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Abstract. The significance of traffic prediction in modern urban life
has become increasingly prominent. Accurate traffic forecasting im-
proves urban traffic management and enhances road resource utiliza-
tion. In recent years, many models have introduced spatio-temporal
contextual embeddings to distinguish between different time steps
and spatial nodes. However, these models often overlook anoma-
lous fluctuations in traffic data due to data imbalance. Consequently,
performance declines when encountering uncommon situations, es-
pecially those caused by unexpected traffic accidents. To maintain
overall performance while being aware of anomalous fluctuations,
we propose STPDN, a dual-branch Spatio-Temporal Pattern Decom-
position Graph Neural Network. Specifically, We introduce latent
variables to characterize the distribution of latent patterns in traffic
sequences, enabling the model to distinguish regular patterns and
anomalous fluctuations without supervised information specifically
targeting anomalies. Subsequently, we develop a resilient graph gen-
erator capable of producing dynamic spatio-temporal graphs, facil-
itating the propagation of impacts caused by dynamic fluctuations.
Finally, we achieve more comprehensive and robust predictions by
fusing regular patterns and anomalous fluctuations. Evaluation of
real-world and simulated datasets shows that our model outperforms
others, offering more reliable prediction solutions for urban traf-
fic management systems, particularly in handling unforeseen traffic
events. The code can be found at https://github.com/dhxdla/PyTorch-
implementation-of-the-STPDN.git.

1 Introduction

Traffic congestion presents significant economic and environmental
challenges in urban areas globally. In response to this pressing issue
and to advance Intelligent Transportation Systems(ITS), the artificial
intelligence community has turned its attention to traffic prediction.
The objective is to forecast the future evolution of traffic systems by
leveraging historical data and road networks [27, 32].

The complexity of traffic flow sequences, characterized by intri-
cate spatio-temporal dependencies, renders traffic prediction a highly
challenging task. Recently, researchers have made notable progress
in this area by employing spatio-temporal graph neural networks
[36]. These approaches typically utilize Graph Convolution Net-
works [11] to capture non-Euclidean spatial dependencies and incor-
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porate sequence models or convolution operations to capture tem-
poral dependencies. Despite these advancements, predefined graph
structures in GCNs may fail to adapt to the evolving nature of traffic
dynamics over time. To address this limitation, recent efforts have
focused on designing data-driven dynamic spatio-temporal graphs
through attention mechanisms [13, 5, 21]. However, this approach
may introduce noisy connections into the network structure due to
anomalous fluctuations within the traffic data.

Many studies have also recognized the presence of spatio-temporal
regularities in traffic data. As depicted in Figure 1-a, traffic flow se-
quences exhibit significant periodicity and seasonality. Nodes often
display similar characteristics during the same periods in different
cycles, indicating the existence of temporal low-rank properties. To
capture these regular patterns, some studies have introduced tempo-
ral embedding [26, 3]. Furthermore, as shown in Figure 1-b, similar
trends within specific time windows among nodes suggest the pres-
ence of common patterns across different nodes. MEGACRN [7] and
GMRL [4] respectively introduce meta-learning and Gaussian mix-
ture models to capture this node similarity.

While the aforementioned methods have enhanced spatiotempo-
ral prediction performance by capturing regular patterns, it is also
crucial to address the presence of anomalous fluctuations. As de-
picted in Figure 1-c, irregular fluctuations are evident in traffic flow,
suggesting the random occurrence of abnormal events. These meth-
ods introduce spatio-temporal embeddings to incorporate additional
contextual information[26, 34], providing strong prior knowledge for
specific time steps and spatial nodes. However, this prior knowledge
may introduce bias. During the learning process, an abundance of
regular patterns often overshadows the presence of anomalous fluc-
tuations. While models often excel in learning regular patterns, they
may struggle with abrupt events, as models tend to focus on captur-
ing local expectations. Rethinking the problem of traffic prediction,
while overall performance is certainly important, the most valuable
predictions often lie in scenarios deviating from regular patterns. In
this study, our focus lies on how to enhance the model’s perception
of dynamic anomalous fluctuations while ensuring the identification
of regular patterns.

To address this, we propose the Spatio-Temporal Pattern Decom-
position Network (STPDN), which partitions the prediction task into
two subtasks: predicting regular patterns and forecasting dynamic
anomalous fluctuations. Specifically, in the Low-Rank Pattern Aware
Block, we introduce latent variables to characterize the distribution
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Figure 1. Illustrating Consistent Patterns and Anomalous Fluctuations in Traffic Data.

of traffic flow patterns. With prior knowledge that the majority of
traffic are regular, we designed a learnable Latent Pattern Unit to
simulate the distribution of latent variables, enabling the learning
of regular traffic flow patterns without the need for any supervised
information targeting anomalies. In the Fluctuation Pattern Aware
Block, our emphasis lies on anomalous fluctuations within the traffic
sequence. We design a resilient graph generator to generate dynamic
spatio-temporal graphs at each time step unaffected by anomalous in-
fluences and propagate the effects of fluctuations using these graphs.
Through the integration of regular patterns and anomalous fluctu-
ations, our model achieves superior performance in capturing both
expected predictions and unforeseen events, offering a promising so-
lution for reliable urban traffic management systems. Our contribu-
tions can be summarized as follows:
• We propose a novel pattern decomposition architecture that di-

vides the prediction task into subtasks: predicting regular patterns
and forecasting dynamic anomalous fluctuations, ensuring stable
predictions while capturing abnormal events.

• We introduce latent variables to represent patterns in historical in-
formation. By employing a Latent Pattern Unit to approximate the
distribution of latent variables, we can distinguish between regu-
lar patterns and fluctuations without any supervised information
tailored to anomalies.

