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Abstract. Acquiring plausible pathways on high-dimensional
structural distributions is beneficial in several domains. For example,
in the drug discovery field, a protein conformational pathway, i.e.
a highly probable sequence of protein structural changes, is useful
to analyze interactions between the protein and the ligands, helping
to create new drugs. Recently, a state-of-the-art method in drug dis-
covery was presented, which efficiently computes protein pathways
using latent variables obtained from an isometric auto-encoding of
the space of 3D density maps associated to protein conformations.
However, our preliminary experiments show that there is room to
significantly reduce the computing time. In this study, we use the
Mapper algorithm, which is a Topological Data Analysis method,
and present a novel variant to extract plausible conformational path-
ways from the isometric latent space with comparatively short run-
ning time. The extracted pathways are visualized as paths on the re-
sulting Mapper graph. The methodological novelties are described
as follows: firstly, the filter function of the Mapper algorithm is op-
timized so as to extract the pathways via minimization of an energy
loss defined on the Mapper graph itself, while filter functions taken
in the classical Mapper algorithm are fixed beforehand. The opti-
mization is with respect to parameters of a deep neural network in
the filter. Secondly, the clustering method, which defines the vertices
and edges of the Mapper graph, of our algorithm is designed by in-
corporating domain prior knowledge to assist the extraction. In our
numerical experiments, based on an isometric latent space built on
the common 50S-ribosomal dataset, the resulting Mapper graph suc-
cessfully includes all the well-recognized plausible pathways. More-
over, our running time is much shorter than the above state-of-the-art
counterpart.

1 Introduction

Acquiring plausible pathways on a high-dimensional structural dis-
tribution is beneficial in several domains, such as food [25] and
drug discovery [15]. In those domains, the pathway (a.k.a. confor-
mational pathway; see [24]) is expressed by a finite sequence of
chemical structures, and the structure is represented by either an all-
atom model [5] or a 3D density map [24]. The benefit in the food
domain is, for example, that the plausible conformational pathways
are useful to analyze interactions between antioxidants and proteins,
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leading to the understanding of functionality or nutritional proper-
ties of proteins [25]. Moreover, the benefit in the drug discovery do-
main is that those pathways are useful to analyze interactions be-
tween proteins and ligands, and the analysis can lead to the devel-
opment of new drugs [15]. Because of this usefulness, several au-
thors have proposed a method to construct such conformational path-
ways [5, 1, 23, 12, 24].

As a brief review of the studies above, Yamazaki et al. [24] have
proposed a protocol in the drug discovery domain for constructing
a plausible protein conformational pathway as a sequence of 3D
density maps from a set of 2D projection protein images collected
via cryo-Electron Microscopy (cryo-EM) [13], based on their auto-
encoder named cryoTWIN. The auto-encoder is trained by cryo-EM
images; the trained auto-encoder predicts the corresponding protein
3D density map from the latent variable. CryoTWIN captures contin-
uous structural change of the target protein via a latent distribution
having a closed form. The latent space is theoretically guaranteed to
be isometric to the space of 3D density maps, if the training dataset
holds the manifold assumption [2]. We note that the isometric la-
tent distribution is efficient, since it is a low-dimensional equivalent
expression to a distribution of 3D density maps. In numerical exper-
iments, Yamazaki et al. [24] reproduced four well-recognized 50S-
ribosomal pathways by Davis et al. [4] using a trained cryoTWIN by
the 50S-ribosomal cryo-EM images. The reproducing process con-
sists of the following two steps: (i) generate several paths via their
proposed pathway computing algorithm (see [24, Algorithm 1]) us-
ing the isometric latent distribution in the trained cryoTWIN, and
then aggregate the paths, (ii) evaluate quantitatively and qualitatively
whether the aggregated pathway is consistent with one of the four
plausible pathways. The plausibility of the four pathways is consid-
ered high in [24], since Davis et al. [4] constructed the four pathways
with heavy manual labor and standard biological tools; see visualized
four pathways in [4, Figure 7]. Yamazaki et al. [24] report that they
could construct the plausible conformational pathways with shorter
running time compared to the counterpart studies such as Kinman
et al. [12].

In our preliminary experiments, following Yamazaki et al. [24],
we try to reproduce the four 50S-ribosomal pathways of [4], since
the detailed information of the reproduction are not provided. In the
experiments, we take 5 hours after training cryoTWIN by the 50S-
ribosomal images. The initial 4 hours and the remaining 1 hour are
from the above two steps (i) and (ii), respectively. The reason of
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Figure 1. Example of the Mapper graph construction: Firstly, the thirteen
points in the input space of Rd are mapped to R by the filter function f . In R,
the mapped points are covered by a set of the intervals (Is)1≤s≤S , S = 6
that overlap consecutively in a certain proportion r ∈ (0, 1); see the five

lime green intervals for the overlaps. Secondly, a clustering algorithm AC is
applied to each f−1(Is), where C denotes the the maximum number of
clusters, and C = 2. The two green colored groups C2,1 and C2,2 are the
clustering result to f−1(I2). Thirdly, based on the clustering results, the

Mapper graph M is constructed. In M , for example, the vertex v2,1
represents the cluster C2,1, and there exists an edge between v2,1 and v3,1
since two clusters C2,1 and C3,1 share a point in the overlapped region.

the 4 hours in step (i) is that Algorithm 1 of [24] is conducted for
all pairs with significant two latent variables (number of the pairs is
around 400), while the running time of Algorithm 1 for each pair is
not short. We emphasize that our computational environment is the
same as [24]. Further details of the preliminary experiments are de-
ferred to Section 4.1. The preliminary experiments imply that there
exists an innovation room to make step (i) more efficient in terms of
running time.

