResNet34
model, a variant of the deep residual learning method in SNNs that
has more efficient information representation capabilities.
CIFAR10-DVS: The CIFAR10-DVS [7] dataset is the neuromorphic
version of the CIFAR-10 dataset. It is composed of 10,000 examples
in 10 classes, with 1000 examples in each class. Considering that the
CIFAR10-DVS dataset does not intrinsically provide a division into
training and testing sets, we adopt the same data partitioning strat-
egy as delineated in the study by [12]. Subsequently, we employ the
VGG11 network architecture for this task.
DVS128-Gesture: The DVS128-Gesture [1] dataset is recorded by
a dynamic vision sensor, which contains 11 kinds of hand gestures
from 29 subjects under 3 kinds of illumination conditions. For this
particular task, we utilize the VGG-11 network architecture.

Considering that the static datasets lack a temporal dimension, it
becomes necessary to encode them into a format that is compatible
with SNNs. In our experiments, we employ direct encoding for this
purpose. The intensity of the pixels was replicated T times as the
input of the model, in order to retain as much information from the
original data as possible. For the neuromorphic datasets, we adopted
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Table 1: Comparison with other SNN training methods, includes some advanced online training methods and offline training methods. In the
table, the bold rows highlight the online methods, and the underling in the last column highlight the best results of each task.

Method Network Time Steps Online Mean±Std(Best)

C
IF

A
R

-1
0

Dspike [23] ResNet-18 6 � 94.25%

TET [9] ResNet-19 6 � 94.50%

SLTT [26] ResNet-18 6 � 94.44±0.21%(94.59%)

LTL-Online [37] ResNet-20 16 � 94.82%

OTTT [36] VGG(sWS) 6 � 93.52±0.06%(93.58%)

STOL(ours) ResNet-18 6 � 95.47%

C
IF

A
R

-1
00

RecDis [14] ResNet-19 4 � 74.10±0.13%

Dspike [23] ResNet-18 6 � 74.24%

TET [9] ResNet-19 6 � 74.72%±0.28%

SLTT [26] ResNet-18 6 � 74.38±0.30%(74.67%)

OTTT [36] VGG(sWS) 6 � 71.05±0.04%(71.11%)

STOL(ours) ResNet-18 6 � 74.71%

Im
ag

eN
et

TET [9] ResNet-34 6 � 64.79%

SEW [10] Sew ResNet-34 4 � 67.04%

SLTT[26] NF-ResNet-34 6 � 66.19%

LTL-Online [37] ResNet-20 16 � 56.24%

OTTT [36] NF-ResNet-34 6 � 65.15%

STOL(ours) Sew ResNet-34 6 � 64.90%

D
V

S-
C

IF
A

R
10

Dspike [23] ResNet-18 10 � 75.40±0.05%

TET [9] VGG-11 10 � 83.17±0.15%

SLTT [26] VGG-11 10 � 82.20±0.95%(83.10%)

FPTT [39] LTC-SRNN 20 � 72.3%

OTTT [36] VGG(sWS) 10 � 76.63±0.34%(77.10%)

STOL(ours) VGG-11 10 � 84.30%

D
V

S1
28

-G
es

tu
re

PLIF [11] 8-layer CNN 20 � 97.57%

SEW [10] Sew ResNet 16 � 97.92%

SLTT [26] VGG-11, VGG-11(WS) 20 � 97.92%, 98.50±0.21%(98.62%)

FPTT [39] LTC-SRNN 20 � 97.22%

OTTT [36] VGG(sWS) 20 � 96.88%

STOL(ours) VGG-11 20 � 98.26±0.31%(98.61%)

the widely utilized method of event-to-frame integration [11]. This
method transforms the event stream into a sequence of frames, en-
abling the data to be processed using convolutional neural networks
(CNNs) [20].

Table 2: Different training hyper-parameters configuration for each
task.

Dataset Epoch Batch LR L2 T τm

CIFAR-10 200 64 5e-2 5e-5 6 2

CIFAR-100 300 128 2e-2 5e-4 6 2

CIFAR10-DVS 300 64 2.5e-2 5e-4 10 4

DVS128-Gesture 200 32 1e-2 5e-3 20 2

ImageNet 100 200 1e-1 0 6 2

We employ the stochastic gradient descent (SGD) optimizer for
the training across all experiments. Nonetheless, we adjust the learn-

ing rates, L2 regularization parameters, and other hyper-parameters
to suit the specific characteristics inherent to each dataset. Detailed
information regarding these adjustments is provided in Table 2. The
code for experiments is available1.