• We design a resilient graph generator capable of generating dy-
namic spatio-temporal graphs unaffected by anomalies, which are
then utilized to propagate information about dynamic anomalous
fluctuations.

• In multiple real-world and simulated datasets with elevated noise
levels, thorough comparisons with mainstream methods reveal
that STPDN excels across various metrics and demonstrates ro-
bustness in perceiving abnormal fluctuations.

2 Related work

The transportation system stands as one of the pivotal infrastructures
in modern cities. However, the gap between infrastructure service
capacity and transportation demand has brought about a series of is-
sues, including traffic congestion and resource wastage[31].

2.1 Traditional Traffic Prediction Methods

Early research on traffic prediction employed traditional statistical
methods like ARIMA, and VAR, alongside machine learning tech-
niques under the assumption of time series stationarity [19, 23].
Data-driven machine learning methods, renowned for their robust
generalization capabilities, have been introduced into traffic predic-
tion, yielding promising results[18]. Given the formidable nonlinear
fitting capabilities of deep learning methods, these models have been
widely applied to traffic prediction problems for modeling spatial and
temporal correlations. Considering the inherent temporal features of
traffic prediction tasks, methods based on RNNs and their variants
have found extensive use in extracting temporal dependencies[22].
However, most of the aforementioned methods tend to overlook the
acquisition of spatial dependencies. CNN-based methods partition
the road network into grids, effectively capturing the spatial depen-
dencies of adjacent grids[37, 17]. In contrast to CNNs, which can
only aggregate information in Euclidean space, Graph Neural Net-
works [11] exhibit capabilities in processing graph-structured data.
They fuse information from neighbors with connectivity relation-
ships to enhance traffic prediction performance.

2.2 Spatio-Temporal Graph Neural Networks

Currently, research predominantly focuses on spatio-temporal graph
neural networks for traffic prediction [36, 16, 20]. GCN heavily re-
lies on a predefined topology graph, which has the issue of insuffi-
cient information. A substantial body of research has designed more
rational spatio-temporal graphs, enabling more efficient aggregation
of temporal and spatial information [14, 24]. Graph wavenet [34], for
instance, addresses this challenge by learning adaptive node embed-
dings to construct dependency matrices. DMSTGCN, DSTAGNN
[5, 13] are committed to developing data-driven dynamic spatio-
temporal graphs to cope with the dynamic nature of the temporal
dimension. STSGCN [28] constructs local spatio-temporal graphs,
connecting individual spatial graphs at adjacent time steps, capable
of simultaneously handling temporal and spatial dependencies. Traf-
former [8] constructs a large spatio-temporal graph, allowing infor-
mation to flow directly between different nodes and steps.
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With the existence of heterogeneity in traffic feature sequences,
MegaCRN[7] draws inspiration from the Graph Memory Network
[9, 35] and utilizes a module similar to Memory Bank [33, 30]
to memorize typical patterns, generating a graph structure based
on these patterns. (AST-GCN, GMAN, PDFormer, Trafformer, and
GridFormer utilize self-attention in both temporal and spatial dimen-
sions to obtain global spatio-temporal heterogeneity[25, 40, 6, 8, 29].
GMRL designs a Gaussian representation extractor to enhance fea-
tures by extracting similar patterns[4].

The rapid evolution of urban anomaly detection technologies holds
profound and contemplative implications for researchers engaged in
the realm of traffic forecasting [39, 15]. Some researchers seeking to
unravel the complexities of anomaly detection have embraced a bi-
furcated approach, employing dual-branch structures to discern ab-
normal patterns and achieve enhanced efficacy in dealing with abnor-
mal fluctuation.[38].

3 Preliminary

Traffic data X pertains to spatio-temporal tensor information col-
lected within a road network G = (V, E ,A), where X ∈ R

N×L×C .
In this context, V denotes the set of nodes, E represents the set of
edges, and A ∈ R

N×N signifies the connectivity relations within
the road network. Here, N signifies the number of spatial nodes, L
denotes the temporal length, and C represents the feature dimension
(e.g., traffic flow, traffic speed). The task at hand, traffic flow fore-
casting, involves utilizing historical traffic flow Xt = Xt−T :t ∈
R

N×T×C to forecast future traffic flow Yt = Xt:t+T ′ ∈ R
N×T ′×C ,

where T is the historical length and T ′ is the future length.

4 Methodology

In this section, we initially present the comprehensive architecture of
the Spatio-Temporal Pattern Decomposition Graph Neural Network.
Subsequently, we offer a detailed exposition of its three pivotal mod-
ules: the ST Embedding Block, the Low-Rank Pattern Aware Block,
and the Fluctuation Pattern Aware Block.

4.1 Overview

As depicted in Figure 2, the model adopts a dual-branch structure,
with each branch dedicated to predicting the regular patterns and dy-
namic fluctuations respectively. Initially, spatio-temporal embedding
is applied to the input data, introducing additional contextual spatio-
temporal information. The Low-Rank Pattern Aware Block is uti-
lized to extract regular patterns from spatio-temporal data and gen-
erate baseline predictions Ŷp. The Fluctuation Pattern Aware Block
is responsible for recognizing dynamic fluctuations and propagat-
ing their impact through dynamic spatio-temporal graphs, resulting
in anomaly-influenced predictions Ŷr . Finally, Ŷp and Ŷr are fused
to obtain a more robust prediction Ŷt = Linear(Ŷp + Ŷr), where
Linear represents the linear layer.