Considering the background, the goal of this study is to design
a computationally efficient algorithm that returns a graph, taking as
input the latent variables in an isometric latent space to the conforma-
tional space, while the graph achieves the following two conditions:
(a) the vertex corresponds to a conformation and the edge expresses
similarity of two conformations, and (b) a set of paths on the graph
includes plausible conformational pathways. In this study, we assume
that the latent variables are obtained from an encoder of cryoTWIN
taking as input cryo-EM images. Therefore, the conformation is rep-
resented by a 3D density map.

To achieve this goal, we focus on the Mapper algorithm, which
returns a visualization of topological features of high dimensional
datasets in a short running time. In the Mapper graph, vertices and
edges express a cluster in the input space and the similarity of two
clusters, respectively; see Figure 1 for how to construct the Mapper
graph from a set of input data points. Since we employ cryoTWIN,
the condition (a) is not challenging: we can identify a representa-
tive 3D density map with a vertex on the Mapper graph by applying
the isometric decoder to a centroid of the cluster in the latent space.
However, the condition (b) is challenging, because it is not trivial
what clustering algorithm and filter function make the Mapper graph
visualize the plausible pathways. Our other preliminary experiments
show that commonly used clustering algorithms and filter functions
do not work at all to achieve (b); see details in Section 4.1.

We summarize our two main contributions in this study as follows:

1. We propose a variant of the Mapper algorithm, where the cluster-
ing algorithm is designed based on the domain prior-knowledge,
and the filter function is optimized using input data so as to
achieve the condition (b). The filter is parameterized by a deep
neural network, and the parameters are optimized via minimiz-
ing a MaxFlux-objective-based energy loss on the Mapper graph,

which is also parameterized by the neural network; see MaxFlux
objective in [7]. Since the minimizers of the original MaxFlux loss
are known to be optimal reaction pathways [7], minimization of
the energy loss can extract plausible conformatinal pathways from
the latent space onto the Mapper graph. To the best of our knowl-
edge, we constitute the first use of a deep neural network as a
Mapper filter function, taking advantage of the universal approx-
imation theorem [20, Section 20]. We also theoretically analyze
the energy loss, when the size of the input data goes to infinity.

2. We empirically prove the efficiency of our proposed algorithm
using the common 50S-ribosomal dataset. The resulting Mapper
graph by our method includes all the four plausible conforma-
tional pathways by Davis et al. [4], while our running time is much
shorter than the counterpart time in the step (i) of [24].

2 Related Work

We review cryoTWIN [24] in Section 2.1, since we employ it as pre-
processing technique to obtain latent variables in our numerical ex-
periments. In Section 2.2, we first introduce the Mapper algorithm,
and then review existing uses of the Mapper algorithm designed for
biological applications.

2.1 CryoTWIN

Yamazaki et al. [24] proposed a method to compute a plausible pro-
tein conformational pathway from the single particle cryo-EM im-
ages. In their method, first, an isometric latent space to a space of 3D
density maps is built via training an auto-encoder named cryoTWIN.
Then, a plausible protein conformational pathway is computed as a
sequence of 3D protein density maps, utilizing the isometric latent
space.

CryoTWIN consists of an encoder hζ , a decoder gξ, and a latent
distributional model Pψ , where ζ, ξ, ψ are trainable parameters. The
encoder outputs the latent variable z as input of a Fourier transformed
cryo-EM image x. The latent model is defined as a Gaussian Mixture
Model (GMM) Pψ, ψ = {(πk, μk,Σk)}Kk=1, where πk, μk, and Σk
represent k-th Gaussian’s weight, mean, and variance, respectively,
and

∑K
k=1 wk = 1 ∀k;wk ≥ 0. Let xi be a Fourier transformation

of i-th cryo-EM image. The training objective to obtain the optimized
parameters ζ∗, ξ∗, ψ∗ is as follows:

arg min
ζ,ξ,ψ

1

N

N∑
i=1

Eε

[
‖W � (xi − x̂zi+ε)‖22 − β logPψ(zi)

]
, (1)

where the symbols N, ε,�, and β are the number of cryo-EM
images, random noise, Hadamard product, and the positive hyper-
parameter, respectively. In addition, x̂zi+ε = gξ(zi + ε, R̂i), zi =
hζ(xi), R̂i is the corresponding estimated pose orientation to xi,
and x̂zi+ε is the predicted 2D Fourier image in the 3D Fourier vol-
ume. The symbolW is a weight matrix for introducing the isometric-
ity; see [24, Appendix A]. CryoTWIN is inspired by another auto-
encoder namely RaDOGAGA [10], which also builds an isometric
latent space to the original space. After the training, for a latent vari-
able z, the corresponding 3D density map V̂z is reconstructed by the
trained decoder gξ∗ .