Comparison with SOTA Methods

We compare our results with those obtained from state-of-the-art
offline and online training approaches. The comparative results are
presented in Table 1, our method outperforms other approaches
on these neuromorphic datasets, achieving accuracy of 84.3% on
CIFAR10-DVS and 98.26% on DVS128-Gesture. Furthermore, our
method surpasses other state-of-the-art methods with a test accuracy
of 95.47% on CIFAR-10. Additionally, our method scores 74.71%
on the CIFAR-100 and 64.9% on the ImageNet datasets. The aggre-
gate outcomes of these experiments suggest that our methodology

1 https://github.com/1xueLang/SpatioTemporalOnlineLearning
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(a) Cosine Similarity

(b) Euclidean Distance
Figure 2: Gradient similarity of weights in ResNet18 between BPTT and three online training algorithms, tested on CIFAR-10. The figure
shows the mean (solid line) and standard deviation (light-colored band) of cosine similarity (top) and Euclidean distance (bottom) at four
training epochs: 1, 50, 100, and 200. The horizontal axis represents the index of the layer number.

can equal or even exceed the precision of offline BPTT. Importantly,
this caliber of performance is maintained across a broad spectrum of
models and tasks of varying complexities. Furthermore, our method
requires only a minimal time step to obtain a highly accurate result.
This demonstrates that our method can fully leverage the informa-
tion representation capability of SNNs. In conclusion, these results
demonstrate a high degree of model fit and generalization capability,
further attesting to the effectiveness of our method and highlighting
its potential for practical applications in the field.

Although these datasets cover the most commonly used datasets
in SNNs research, but they all belong to image recognition tasks,
so there may be considerations regarding the generality of STOL in
different types of machine learning tasks. It is reasonable to think that
STOL should have the same application range as BPTT, and in long
sequence tasks, such as speech recognition, even more advantages.
This is because of the efficient resource utilization and significantly
more training opportunities, in addition to the errors accumulated in
temporal depth because of the inherent inaccurate surrogate gradient.
And compared with existing online training methods, our method has
better generality on datasets and models, such as the requirement of
NF technique for OTTT and the reliance on LSN for FPTT as we
mentioned in related work.

Ablation 1: Completeness

We have posited in previous sections that one of the crucial factors
that influence the performance of online training is the completeness
of the gradient. This necessitates the provision of spatio-temporal
backpropagation that is pertinent to the model structure, which em-
phasis the important role of the SHG. Here, we design and conduct
experiments to empirically validate the correctness of this perspec-
tive. Figure 1 presents three distinct online training algorithms, each
characterized by a different backpropagation path. By integrating
the BPTT algorithm and comparing the training performance across

these four methods, we can validate the correctness of our perspec-
tive on completeness.

Firstly, we train ResNet18 with these four algorithms to perform
the recognition task of CIFAR-10 dataset, and compare the final test
error of the respective trained models while keeping the experimen-
tal conditions consistent. In order to speed up the training process,
we adopt mixed precision training here, and the results are shown
in Table 3. It is clear that when training with the STOL and BPTT,
which ensure gradient completeness, the test accuracy is significantly
superior compared to the other two algorithms. This underscores the
pivotal role of gradient completeness. Furthermore, the performance
of our proposed STOL is comparable to the results achieved by the
BPTT, which demonstrates that our method attains an acceptable
level of completeness.

Table 3: Ablation result of completeness. Tested on CIFAR-10,
ResNet18.

Method Accuracy/% SGH TGH

BPTT 94.56 w/ w/

FPTT 92.99 w/o w/o

OTTT 94.15 w/o w/

STOL 94.61 w/ w/

To more intuitively illustrate the deviation of the gradients, we
calculate the similarity between the gradients determined by three
online training algorithms and those determined by BPTT. The re-
sults of this comparison are presented in Figure 2. Initially, we train
a model using BPTT, subsequently saving the model parameters at
four distinct training stages. Following this, we compute the gradient
similarity for each respective stage. For the similarity calculation, the
same parameters are loaded into the models and the gradients at each
time step are calculated by four algorithms and accumulated, while
keeping the models’ weight unchanged. Then the gradient similarity
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is calculated. From Figure 2a we can see that STOL always provides
more accurate gradient direction than other two methods. This obser-
vation aligns with our theoretical understanding.

Ablation 2: Timeliness

The second theoretical premise of our research is the timeliness of
long-term historical gradients; in Section 3 we give a theoretical anal-
ysis of this assumption, and here we will present an experimental
verification.