4.2 Spatio-Temporal Embedding Block

The spatio-temporal embedding approach is widely adopted for traf-
fic prediction tasks, incorporating spatial, periodic, and temporal in-
formation. Initially, we map input sequences to a feature dimension
D through a fully connected layer:

Ex = Wep ·Xt + bep (1)

where Xt is the input, Wep and bep are both Learnable parameters.
Ex ∈ R

N×D represents the embedding.
We introduce learnable parameters Ew and Ed to capture weekly

and daily periodic information and Es for node-level characteristics.
Ew represents the day of the week, and Ed indicates the time of day,
incorporating meaningful prior information about the weekly and
daily cycles [26]. For daily information (Ed), we initialized a learn-
able embedding of size (288, D), dividing a day into five-minute
intervals, with each component indicating the specific time of day
for the current input. For weekly information (Ew), we initialized a
learnable embedding of size (7, D), with each component represent-
ing the specific day of the week for the current input. These embed-
dings are integrated as follows:

Ep = [Ex ‖ Es ‖ Ei
w ‖ Ej

d] (2)

where ‖ denotes concatenation. Ep encapsulates low-rank spatio-
temporal information. Ei

w and Ej
d represent the i-th and j-th com-

ponents of the learnable periodic embeddings, signifying the current
input feature’s position in the weekly and daily cycles, respectively.

Through convolutional operations, we obtain Ext to represent dy-
namic information for each time step, and fuse it with contextual
embeddings to get Er:

Ext = θxt � Xt (3)

Er = [Ext ‖ Es ‖ Ei
w ‖ Ej

d ‖ Epos] (4)

where Ext ∈ R
N×T×D is the embedding that encapsulates dynamic

information for each time step,θxt denotes the 1D convolutional ker-
nel, with � representing the convolution operation. We also introduce
a positional embedding Epos of size R

T×D to incorporate position
information, allowing the model to distinguish time steps and capture
temporal dynamics.

4.3 Low-Rank Pattern Aware Block

Traffic data inherently exhibits diverse spatio-temporal distributions.
It is crucial to examine the current state of latent patterns and forecast
future traffic states based on these latent patterns. We address this
by introducing latent variable z to indicate regular patterns, which
transforms the problem into:

pθ (Yp | Xt) =

∫
z

pθ (z | Xt) pθ (Yp | z,Xt) dz (5)

By leveraging the idea of variational inference to estimate the poste-
rior distribution pθ(z | Xt) [10], the problem can be further trans-
formed into optimizing the ELBO:

L = Eqφ(z|Xt,Yp) [log pθ(Yp | z,Xt)]−KL [qφ(z | Xt, Yp) ‖ p(z)]
(6)

Where qφ (z | Xt, Yp) serves as the encoder, pθ (Yp | z,Xt) as the
generator, and p(z) as the prior distribution. Given that traffic data
only contains finite common latent patterns, it’s unnecessary to enu-
merate the entire pattern space by sampling qφ (z | Xt, Yp) using the
reparameterization trick. Instead, we designed a self-learning Latent
Pattern Unit to represent the entire latent pattern space p(z). Since
the data predominantly comprises regular patterns, the Latent Pat-
tern Unit with limited size can effectively memorize the most com-
mon patterns. Maximizing the ELBO intuitively requires encoding
qφ (z | Xt, Yp) to be as close as possible to the true distribution in the
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Figure 2. An Overview of the Architecture of the Spatio-Temporal Pattern Decomposition Graph Neural Network.

Latent Pattern Unit, thereby maximizing prediction accuracy based
on this representation.

The overall structure is illustrated in Figure 2, depicting the es-
tablishment of the Low-Rank Pattern Aware Block for learning regu-
lar patterns and expected predictions. The Low-Rank Pattern Aware
Block employs Latent Pattern Unit LP ∈ R

m×D to indicate the reg-
ular patterns in traffic data. Here, m represents the number of items in
the Latent Pattern Unit, and D represents the feature dimension. The
Latent Pattern Unit, utilizing a minimal number of learnable param-
eters, provides a comprehensive representation of the overall traffic
patterns, with each item representing a regular pattern. To ensure sta-
bility in calculating the KL divergence, the Latent Pattern Unit LP
is first transformed into a probability distribution form:

Mi,d =
eLP i,d∑D
d=1 e

LP i,d
, (7)

where LP i,d represents the i-th item and d-th characteristic dimen-
sion in LP . Next, the similarity between the input embedding Ep

and the distribution of items in the Latent Pattern Unit is measured.

KLi,j =
D∑

d=1

Mi,d ln

(
Mi,d

Ej,d
p

)
, (8)

where Ej,d
p represents the d-th feature of the j-th node in the input

embeddings, and Mi,d represents the d-th feature of the i-th item.
The magnitude of KLi,j measures the similarity between the fea-
tures of the nodes j and the i-th item in the Latent Pattern Unit.
A smaller KLi,j indicates greater similarity. After m calculations,
m values of KLj are obtained, representing the importance of each
item for node j.

Then, the item most similar to the input is fused with the original
input, achieving the goal of reducing noise and generating expecta-

tion prediction, as shown below:

EM = θm ∗ [Ep ‖ MEM ] , (9)

where EM ∈ R
N×D represents the feature fused with regular pat-

terns, MEM ∈ R
N×D represents the regular pattern features,

MEM j = Margmin(KLj) denotes the item most similar to node j,
θm is a 1D convolutional kernel, ∗ represents the convolution opera-
tion, and ‖ denotes the concatenation operation.

After integrating the regular patterns into the features, further
learning of latent features is achieved through multiple convolutional
layers. This produces a comprehensive prediction of regular patterns,
resulting in a more stable expected value:

Hi+1 = δih ∗ (drop(ReLU(θih ∗Hi))) +Hi, (10)

where Ŷp = Hnp, H0 = EM , np represents the number of all pre-
diction modules, δih, θih are 1D convolutional kernels, drop represents
the dropout operation, ReLU is the activation function. Additionally,
we introduce a residual connection, using skip connections to obtain
the input for the next layer.