The isometricity to a space of 3D density maps enables us to com-
pute plausible conformational pathways via the trained GMM Pψ∗

using the decoder gξ∗ . In [24], the pathway computation algorithm
is proposed; see also Algorithm 1 of [24]. This algorithm requires
two means μ∗

i and μ∗
j as start and end points of the pathway. Then, a
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MaxFlux path [7] on Pψ∗ between μ∗
i and μ∗

j is approximately com-
puted using greedy optimization technique. The following minimiza-
tion problem is used in the greedy optimization at t + 1-th iteration
to compute the t+ 1-th latent variable zi→j(t+ 1):

zi→j(t+ 1) = arg min
{z}

‖z− zi→j(t)‖2
Pψ∗(z)

, (2)

where {z} is a set of the candidate latent variables. The
path on Pψ∗ is expressed as a sequence of the latent vari-
ables: (μ∗

i , . . . , z
i→j(t), . . . , μ∗

j ). Thereafter, by decoding
each element in the sequence (μ∗

i , . . . , z
i→j(t), . . . , μ∗

j ) us-
ing gξ∗ , the algorithm outputs a sequence of 3D density maps
(V̂μ∗

i
, . . . , V̂zi→j(t), . . . , V̂μ∗

j
).

2.2 Mapper Algorithm

Definition of the Mapper algorithm: Let X be a topological
space and let f : X → R be a continuous function called a filter
function. We define an equivalence relation between two elements x
and y in X by x ∼f y if and only if x and y are in the same con-
nected component of f−1(a) for some a in f(X). Then the Reeb
graph Rf (X) of a topological spaceX computed with a filter func-
tion f is defined to be the quotient spaceX/ ∼f . The Mapper graph,
introduced in [21], is a statistical version of the Reeb graph consist-
ing of a computable approximation. It is discrete in the sense that it is
computed on a finite metric space (Xn = {x0, . . . , xn} ⊆ X, dX)
with a continuous filter function f , where dX is a metric onX .

The procedure to compute a Mapper graph M is the following
three steps [3]

Step 1: Cover the range of values f(Xn) with a set of intervals
(Is)1≤s≤S that overlap consecutively in a certain proportion r ∈
(0, 1).

Step 2: Apply a clustering algorithm AC to each pre-image
f−1(Is), s ∈ {1, . . . , S}, where C is the maximum number of
clusters. This produces the pullback cover C of Xn, where C =
{C1,1, . . . , C1,C1 , . . . , Cs,1, . . . , Cs,Cs , . . . , CS,1, . . . , CS,CS} and
Cs ≤ C for any s, and Cs,c denotes the c-th cluster of f−1(Is).

Step 3: The Mapper graphM is the 1-skeleton of the nerve complex
of C . It is a graph with a vertex vs,c for each Cs,c, and an edge
between two vertices vs,c and vs′,c′ if and only if Cs,c ∩ Cs′,c′ �=
∅.

See Figure 1 for illustration of the three steps. In Appendix A of the
arXiv version [18], we provide complementary information.

Review of Mapper algorithms in biology applications: The
Mapper graph can capture various topological features in data which
has a complicated structure. It is also known that the Mapper algo-
rithm is more robust to the distance compared to non-linear dimen-
sion reduction or geometric embedding methods; see [26]. As ex-
amples of applications of the Mapper, Yao et al. [26] applied the
Mapper algorithm to characterize transient intermediates or transi-
tion states which are quite crucial for the description of biomolecular
folding pathways. In [16], a Disease-Specific Genomic Analysis is
first performed on a breast cancer dataset to produce measures of de-
viation between tumor and normal tissue. This information is then
introduced to the Mapper algorithm as a filter function. Due to its
ability to conserve topological information in the dataset, the result-
ing graph reveals a region that corresponds to a unique mutational
profile, that is otherwise scattered across different clusters in a regu-
lar clustering analysis.

Algorithm 1: Deep Mapper graph
Input:

1. {zi}Ni=1: Set of latent variables in R
d from an isometric

auto-encoder to the structural space,
2. Pψ(z): The latent distribution model by GMM, where ψ is the

GMM parameters,
3. K̄: Number of significant Gaussian components,
4. κ: Number of neighbors,
5. S and r ∈ (0, 1): Number of intervals and the overlap rate,
6. C: Maximum number of clusters,
7. λ: Positive fixed value,
8. g: Isometric decoder from a latent variable to the structure.