In this experiment, we propagate the instantaneous error among
the nearest k time steps at each moment, and then update the weights
online according to the computed gradient; the values of k range
from 1 to T . We conduct experiments on CIFAR-10 using ResNet18,
with T = 6.

To minimize any potential interference, we remove BN layers from
the model. Figure 3 presents the results of the experiment. It is worth

Figure 3: Test accuracy when historical gradients of different lengths
participate in training (Ablation result of timeliness).

noting that when k is set to 2, it corresponds to the STOL method, and
when k is set to 1, it aligns with the FPTT method. Our experiments
reveal that when k is set to 1 or exceeds 2, the final prediction error
is approximately 0.5% to 1% higher compared to when k is set to 2.
It is indicated that propagating the error over an extended time range
does not necessarily enhance model convergence. In fact, it can lead
to significant interference; when k is set to 2, which ensures both
completeness and timeliness of the gradients, it produces the most
effective training result.

Efficient Resource Utilization

Our approach not only matches the training precision of BPTT, but
also demonstrates a much superior resource utilization efficiency.
This allows for a better exploitation of the hardware’s computational
capacity, thereby enhancing the acceleration effect. This effect be-
comes increasingly pronounced as the scale of the network and input
grows. Given that our approach necessitates the propagation of the
error gradient only in the last two moments, the memory utilization
of the algorithm is significantly improved when the time step length
exceeds 2, and that is far greater than 2 in SNNs at present. Thus, our
approach is capable of training deep learning tasks with much larger
scale on devices with equivalent memory capacity. Besides, efficient
memory utilization will further alleviate the reduction in computa-
tional capacity caused by memory scheduling, thereby reducing the
training duration required for the same task to varying extents.

We validate the efficient resource utilization of our approach on
multiple tasks. The computational device employed for these tasks is

Table 4: Comparison of computation and memory efficiency between
BPTT and STOL. The column Time represents the time consumed
for each epoch.

T Arch Method Space/G Time/s

CIFAR-10

2 ResNet18
STOL 2.199 33

BPTT 2.853 29

8 ResNet18
STOL 2.221 132

BPTT 5.903 168

32 ResNet18
STOL 2.221 541

BPTT 18.259 1601

CIFAR10-DVS 10 VGG-11
STOL 2.489 38

BPTT 5.459 38

DVS128-Geature 20 VGG-11
STOL 3.959 35

BPTT 21.575 64

an NVIDIA RTX3090 graphics card, equipped with 24GB of video
memory. The results are shown in Table 4. Initially, we verify the
computational efficiency of both BPTT and STOL on the CIFAR-10
dataset, spanning tasks of small, medium, and large scales. With T
set to 2, 8, and 32, respectively, corresponding to the three scales,
the results indicate that STOL maintains higher memory efficiency
on smaller tasks, and enhances it by a factor of 2 to 10 on tasks
of medium and large scales; while significantly improves computa-
tional efficiency as well. Besides, it is evident that the computing
time of STOL increases steadily with increasing T . In contrast, there
is a substantial surge in the increase of the computing time of BPTT.
This substantiates that the extensive memory footprint will become
the bottleneck in the computation, which will further considerably
restrict the computational capacity of the device. Subsequently, we
verify the computational efficiency of both BPTT and STOL on tasks
such as CIFAR10-DVS and DVS128-Gesture, which mirrors the exe-
cution of the algorithms on real-world datasets. As evidenced by the
results, the memory efficiency of STOL witnesses an enhancement
by a factor ranging from 2 to 5. In a similar vein, the computational
efficiency of BPTT is reduced by half when there is a high memory
occupancy.

5 Conclusion

In this paper, we conduct a comprehensive analysis of the efficacy
of gradient computation for online learning in SNNs, which has
been overlooked in recent research. We propose two pivotal factors,
completeness and timeliness, which ensure the accuracy of the error
backpropagation, thereby reducing the calculation bias and improv-
ing the performance of online training. Leveraging these findings, we
propose spatio-temporal online learning (STOL), which substantially
advances the accuracy of the online gradients, therefore outperforms
existing online training algorithms. Combining with the advantage
of fast convergence of online learning, the training performance of
STOL can reach or even surpass that of BPTT.

In addition, we conduct experiments to verify the computation and
memory complexity of our approach, and the results show that STOL
can maintain a fixed low memory overhead when training tasks with
different simulated T , therefore further exploiting the computational
capacity of the devices, such advantage makes STOL more suitable
for application on neuromorphic devices.
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