4.4 Fluctuation Pattern Aware Block

As traffic data exhibits dynamics, each time step possesses its unique-
ness. Therefore, we segment the input embedding Er ∈ R

N×T×D

along the time dimension, dividing it into ez ∈ R
N×D , where

z ∈ [1, T ]. Each sliced tensor is then fed into the Fluctuation Pat-
tern Aware Block for processing.

Given the presence of random incidents in traffic data, the im-
pact of such events is often challenging to capture. The fluctua-
tions generated by these events also propagate along the timeline and
spatial structure. As illustrated in Figure 3, the Fluctuation Pattern
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Figure 3. The Comprehensive Architecture of the Fluctuation
Pattern-Aware Block.

Aware Block captures the fluctuation patterns and constructs a re-
silient graph generator to produce dynamic spatio-temporal graphs
unaffected by anomalous events. Subsequently, the anomalous fluc-
tuations are propagated through this graph.

The Fluctuation Pattern Aware Block begins by utilizing a de-
signed Latent Pattern Unit FP ∈ R

m×D to find the regular patterns
for each sliced tensor ez . The similarity between regular patterns and
samples is then measured to filter out similar states.

KLz
i,j =

D∑
d=1

Ri,d ln

(
Ri,d

ej,dz

)
, (11)

where KLz
i,j represents the similarity between the j-th node and the

i-th item in the z-th time slice. Ri,d = eFP i,d/
∑D

d=1 e
FP i,d de-

notes the feature d of item i in the Latent Pattern Unit, and ej,dz

represents the feature d of node j in the z-th time slice. Once the
intrinsic information inherent in the samples is obtained, the next
step involves comparing real samples with regular patterns. The dif-
fering parts are then fused with the input embedding to indicate the
representation of sudden events at each time step.

Ez
R = θr � [ez ‖ ez −RESz] , (12)

where Ez
R ∈ R

N×D represents the embedding containing dy-
namic fluctuation information at the z-th time step, ez − RESz ∈
R

N×D represents the filtered irregular fluctuation, RESz =
FM argmin(KLz

j )
denotes the regular pattern of node j in the z-th time

slice, θr is a 1D convolutional kernel, � denotes the convolution op-
eration, and ‖ denotes the concatenation operation.

The resilient graph generator constructs dynamic spatio-temporal
graphs for each time step using data that has filtered out anomalous
fluctuations, thus ensuring the robustness of the graph structures. Si-
multaneously, the stable characteristic of the graph structure needs
to be considered. We initially analyze the regular patterns RESi

z of

each node eiz in the current time step slice. By measuring the simi-
larity between regular patterns of nodes, we determine the node con-
nection relationships at each time step.

Dz,h
i,j =

(
W z,h

q RESi
z + bz,hq

)
·
(
W z,h

k RESj
z + bz,hk

)
√
d

, (13)

where Dz,h
i,j represents the relationship between nodes i and j on

the z-th time slice of the h-th set of learnable parameters, and
d represents the feature dimension. In the self-generated dynamic
graphs, nodes with weak relationships still maintain connections with
smaller weights. However, real traffic graphs are sparse. Therefore,
we designed a self-learned filtering matrix to filter out non-essential
connections.

Az,h
i,j = hs (Ti,j)�Dz,h

i,j (14)

where Az,h
i,j represents the relationship between nodes i and j on

the z-th time slice of the h-th set of learnable parameters, and � de-
notes the element-wise product. T is a learnable parameter matrix of
size N ×N used to simulate a more informative graph structure ma-
trix than a topology graph. We map T to a 0-1 matrix using the Hard
Sigmoid function hs(), setting unimportant connections to zero, thus
achieving graph structure sparsification. Ti,j represents the the rela-
tionship between nodes i and j.

Finally, based on the learned dynamic spatio-temporal graphs A ∈
R

T×N×N×H , the captured fluctuation information ER ∈ R
N×T×D

is propagated. This process combines dynamic graphs generated at
each time step with graphs produced by each set of attention param-
eters.

G0 =
H∑

h=1

wh
T∑

z=1

Ez
RA

z,h + bh, (15)

where H represents the number of parameter sets, T is the length of
the input sequence, and bh and wh are both learnable parameters.

After propagating the fluctuation information through the dynamic
spatio temporal graphs, multiple convolutional layers with a skip
connection structure are used to obtain the final fluctuation predic-
tion Ŷr = Gnp, where np represents the number of all convolution
modules.

Gi+1 = δig � (drop(ReLU(θig � Gi))) +Gi, (16)

where Ŷr = Gnp, � is convolution operation; δig and θig are 1D con-
volutional kernels.

5 Experiment

Table 1. Statistics of PEMS04, PEMS07, PEMS08 Noise401 and
Noise402 Datasets.