Output: Optimized Mapper graph with structures.
1 Using κ, build a kNN graph G = (V, E) on {zi}Ni=1, where

V = {zi}Ni=1 and E is the set of the edges.
2 Select the significant Gaussian components in Pψ(z). Then,

using the significant components and C, define a clustering
algorithm AC to each pre-image f−1

θ (Is), where Is is the
s-th (1 ≤ s ≤ S) interval in R; see the interval in Step 1 of
Section 2.2. The clustering algorithm is designed to provide
a representative variable to each cluster. Also, based on the
selected components, define the filter function fθ : Rd → R,
which is parameterized by trainable parameters θ in a deep
neural network. See further details in Section 3.1.

3 for each epoch do

4 Following Step 1 to Step 3 in Section 2.2, construct a
Mapper graphMθ on {zi}Ni=1 by using S, r, fθ , and
AC .

5 Compute the energy loss Lθ onMθ using Pψ; see
Section 3.2.

6 Compute a regularization term
Regθ(G) := λ

∑
(i,j)∈E(fθ(zi)− fθ(zj))

2 on G.
7 Lθ ← Lθ +Regθ(G), and then minimize Lθ with

respect to the parameters θ.
8 For each representative latent variable in the optimized

Mapper graph, compute the corresponding structure using
the decoder g. See Section 3.1 for the representative latent
variables.

9 return Mθ with the structures.

In the context of single-cell RNA sequencing data analysis, Wang
et al. [22] proposed a Mapper algorithm, whose filter function is de-
signed via gene co-expression network analysis. As a result, theMap-
per graph not only preserved the continuous nature in gene expres-
sion profiles, but also successfully separated different cell types. In
[8], the authors adopted the Mapper algorithm to data with velocity,
and associated flow on edges of the resulting Mapper graph. They
applied their method to single-cell gene expression and combined
their method with the Hodge decomposition on a graph to enhance
the interpretation of the flow on the Mapper graph.

A relaxed and more general version of the Mapper graph, that
enjoys improved stratification properties, is introduced in [17]. It
is then used to optimize parameterized filter functions for regular
Mapper graphs, with respect to a topological risk based on persis-
tent homology. This is shown to produce quality Mapper graphs for
3-dimensional shapes and single cell RNA-sequencing data.
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3 Proposed Algorithm

Our proposed algorithm is shown in Algorithm 1. Assuming that the
original dataset holds the manifold assumption in a high-dimensional
structural space, this algorithm requires a set of latent variables
{zi}Ni=1, where zi is the encoding of the i-th original data point with
an isometric auto-encoder. Thanks to this isometric auto-encoder
such as cryoTWIN [24], we can use the low-dimensional latent
space, which is equivalent to the high-dimensional structural space.
Using {zi}Ni=1, our algorithm extracts plausible conformational path-
ways from the latent space, and visualizes them on the resultingMap-
per graph. The extraction is achieved by an optimized filter function
fθ and our designed clustering algorithm AC . The optimization is
via minimization of a MaxFlux objective [7] inspired energy loss Lθ
defined on the parameterized Mapper graphMθ .

Remark 1. As mentioned at the fourth paragraph of Section 1, in
this study, we assume cryoTWIN [24] to prepare the first and ninth
inputs of Algorithm 1. However, any isometric auto-encoders to the
original structural space are applicable as long as they enable us to
prepare those inputs from a set of original data. Furthermore, once
the latent variables are obtained from the isometric auto-encoder, we
can fit a Gaussian mixture model to those variables by [20, Section
24.4.2], and then we can prepare the second input.

The definitions of our clustering algorithm AC and the filter func-
tion fθ are given in Section 3.1, while that of the energy loss is
described in Section 3.2. Thereafter, we theoretically analyze Algo-
rithm 1 in Section 3.3.

3.1 The Clustering Algorithm and Filter Function

As the second input to Algorithm 1, let us consider a trained GMM
Pψ(z) =

∑K
k=1 πkN (z;μk,Σk) obtained from cryoTWIN (see

Section 2.1), where N expresses a Gaussian distribution. Inspired
by Expt2 in [24], we select the significant Gaussian components:
we find top K̄ largest weight values πk, k = 1, . . . ,K, and define
the corresponding Gaussian indexes as kj (j = 1, . . . , K̄), where
πkj ≤ πkj+1 .

Let K = {kj |j = 1, . . . , K̄ & ∀j;πkj ≤ πkj+1}. Then,
our clustering algorithm AC to pre-image f−1

θ (Is) consists of
the following three steps. Firstly, for each k ∈ K, compute
Qk = max

z∈f−1
θ

(Is)
πkN (z;μk,Σk). Secondly, define "Candi-

dates" as a set of indexes with the top C largest values in {Qk}K̄k=1.
Thirdly, for each z ∈ f−1

θ (Is), estimate the cluster label of z by
arg max
k∈Candidates

πkN (z;μk,Σk). Based on the labels, group the variables

in f−1
θ (Is) as clusters. In addition, define a representative latent vari-

able to each cluster by the mean vector of μk, where k ∈ K denotes
the estimated cluster label.

In the first step, we compute Qk for k-th Gaussian component
to measure how much the component is related to the pre-image
f−1
θ (Is) using the density of the joint distribution πkN (z;μk,Σk).

In the second step, we pick the most related C components to de-
fine the set "Candidates". In the third step, we use Bayes’ theorem
(see [20, Section 24.5]) to estimate cluster label of z from "Can-
didates". Note that we can compute an associated structure to each
cluster via decoding μk by the eighth input g in Algorithm 1; see the
decoding in Section 2.1. Additionally, we use the prior knowledge
to design the clustering: a set of conformations obtained by decod-
ing mean vectors of significant Gaussian components in cryoTWIN
is empirically almost equivalent to a set of important conformations.

Next, the filter function is given by a neural network that acts on a
feature transform of the latent space. Specifically, the filter function
has the form of fθ(z) = DNNθ(T (z)). The symbol DNNθ is a
deep neural network with trainable parameters θ. In addition, T (z)
is a vector via the map T : Rd → R

|K̄|, and for j = 1, . . . , K̄, the j-
th element of T (z) is defined by (z−μkj )

�Σ−1
kj

(z−μkj ), kj ∈ K,
i.e., the map T is a characterization of z by the top K̄ significant
Gaussian components with Mahalanobis’ distance [14].

3.2 The Energy Loss and Minimization

Let Mθ = (Ṽθ, Ẽθ) denote the resulting Mapper graph after line 4
of Algorithm 1. Here, Ṽθ is a set of vertexes with the Mapper graph,
and Ẽθ is a set of the edges. Since the vertex set can be identified
with a set of clusters {C} defined by AC , we express the edge by
(C, C′) ∈ Ẽθ .

For computing the energy lossLθ on the Mapper graphMθ , setLθ
andB to zero and a natural number, respectively. Then, for each edge
(C, C′) ∈ Ẽθ , compute the edge-wise energy loss �θ(C, C′) by the
following three steps. Firstly, sort the latent variables in C ∪C′ based
on the filter value in ascending order. Secondly, for b = 1, . . . , B,
let ι(b) ∈ {1, . . . , N} denote an index of the � b(|C∪C′|−1)

B
�-th latent

variable in the order. Thirdly, the edge-wise energy loss is given by∑B−1
b=1 LDA(zι(b), zι(b+1), fθ,∇fθ(zι(b)))/Pψ

(
zι(b)+zι(b+1)

2

)
. At

last, the energy loss Lθ is defined by Lθ =
∑

(C,C′)∈Ẽθ
�θ(C, C′).

The LDA stands for Local Distance Approximation. As the
name suggests, the value of LDA(z, z′, f,∇f(z)) is an approx-
imation to the distance ‖z′ − z‖2. The motivation to introduce
LDA is to make �θ(C, C′) differentiable w.r.t. θ. Let us assume
z ≈ z′, and let zi denote the i-th element in z. Additionally,
we define a d-dimensional vector of z−i by replacing the i-th
element in z with z′i. By the definitions, LDA(z, z′, f,∇f(z))
is given by

∥∥∥( f(z−1)−f(z)
∇f(z)1 , . . . ,

f(z−i)−f(z)
∇f(z)i , . . . ,

f(z−d)−f(z)
∇f(z)d

)∥∥∥
2
,

where ∇f(z)i is the i-the element in the gradient of f at z; see de-
tails of LDA in Appendix B.1 of the arXiv version [18].

From the definition of LDA, the energy loss Lθ is approximately
equal to

∑
(C,C′)∈Ẽθ

∑B−1
b=1 ‖zι(b+1)−zι(b)‖2/Pψ

(
zι(b)+zι(b+1)

2

)
.

Thus, minimization of Lθ w.r.t. θ can be considered as the MaxFlux
objective on the Mapper graph Mθ; see [7, Equation (17)] for the
original objective. Since the minimizers of the original MaxFlux ob-
jective are known to be optimal chemical reaction pathways [7], i.e.,
a kind of plausible conformational pathways on a chemical struc-
tural distribution, the minimization of Lθ has a potential to extract
the plausible pathways from the latent distribution Pψ , leading to vi-
sualization of the pathways onMθ .

Note that only the LDA related parts are parameterized by θ in
�θ(C, C′), whereas Pψ related parts are not. Indeed, it is natural to
also parameterize the latter parts by θ since they are components in
the original MaxFlux objective. However, since the way of the pa-
rameterization is not trivial, we only parameterize the former parts in
this study.

As line 7 of Algorithm 1 shows, we add a regularization term
Regθ(G) to Lθ in practice, where the regularizer is computed on a k-
Nearest Neighbor (kNN) graph of {zi}Ni=1; see [20, Section 19.1]
for kNN graph. In this study, we compute the exact kNN graph
with brute-force search, whose time and memory complexities are
O(dN2) and O(κN), respectively. To reduce the time complex-
ity, the approximation method of [27], whose time complexity is
O(dN logN), is available. The minimization of Regθ(G) helps the
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filter function to preserve the data manifolds of {zi}Ni=1 onto the
filter space. The final loss in the line 7 is minimized using Adam
optimizer [11] with He initialization [6].