Dataset Time Range Interval Node Ratio of Abnormal

PEMS04 1/1/2018 - 2/28/2018 5 min 307 -
PEMS07 5/1/2017 - 8/31/2017 5 min 883 -
PEMS08 5/1/2017 - 8/31/2017 5 min 170 -
Noise401 1/1/2018 - 2/28/2018 5 min 307 10%
Noise402 1/1/2018 - 2/28/2018 5 min 307 20%

In this section, we systematically evaluate the performance of our
model across multiple real-world datasets and simulation datasets,
comparing it with various methods. Our experimental results demon-
strate that our approach achieves superior performance and can ef-
fectively identify abnormal fluctuations. Subsequently, we conduct a
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Table 2. The Collective Performance Across PEMS04, PEMS07, and PEMS08. The table displays average performance metrics for 12-step predictions on
the respective datasets.

model DCRNN STGCN GWN AGCRN STFGNN DSTAGNN FOGS MSDR LightCTS MegaCRN STPDN

MAE 24.84 22.59 19.88 19.67 20.01 19.30 19.38 19.97 18.75 18.57 18.54

PEMS04 MAPE 17.34% 14.52% 14.27% 12.93% 13.07% 12.64% 12.79% 13.04% 12.99% 12.67% 12.31%

RMSE 38.33 35.47 32.41 32.23 32.40 31.52 31.61 32.32 30.32 30.30 30.27

MAE 25.36 24.64 21.26 21.05 22.05 21.90 21.04 22.19 20.81 19.73 19.66

PEMS07 MAPE 11.72% 10.97% 9.26% 8.96% 9.36% 9.39% 8.79% 9.24% 8.91% 8.38% 8.36%

RMSE 25.61 38.22 33.91 34.96 35.74 35.46 35.48 35.93 33.65 33.29 33.14

MAE 17.83 18.29 16.25 16.10 16.44 15.83 15.20 16.35 14.97 15.17 14.41

PEMS08 MAPE 11.73% 11.50% 10.48% 10.33% 10.57% 9.94% 9.68% 10.25% 9.65% 9.89% 9.35%

RMSE 27.93 27.74 26.72 25.54 26.19 25.04 25.22 25.82 24.10 24.14 24.03

series of ablation experiments to assess the individual contributions
of each component in traffic forecasting. Lastly, we delve into pa-
rameter sensitivity experiments, specifically the Latent Pattern Unit.
These experiments aim to explore the influence of Latent Pattern Unit
size on predictive performance. Through rigorous experimentation,
we strive to enhance our understanding of the intricacies and depen-
dencies within the proposed model architecture.

5.1 Dataset

We conducted a series of experiments on three real-world datasets
with varying numbers of nodes: PEMS04, PEMS07, and PEMS08
[28], all sourced from the Caltrans Performance Measurement Sys-
tem [2] in California. Given that traffic anomalies often have a
duration, we designed four noise kernels with two different time
lengths to simulate real-world traffic anomalies: gradual traffic in-
crease/decrease and return to normal (10 steps), and sudden traffic
surge/drop and return to normal (5 steps). Using PEMS04, we gen-
erated two simulation datasets, Noise401 and Noise402, which in-
corporated simulated pulse noise at proportions of 10% and 20%,
respectively. This noise was introduced randomly into the real-world
datasets and propagated along the physical topology graph, spread-
ing to first-order neighbors with an intensity of 20%. Details of the
noise data generation can be found in the code. The statistics of the
four datasets used in our experiments are summarized in Table 1.

5.2 Baseline Model

We compared the performance of our model against several baseline
models, and the experiments demonstrated that our model achieved
superior performance. DCRNN models traffic flow using a directed
graph and integrates GNN into RNN for spatio-temporal predictions
[16]. STGCN proposes a spatio-temporal prediction framework us-
ing convolutional layers for faster training with fewer parameters
[36]. GWN constructs a spatio-temporal graph matrix with adap-
tive node embeddings to address the lack of predefined graph struc-
ture in GNN [34]. AGCRN combines matrix factorization with node
embedding to reduce computation while enhancing interpretability
[1]. STFGNN designs a graph integrating spatio-temporal relation-
ships for graph convolution [14]. DSTAGNN uses dynamic infor-
mation from historical traffic data to replace static graphs with dy-
namic spatial-temporal aware graphs [13]. FOGS combines time
similarity and topological graphs for novel graph generation [24].
MSDR improves RNN by considering previous hidden states more
in time-dependent feature extraction, combining with GNN for
spatio-temporal predictions [20]. MegaCRN introduces a meta-graph
learner to address sequence non-stationarity [7]. LightCTS enhances

computational efficiency with a stack of temporal and spatial opera-
tors [12].

5.3 Experimental Setup

For PEMS04, PEMS07, PEMS08, Noise401, and Noise402 datasets,
we adopted a 6:2:2 ratio to split the data into training, validation, and
test sets. All datasets were aggregated into 5-minute windows, result-
ing in 288 data points daily. Additionally, we standardized the input
data to ensure training stability. In the prediction task, we utilized
one hour of historical data as input to forecast the traffic state for the
next hour (12 steps).

The model was implemented using PyTorch, and experiments
were conducted on an NVIDIA A100-SXM4-80GB card. Hyperpa-
rameters were fine-tuned based on the model’s performance on the
validation datasets. The hidden dimension D is set to 256, the num
heads H to 4, the number of prediction blocks np to 8, the learning
rate to 0.001, and the batch size to 32.

We employed three widely used metrics in traffic prediction,
namely MAE (Mean Absolute Error), RMSE (Root Mean Square
Error), and MAPE (Mean Absolute Percentage Error), to evaluate
the overall performance of our model. Additionally, we used PDR
(Performance Decreased Ratio), which represents the proportion of
performance decrease in MAPE, to assess the magnitude of perfor-
mance variation of the model under different noise levels.

5.4 Experimental Results

Table 2 presents a comprehensive performance comparison be-
tween our model and ten baseline models across the PEMS04,
PEMS07, and PEMS08 datasets. The reported metrics, including
MAE, MAPE, and RMSE, represent the averaged values for a 12-
step prediction horizon. It’s important to note that the calcula-
tion method for RMSE can vary across different articles. Some re-
searchers calculate RMSE for each batch and then average across
batches, which can be influenced by batch size and may result in
slightly lower values than the true RMSE. We have standardized
the RMSE calculation method by first computing the Mean Squared
Error (MSE) for all samples, averaging across batches, and finally
taking the square root to obtain RMSE. Due to our model’s effec-
tive capture of regular patterns and its adept handling of dynamic
anomalous fluctuations, experimental results demonstrate that our
model outperforms others on all three datasets. On the PEMS04 and
PEMS08 datasets, the Mean Absolute Percentage Error (MAPE) is
approximately 3% higher compared to the best-performing baseline.