3.3 Theoretical Analysis

We study the properties of the energy loss Lθ , when B and N of
Section 3.2 go to infinity. In the following paragraphs, we prove
two properties below: firstly, the discretized edge-wise energy loss
�θ(C, C′) converges to the continuous counterpart when B → ∞
(see Equation (3) in Theorem 1), and secondly, the discretized energy
loss of Lθ converges to the continuous MaxFlux loss in the Mapper
graph when B,N → ∞; see Equation (4) in Theorem 1. For the
original continuous MaxFlux loss, see [7, Equation (6)].

Consider the case that we are interested in an optimal conforma-
tional path between two protein conformation representations z0 and
z∞, where z0, z∞ ∈ R

d (d ∈ N). We also assume that we know a
closed form Pψ : R

d → [0,+∞) for the probability density of the
protein conformation representations, and Pψ(Rd) is connected.

We denote by PC0
(
[0, 1],Rd

)
the set of piecewise contin-

uous functions f : [0, 1] → R
d that satisfy f(0) = z0

and f(1) = z∞. A map f ∈ PC0
(
[0, 1],Rd

)
will be

called a conformational path between z0 and z∞. For f ∈
PC0

(
[0, 1],Rd

)
, we define its energy loss If , which is defined

as the Riemann integral, as If =
∫ 1

0
1/Pψ(f(t))df(t) :=

limn→∞
∑n−1
i=0 ‖f( i+1

n
)−f( i

n
))‖2/Pψ((f( in )+f( i+1

n
))/2). The

optimal energy loss for all possible conformational paths is defined
as S∗ := inff∈PC0([0,1],Rd) If . We here remark the following two:
first, the notation f used in this section is different from a filter func-
tion f appeared in Section 3.1, and second, If can be interpreted as
the energy loss on the Mapper graph if a map f defines a path on the
graph.

In our work, we wish to approach the optimal energy loss
by using a finite N samples {zj}Nj=1 of conformations, that in-
dependently follow a distribution of density Pψ . We then dis-
cretize the energy loss using l steps; the symbol l corre-
sponds to B in Section 3.2. Precisely, we define the stochas-
tic loss with l steps associated to {zj}Nj=1 as S

(N)
l :=

min{zi}l−1
i=1⊆{zj}Nj=1

∑l−1
i=0 ‖zi+1 − zi‖2 /Pψ

(
zi+zi+1

2

)
, with the

convention zl = z∞, where {zj}Nj=1 ⊆ R
d is a random sample

drawn independently from a distribution of density Pψ and l ∈ N

such that l > 2.
The theoretical part of our work aims at proving that S(N)

l

gets arbitrarily close to S∗ when N and l go to infinity. In or-
der to properly define this property in terms of real sequence
convergence and random variable sequence convergence, we de-
fine the discrete optimal energy loss with l steps as Sl :=

inf{zi}l−1
i=1⊆Rd

∑l−1
i=0 ‖zi+1 − zi‖2 /Pψ

(
zi+zi+1

2

)
, with the same

convention zl = z∞, where l ∈ N such that l > 2. We then have the
following result regarding the different losses that we defined above.

Theorem 1. We have
Sl −−−→

l→∞
S∗. (3)

Moreover, for every l ∈ N such that l > 2, assuming that (i) the
density P is continuously differentiable, (ii) the density P is strictly
positive almost everywhere, and (iii) we now only consider discrete
paths {zi}l−1

i=1 ⊆ R
d such that ∀i ∈ {0, . . . , l − 1} zi+1 �= zi. Then

we have
S

(N)
l

a.s−−−−→
N→∞

Sl. (4)

The proof of this theorem is given in Appendix B.2 and B.3 of the
arXiv version [18].

4 Numerical Experiments

In this section, we introduce our numerical experiments. In Sec-
tion 4.1, we describe our setting and result. Then, we discuss the
result in Section 4.2. Thereafter, we describe both ablation and ro-
bustness studies against our method in Section 4.3 and 4.4, respec-
tively.

4.1 Setting and Result

Through all experiments, we use a set of the latent variables {zi}Ni=1,
which are the encoding results of cryoTWIN [24] as input of 50S-
ribosomal cryo-EM images from EMPIAR-10076; see [9] for what
EMPIAR is.

In the following, we first describe the preprocessing for our ex-
periments. Then, we introduce 1st and 2nd preliminary experiments,
which motivate us to propose the deepMapper shown in Algorithm 1.
Finally, we explain our main experiment.

Preprocessing: We download the 50S-ribosomal cryo-EM images
with their estimated pose orientations from GitHub URL of [29]. The
image size is 128 × 128. We train cryoTWIN by the downloaded
dataset with the training objective in Equation (1). For the training,
we employ the same hyperparameter values and computational re-
source (i.e., four NVIDIA V100 GPU accelerators with two Intel
Xeon Gold 6148 processors) as Yamazaki et al. [24]. After the train-
ing, we prepare the latent variable set {zi}Ni=1 by the encoder, where
N = 131899 and ∀i; zi ∈ R

8. Then, following [24, Expt2], we eval-
uate whether we can observe the structural labels defined by Davis
et al. [4] (e.g., B, C2, D1, E5,... etc) in the corresponding 3D den-
sity maps of the mean vectors of significant Gaussian components.
The evaluation is based on PyMOL [19] and Fourier Shell Corre-
lation (FSC) metric; see FSC in [28, 3rd footnote]. In this prepro-
cessing, we observe almost all important structural labels; see details
of the quantitative evaluations by FSC in Appendix D of the arXiv
version [18].

1st preliminary experiment: The aim of this experiment is to
measure the running time in reproducing the four pathways of [4],
based on the above trained cryoTWIN via the protocol shown in [24,
Expt2]. To do so, we only focus on the mean vectors of top 30 sig-
nificant Gaussian components out of 100, since the decodings of the
remaining 70 mean vectors are not necessarily consistent with well-
recognized structures by Davis et al. [4]. Note that we measure the
significance based on the Gaussian weight π, as Yamazaki et al. [24]
do. Then, (i) we generate the ribosomal path by applying the pathway
computing algorithm of Algorithm 1 in [24] to a pair of the signifi-
cant mean vectors; see Equation (2) for how to generate the path. For
Algorithm 1 of [24], we use exactly the same hyperparameter values
as [24]. Since the number of pairs is 435, we conduct parallel com-
puting for the pairs using the same computers in the preprocessing.
At last, (ii) we aggregate the paths, and evaluate whether the aggre-
gated path is consistent with one of the four pathways. The running
time in step (i) is around 240 minutes, while the time in step (ii) is
around 60 minutes.

2nd preliminary experiment: The aim of this experiment is to
qualitatively evaluate whether the resulting Mapper graph, which is
obtained via applying a classical Mapper algorithm to the set of latent
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Figure 2. Left and right graphs: Resulting Mapper graphs of 2nd preliminary and main experiments, respectively. In both graphs, each color of nodes
corresponds to the average value over the filtered values in each cluster. The labels such as B on the graphs are the 50S-ribosomal structural label defined

by Davis et al. [4]. The red and orange arrows in the right graph are two of four well-recognized conformatinal pathways defined also in [4].

variables {zi}Ni=1 from the preprocessing, can contain the four well-
recognized 50S-ribosomal conformational pathways of Davis et al.
[4, Figure 7]. Following Steps 1 to 3 in Section 2.2, we employ fmean

and k-means [20, Section 22.2] for the filter function and the cluster-
ing algorithm in the classical algorithm, respectively. Here, fmean re-
turns the average value over d-elements in d-dimensional vector, and
the number of clusters in k-means is 3. Additionally, the numbers of
intervals S and overlap rate r are S = 20 and r = 0.25, respectively.
Moreover, we introduce a representative latent variable for each clus-
ter as follows. Let {μkj}25j=1 denote a set of mean vectors related
to the top 25-significant Gaussian components, and let q denote the
cluster centroid given by k-means. The definition of the significance
is the same as in the 1st preliminary experiment. Then, the represen-
tative latent variable is defined by argmin{μkj

}25j=1
‖μkj−q‖2. Note

that the structural labels corresponding to the top 25 Gaussian mean
vectors do not correspond to junk structures. The resulting Mapper
graph with the labels is shown in the left-hand side of Figure 2. The
running time is less than one minute using Apple M1 16 GB 8 cores.

Main experiment: We apply our deep Mapper of Algorithm 1
to the set of latent variable {zi}Ni=1 using the trained GMM Pψ
from the preprocessing. The aim of this experiment is not only to
evaluate whether the resulting Mapper graph can contain the four
plausible pathways, but also to measure the running time. We set
(K̄, κ, S, r, C, λ) of Algorithm 1 to (25, 15, 25, 0.25, 5, 0.01). Ad-
ditionally, we set B of Section 3.2 to 100. For the filter function
fθ , we employ a single layer neural network with rectifier activation
function. We optimize the loss Lθ of line 7 in Algorithm 1 w.r.t. θ in
300 epochs, where we use full-batch, and the learning rate of Adam
optimizer is 0.001. The computational environment is Apple M1 16
GB 8 cores. The resulting Mapper graph with the labels by Davis
et al. [4] is shown in the right-hand side of Figure 2. The running
time is around 40 minutes.

For above experiments including the preprocessing, we choose hy-
perparameter values, which return the best result.

4.2 Analysis of Results

The running time of our method (40 min) is sufficiently shorter than
our main counterpart time of Yamazaki et al. [24] (240 min), al-

though our computer (Apple M1 16 GB 8 cores) is less powerful
than [24] (four NVIDIA V100 GPU accelerators with two Intel Xeon
Gold 6148 processors). However, in comparison with the classical
Mapper algorithm, our method is much slower (40 min vs. 1 min),
since ours optimizes the filter function.

As for the extraction of plausible pathways, from Figure 2, we can
observe that our Mapper graph contains all the four plausible 50S-
ribosomal conformational pathways of [4, Figure 7], which are the
following p1 to p4:

p1: B → D1 → D2 → D3 → D4 → E5; see the red arrows,
p2: B → D1 → E1 → E2 → E4 → E5,
p3: B → C2 → E1 → E2 → E4 → E5; see the orange arrows,
p4: B → C2 → C3 → C1 → E2 → E4 → E5,

whereas the counterpart result by the classical method contains none
of the four. In the pathway p1, the structural label E3 is absent, be-
cause the label does not correspond to one of the top 25-significant
Gaussian components in the preprocessing.