As shown in Table 3, our method maintains optimal performance
even after introducing noise in Noise401 and Noise402 datasets. It’s
worth noting that with an increase in the proportion of noise, the
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Table 3. The Collective Performance Across Noise401 and Noise402, Representing 10% and 20% Noise Addition on PEMS04, Respectively.

model
Noise401 Noise402

MAE MAPE RMSE PDR MAE MAPE RMSE PDR
DCRNN 31.45 26.42% 48.62 52.37% 36.57 35.36% 59.39 103.92%
STGCN 26.49 21.45% 42.48 47.71% 30.60 32.11% 51.88 121.16%
GWN 21.08 19.04% 35.10 33.39% 25.03 25.90% 45.21 81.49%

AGCRN 20.87 16.78% 35.97 29.75% 24.83 22.69% 45.09 75.47%
DSTAGNN 21.52 16.78% 36.37 32.71% 25.74 23.89% 46.35 89.00%
LightCTS 21.90 18.47% 36.12 42.22% 25.89 23.49% 46.19 80.83%
MegaCRN 22.18 15.30% 35.78 20.76% 24.03 17.58% 44.88 38.75%

STPDN 20.67 13.39% 35.16 8.76% 23.60 14.40% 44.32 16.96%

performance of all models declines. However, under 10% noise, our
model’s performance decrease ratio (PDR) for MAPE is 8.76%, and
under 20% noise, the MAPE performance decrease (PDR) is 16.96%.
Our model exhibits the smallest performance degradation when faced
with a significant amount of noise.

Figure 4. Fluctuations-Aware Traffic Flow Analysis: Ground Truth and
Model Predictions for Node 1 Across Different Cycles

As illustrated in Figure 4, we present a typical case showcasing
awareness of fluctuations. In Figure 4 a, we depict the ground truth
of Node 1 during corresponding periods in different cycles. Notably,
the portion within the black line reveals that compared to periods 2
and 1, period 3 exhibits distinct irregular fluctuations. In Figure 4
b, we present the corresponding prediction for this segment. It is evi-
dent that the portion within the black line effectively identifies abnor-
mal fluctuations in the traffic flow sequence, indicating our model’s
capability to recognize and propagate the impact of exceptional fluc-
tuations on traffic predictions. Additionally, our model demonstrates
excellent predictive performance for regular patterns, attributed to
the robust memory function of our Latent Pattern Unit concerning
regular traffic patterns.

In summary, our model exhibits superior overall performance, ex-
celling in both anomalous fluctuations handling and regular pattern
prediction.

5.5 Ablation Study

We conducted nine ablation experiments on the PEMS04 dataset to
investigate the impact of the Latent Pattern Unit, the overall frame-

work, and the resilient graph generator on model performance.
w/o LPL: Removal of the Latent Pattern Unit in the Low-Rank

Pattern Aware Block. w/o FPL: Elimination of the Latent Pattern
Unit in the Fluctuation Pattern Aware Block, utilizing a data-driven
approach based on the attention mechanism for dynamic graph gen-
eration. w/o L: Elimination of all the Latent Pattern Unit in our
model. w/o LP: Omitte the Low-Rank Pattern Aware Block. w/o

FP: Omitte the Fluctuation Pattern Aware Block. w/o MG: Substi-
tution of dynamic multiple graphs with a single dynamic graph, re-
moving the multi-head attention mechanism. w/o DG: Elimination
of the computation of a spatio-temporal graph for each time step, us-
ing only one graph for all input time steps. w/o STRU: Removal of
the learnable filtering matrix T . w/o STRU w TOPO: Replace the
filtering matrix T with a physical topology graph. Replacement of

Table 4. Ablation Study on the Role of Latent Pattern Unit in Models on
the PEMS04 Dataset

Model w/o LPL w/o FPL w/o L w/o LP w/o FP STPDN

MAE 18.65 18.75 18.80 60.05 18.65 18.54

MAPE 12.33% 12.47% 12.56% 43.96% 12.41% 12.31%

RMSE 30.41 30.60 30.88 82.35 30.53 30.27

the learnable filtering matrix with a spatial topological graph.
Starting with an examination of the overall structure, as depicted

in Table 4, we observe that eliminating the Fluctuation Pattern Aware
Block has minimal impact on overall performance. However, remov-
ing the Low-Rank Pattern Aware Block results in a significant per-
formance decline. This suggests that while the Low-Rank Pattern
Aware Block learns regular pattern-based baseline predictions, the
Fluctuation Pattern Aware Block is more attuned to anomalous fluc-
tuations. Furthermore, in Figure 5, we illustrate the impact of remov-
ing the Fluctuation Pattern Aware Block on prediction results. In a
and b, represent typical traffic patterns, while c exhibits anomalous
fluctuations denoted by the black dashed lines. Notably, after remov-
ing the Fluctuation Pattern Aware Block, the model notably loses its
anomaly detection capability.

Table 5. Ablation Study on PEMS04 Investigating the Influence of
Different Graph Structures on Model Performance.

w/o MG w/o DG w/o STRU w/o STRU w TOPO STPDN

MAE 19.8 20.86 18.64 18.55 18.54

MAPE 13.35% 13.11% 12.44% 12.34% 12.31%

RMSE 31.4 32.9 30.39 30.33 30.27

In Table 4, we also observe the impact of the Latent Pattern Unit
on prediction performance. It is evident that removing any individual
branch of the Latent Pattern Unit or removing all Latent Pattern Units
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Figure 5. Effect of Removing Fluctuation Pattern Aware Block on
Prediction Results.

results in a certain degree of performance decline. This underscores
the importance of the Latent Pattern Unit in the model.