Our Mapper graph moreover captures the important character
of [4, Figure 7]: the labels C and D are well-separated overall in
the graph. On the other hand, with two pairs (D2, E1) and (D4, E4),
two labels in each pair are connected in our graph, while they should
not according to [4, Figure 7].

Remark 2. We are interested in a protein dataset that satisfies the
following four conditions. First, the experts already have constructed
the conformational pathway from the dataset, and the plausibil-
ity was well evaluated. Second, the pathway includes intermediate
structures, whose occurrence probabilities are low. Third, the con-
formational diversity within the pathway is high. Fourth, the dataset
is collected from cryo-EM; recall that we assume cryoTWIN for Al-
gorithm 1 in this study. Note that analyzing such assembly pathways
in a short running time is valuable, as ordinary methods (e.g., molec-
ular dynamics) often struggle with the analysis. To the best of our
knowledge, one of the few datasets that satisfy the four conditions is
the 50S-ribosomal dataset from EMPIAR-10076.

4.3 Ablation Study

We evaluate our algorithm’s performance in the three cases, using
the latent variable set from the preprocessing. The first case is that
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Figure 3. Three resulting Mapper graphs in ablation study. Left: The graph built on our clustering algorithm AC in Section 3.1 and the fixed filter function
fmean. Middle: The graph build on k-means and our parameterized filter function fθ . Right: The graph by Algorithm 1 with λ = 0.

Figure 4. Four resulting Mapper graphs in robustness study. From right to left: The graphs constructed by Algorithm 1 with (S,C) = (24, 5),
(S,C) = (26, 5), (25, 4), and (25, 6), respectively.

we only replace the filter function fθ in our algorithm with a fixed
one. We consider the four fixed filter functions: fi, fmin, fmax, and
fmean. The filter fi is a projection from R

8 to R which maps z to zi,
where zi denotes the i-th entry of z. The filter functions fmin, fmax,
and fmean map z �→ min{z1, . . . , z8}, z �→ max{z1, . . . , z8}, and
z �→ mean{z1, . . . , z8}, respectively. The second case is that we
only replace the clustering algorithm AC in our algorithm with k-
means. We set the number of clusters in k-means to 2. The last case
is that we remove the kNN regularizer from our algorithm, i.e., we
set λ in Algorithm 1 to 0.

In the first case, among the eleven resulting Mapper graphs, we
obtain Mapper graphs which contain three of the four plausible con-
formational pathways in [4] at the best. One such the graph is shown
on the left-hand side in Figure 3. For the second and third cases,
none of the four conformational pathways is contained in the Map-
per graph; see results of the second and third cases in the middle and
right-hand side graphs of Figure 3, respectively. From those results,
both the kNN regularizer Regθ(G) and our designed clustering al-
gorithm AC in Algorithm 1 are important factors to extract the path-
ways from the latent distribution Pψ , while the parameterized filter
function fθ also contributes to the extraction.

4.4 Robustness Study

We conduct a robustness study against the change of hyperparam-
eters in Algorithm 1. In this study, we focus on the following two
important hyperparameters of the Mapper algorithm: the number of
intervals S and the maximum number of clusters C; see S and C
in Algorithm 1. Firstly, we change S in {24, 25, 26}, while fixing

the other hyperparameters in Algorithm 1 to the values described in
the main experiment paragraph in Section 4.1. See the results with
S = 24 and 26 at the first and second graphs from the left in Fig-
ure 4, respectively. Secondly, we change C in {4, 5, 6}, while fixing
the other hyperparameters to the values used in the main experiment.
See the results with C = 4 and 6 at the third and fourth graphs from
the left in Figure 4, respectively.

In the first graph of Figure 4, one pathway B → C2 → C3 →
C1 → E2 → E4 → E5 is contained in the graph. In the second, two
pathways B → C2 → E1 → E2 → E4 → E5 and B → C2 →
C3 → C1 → E2 → E4 → E5 are contained in the graph. In the
third, one pathway B → D1 → E1 → E2 → E4 → E5 is con-
tained in the graph. In the fourth, no complete pathway is contained
in the graph, but two partial pathwaysB → D1 → D2 → D4 → E5
and B → C2 → C3 → C1 → E2 → E5 are contained in the graph.
From those analyses, our Mapper algorithm proves to be fairly sen-
sitive to the change of hyperparameters.

5 Conclusion and Future Work

We propose a deep Mapper algorithm to extract plausible conforma-
tional pathways from the isometric latent distribution of cryoTWIN
in short running time. In our numerical experiments, our method
successfully extracts the well-recognized 50S-ribosomal pathways in
shorter running time than the state-of-the-art method.

One of our future work is to make our method to be more robust
against change of the hyperparameters. Another future work is to
apply our method to other datasets, and evaluate the results.
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