In problems involving the resilient graph generator, the impor-
tance of dynamic graphs becomes apparent in Table 5. Each time
step possesses unique characteristics, making the use of a static graph
an unreasonable approach. The introduction of multiple graphs and
structural filters contributes to a slight enhancement in model perfor-
mance. The use of a self-learning structural filter proves to be slightly
more effective than directly employing a topological graph structure
filter.

5.6 Parameter Sensitivity Experiment

In our model, a critical parameter is denoted by m, representing the
number of items in the Latent Pattern Unit. We conducted experi-
ments on the PEMS04 and PEMS07 to investigate the impact of m
on prediction performance, as depicted in Table 6.

The model achieves optimal performance when m is set to 700
and 800. Values of m that are either too large or too small result in a
decline in model performance. This implies that there exists a finite
set of patterns within the entire dataset, and using a fixed number of
patterns can fully characterize the entire dataset.

6 Conclusion

This paper introduces a dual-branch Spatio-Temporal Pattern De-
composition Graph Neural Network designed to address challenges
posed by abnormal fluctuations. Our method focuses on capturing
both regular patterns and dynamic anomalous fluctuations in traf-
fic flow sequences, thus offering a comprehensive solution for ur-
ban traffic management systems. The first branch termed the Low-
Rank Pattern Aware Block, utilizes the Latent pattern unit to capture
regular patterns, enabling stable predictions. The Fluctuation Pat-
tern Aware Block removes regular patterns to focus on fluctuations.
The resilient graph generator constructed dynamic spatio-temporal
graphs based on regular patterns to propagate fluctuation informa-
tion. Integration of regular patterns and dynamic fluctuations ensures
prediction stability and accurate forecasting. Our model was evalu-
ated on multiple datasets, achieving state-of-the-art results. Overall,

Table 6. The Results of Parameter Sensitivity Experiment on PEMS04 and
PEMS07.

M PEMS04 PEMS07
MAE MAPE RMSE MAE MAPE RMSE

M=600 18.9582 13.32% 30.4224 19.7535 8.38% 33.6923
M=700 18.6791 12.46% 30.5412 19.6596 8.36% 33.1396

M=800 18.5424 12.31% 30.2750 19.7105 8.27% 33.6576
M=900 18.5434 12.46% 30.3521 19.7083 8.29% 33.6476

M=1000 18.6425 12.56% 30.5468 19.7596 8.32% 33.5246

STPDN represents a significant step forward in traffic prediction re-
search, offering a promising avenue for the development of intelli-
gent transportation systems.

Acknowledgements

This work has been supported by the National Natural Science Foun-
dation of China (NSFC) (Grant No.52071312).

References

[1] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang. Adaptive graph convo-
lutional recurrent network for traffic forecasting. Advances in neural
information processing systems, 33:17804–17815, 2020.

[2] C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia. Freeway
performance measurement system: mining loop detector data. Trans-
portation Research Record, 1748(1):96–102, 2001.

[3] J. Deng, X. Chen, R. Jiang, X. Song, and I. W. Tsang. St-norm: Spatial
and temporal normalization for multi-variate time series forecasting. In
Proceedings of the 27th ACM SIGKDD conference on knowledge dis-
covery & data mining, pages 269–278, 2021.

[4] J. Deng, J. Deng, R. Jiang, and X. Song. Learning gaussian mixture
representations for tensor time series forecasting. In Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI ’23, 2023.

[5] L. Han, B. Du, L. Sun, Y. Fu, Y. Lv, and H. Xiong. Dynamic and multi-
faceted spatio-temporal deep learning for traffic speed forecasting. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, KDD ’21, page 547–555, New York, NY, USA,
2021.

[6] J. Jiang, C. Han, W. X. Zhao, and J. Wang. Pdformer: Propagation
delay-aware dynamic long-range transformer for traffic flow prediction.
In AAAI, 2023.

[7] R. Jiang, Z. Wang, J. Yong, P. Jeph, Q. Chen, Y. Kobayashi, X. Song,
S. Fukushima, and T. Suzumura. Spatio-temporal meta-graph learning
for traffic forecasting. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 37, pages 8078–8086, 2023.

[8] D. Jin, J. Shi, R. Wang, Y. Li, Y. Huang, and Y.-B. Yang. Trafformer:
unify time and space in traffic prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 8114–8122,
2023.

[9] A. H. Khasahmadi, K. Hassani, P. Moradi, L. Lee, and Q. Morris.
Memory-based graph networks. In International Conference on Learn-
ing Representations, 2020.

[10] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling.
Semi-supervised learning with deep generative models. Advances in
neural information processing systems, 27, 2014.

[11] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[12] Z. Lai, D. Zhang, H. Li, C. S. Jensen, H. Lu, and Y. Zhao. Lightcts: A
lightweight framework for correlated time series forecasting. Proceed-
ings of the ACM on Management of Data, 1(2):1–26, 2023.

[13] S. Lan, Y. Ma, W. Huang, W. Wang, H. Yang, and P. Li. Dstagnn:
Dynamic spatial-temporal aware graph neural network for traffic flow
forecasting. In International conference on machine learning, pages
11906–11917. PMLR, 2022.

[14] M. Li and Z. Zhu. Spatial-temporal fusion graph neural networks for
traffic flow forecasting. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 35, pages 4189–4196, 2021.

[15] Q. Li, X. Pan, F. Xiao, and B. Bhanu. ESSL: enhanced spatio-temporal
self-selective learning framework for unsupervised video anomaly de-
tection. In Proceedings of the 26th European Conference on Artificial

X. Zhang et al. / STPDN: Spatio-Temporal Pattern Decomposition Network with Fluctuation Awareness 2595



Intelligence (ECAI), volume 372 of Frontiers in Artificial Intelligence
and Applications, pages 1398–1405. IOS Press, 2023.

[16] Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[17] Y. Liang, K. Ouyang, L. Jing, S. Ruan, Y. Liu, J. Zhang, D. S. Rosen-
blum, and Y. Zheng. Urbanfm: Inferring fine-grained urban flows. In
Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 3132–3142, 2019.

[18] L. Lin, J. Li, F. Chen, J. Ye, and J. Huai. Road traffic speed prediction:
A probabilistic model fusing multi-source data. IEEE Transactions on
Knowledge and Data Engineering, 30(7):1310–1323, 2017.

[19] M. Lippi, M. Bertini, and P. Frasconi. Short-term traffic flow forecast-
ing: An experimental comparison of time-series analysis and supervised
learning. IEEE Transactions on Intelligent Transportation Systems, 14
(2):871–882, 2013.

[20] D. Liu, J. Wang, S. Shang, and P. Han. Msdr: Multi-step dependency
relation networks for spatial temporal forecasting. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 1042–1050, 2022.

[21] X. Luo, C. Zhu, D. Zhang, and Q. Li. Dynamic graph convolutional net-
work with attention fusion for traffic flow prediction. In Proceedings of
the 26th European Conference on Artificial Intelligence (ECAI), vol-
ume 372 of Frontiers in Artificial Intelligence and Applications, pages
1633–1640, 2023.

[22] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang. Long short-term mem-
ory neural network for traffic speed prediction using remote microwave
sensor data. Transportation Research Part C: Emerging Technologies,
54:187–197, 2015.

[23] B. Pan, U. Demiryurek, and C. Shahabi. Utilizing real-world transporta-
tion data for accurate traffic prediction. In 2012 ieee 12th international
conference on data mining, pages 595–604. IEEE, 2012.

[24] X. Rao, H. Wang, L. Zhang, J. Li, S. Shang, and P. Han. FOGS: first-
order gradient supervision with learning-based graph for traffic flow
forecasting. In L. D. Raedt, editor, Proceedings of the Thirty-First In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2022, Vi-
enna, Austria, 23-29 July 2022, pages 3926–3932, 2022.

[25] S. M. V. Reddy, A. Dammur, and A. Narasimhamurthy. An attention
based spatial temporal graph convolutional networks for traffic flow pre-
diction. International Journal of Intelligent Systems and Applications
in Engineering, 12(15s):481–488, 2024.

[26] Z. Shao, Z. Zhang, F. Wang, W. Wei, and Y. Xu. Spatial-temporal iden-
tity: A simple yet effective baseline for multivariate time series fore-
casting. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pages 4454–4458, 2022.

[27] M. Shaygan, C. Meese, W. Li, X. G. Zhao, and M. Nejad. Traffic predic-
tion using artificial intelligence: review of recent advances and emerg-
ing opportunities. Transportation research part C: emerging technolo-
gies, 145:103921, 2022.

[28] C. Song, Y. Lin, S. Guo, and H. Wan. Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 914–921, 2020.

[29] C. Su, C. Wu, and D. Lian. Gridformer: Spatial-temporal transformer
network for citywide crowd flow prediction. In Proceedings of the 26th
European Conference on Artificial Intelligence (ECAI), volume 372 of
Frontiers in Artificial Intelligence and Applications, pages 2218–2225.
IOS Press, 2023.

[30] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent memory
network for image restoration. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[31] S. Wang, J. Cao, and S. Y. Philip. Deep learning for spatio-temporal
data mining: A survey. IEEE transactions on knowledge and data engi-
neering, 34(8):3681–3700, 2020.

[32] Y. Wang and Y. Luo. Weagan: Weather-aware graph attention network
for traffic prediction. In Proceedings of the 26th European Conference
on Artificial Intelligence (ECAI), volume 372 of Frontiers in Artificial
Intelligence and Applications, pages 2591–2598, 2023.

[33] J. Weston, S. Chopra, and A. Bordes. Memory networks. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015.

[34] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In S. Kraus, editor, Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 1907–
1913, 2019.

[35] J. Xu, E. Dai, X. Zhang, and S. Wang. Hp-gmn: Graph memory net-
works for heterophilous graphs. In 2022 IEEE International Conference
on Data Mining (ICDM), pages 1263–1268, 2022.

[36] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting. In Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 3634–3640, 7 2018.

[37] J. Zhang, Y. Zheng, and D. Qi. Deep spatio-temporal residual networks
for citywide crowd flows prediction. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 31, 2017.

[38] M. Zhang, T. Li, H. Shi, Y. Li, and P. Hui. A decomposition approach
for urban anomaly detection across spatiotemporal data. In IJCAI Inter-
national Joint Conference on Artificial Intelligence. International Joint
Conferences on Artificial Intelligence, 2019.

[39] M. Zhang, T. Li, Y. Yu, Y. Li, P. Hui, and Y. Zheng. Urban anomaly
analytics: Description, detection, and prediction. IEEE Transactions on
Big Data, 8(3):809–826, 2020.

[40] C. Zheng, X. Fan, C. Wang, and J. Qi. Gman: A graph multi-attention
network for traffic prediction. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 1234–1241, 2020.

X. Zhang et al. / STPDN: Spatio-Temporal Pattern Decomposition Network with Fluctuation Awareness2596


