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Abstract. Fraud detection has attracted massive research interests
due to its broad applications, especially on e-commerce websites,
where fraudulent users interact with products unfairly to mislead
potential customers for monetary incentives. Previous studies have
made significant research progress on fraud detection, while only
a few of them pay attention to adaptability and scalability of their
methods. As a result, most of prior fraud detectors cannot perform
consistently well across different scenarios due to issues such as spar-
sity, pattern inconsistency and camouflage. To address these issues,
this paper proposes an adaptive algorithm called AdaptFD to effec-
tively detect fraudulent users on e-commerce platforms. In particular,
we first tackle sparsity issue with finer granularity by inferring rel-
evant coefficients on entity level during runtime. Next, variable reg-
ularization terms are designed for pattern inconsistency tolerance.
Lastly, we analyze the behavior patterns of users to reveal camou-
flage of fraudsters. Together, AdaptFD can adapt to different sce-
narios and handle with large-scale data efficiently. We also provide
theoretical guarantees for our algorithm in linear time complexity
and training convergence. Extensive experiments on four real-world
datasets demonstrate that AdaptFD outperforms other state-of-the-art
baselines. It’s worth noticing that our algorithm achieves up to 560x
speedup on the real-world dataset, compared with the most related
baseline.

1 Introduction

Fraud detection has attracted lots of interests from both academic
and industrial community due to its extensive and practical applica-
tions in many areas such as finance [4, 32] and review management
[5, 23, 29]. Numerous approaches have been developed for fraud de-
tection on e-commerce platforms like Amazon, eBay and TripAdvi-
sor. Graph-based methods [14, 27, 31] have shown promising results,
which utilize the interactions between users and items to construct a
bipartite graph. Then, graph-based models detect suspicious nodes
or edges by exploiting the topological structures of graphs, based
on the assumption that fraudsters have different interaction patterns
from normal users in the same graph.

Although the problem of fraud detection on e-commerce websites
has been well-investigated by existing graph-based approaches, they
still cannot perform consistently well across different graphs due to
some existing challenges. Firstly, existing graph-based detectors suf-
fer from class imbalance issue on mainstream online trading web-
sites, where fraudsters only account for a small proportion [17]. In
particular, only 0.09% - 0.66% of users are fraudulent as observed
from four public real-world datasets collected from Amazon.
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Moreover, the performance of graph-based methods rely on mas-
sive interactions among entities in the graph, providing sufficient in-
formation to reflect the behavior patterns of users. However, the spar-
sity issue is ubiquitous in real-world scenarios, as many entities only
have a few interactions with others, which limits the performance
of graph-based detectors [24]. For instance, a newly registered user
might be classified as fraudulent by existing fraud detection systems
because of the first rating, which might be opposite to the main-
stream. However, it still could be a normal user with an unique opin-
ion on a specific product.

Besides, fraudsters often camouflage their malicious behaviors
to avoid being detected by anti-fraud systems [6, 10, 25]. In gen-
eral, spammers intentionally interact with popular items to establish
strong connections with normal users for alleviating suspiciousness.
Lastly, benign users do not always share the same behavior pattern
with other normal users due to different preferences. Thus, effective
fraud detectors are supposed to be inconsistency-tolerated [18].

To address the above issues, in this paper, we propose a novel
HITS-based Adaptive Fraud Detection Scoring Algorithm (AdaptFD
for short) to effectively identify fraudsters on e-commerce plat-
forms. Specifically, AdaptFD also formulates user-item interaction
networks as bipartite graphs and analyze the topological structures of
graphs as other graph-based methods did. However, AdaptFD offers
finer granularity by dynamically tuning related coefficients for each
entity and edge in the graph during the inferring process instead of
handling with them equally. As a result, AdaptFD provides not only
better predictions on one specific graph, but also better adaptability to
deal with different graphs regardless of size, the extent of sparsity and
class imbalance. In this way, AdaptFD achieves up to 560x speedup
on real-world datasets used for evaluation, compared with the most
related baseline [14]. Besides, flexible regularization terms are inte-
grated into AdaptFD, which reflect the overall behavior pattern of
each user, controlling the sensitivity of AdaptFD on pattern incon-
sistency. We also analyze the distribution of targets under different
kinds of interactions from both normal and fraudulent users to reveal
the camouflage behaviors from fraudsters, which guides AdaptFD to
shift focus on discernible behavior patterns for identifying fraudsters
under camouflage.

We highlight the contributions of our work as follows:

• We propose a novel algorithm called AdaptFD to detector frauds
on e-commerce platforms, which provides adaptability to scenar-
ios in different settings by addressing sparsity, pattern inconsis-
tency and camouflage issues with finer granularity.

• We provide theoretical guarantees for AdaptFD in terms of linear
scalability and training convergence, which indicates AdaptFD is
scalable for large-scale data in practice.

• We conduct extensive experiments on four real-world datasets
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with different properties to show the effectiveness of AdaptFD,
which outperforms all other baselines.

Our code and appendix material is available at https://www.cse.
unsw.edu.au/~wong/ECAI2024/.

2 Related Work

The following summarizes the related work in fraud detection and,
in particular, graph-based fraud detection.

2.1 Generic Fraud Detection

To detect frauds in user-product review platforms, [11] is the first
work to extract handcraft features corresponding to users, products
and reviews such as review length and average rating given by user,
and learn suitable weights for features using a logistic regression
classifier. Inspired by this work, Behavior [16] expands feature set to
detect target-based spamming. Co-training [30] is a semi-supervised
method, training two independent models simultaneously with dif-
ferent feature sets regarding to reviews and users respectively. In this
way, two models boost the performance of each other iteratively by
mutually annotating unseen data as new training samples. In addi-
tion, Deceptive [22] and [24] focus on textual content analysis to find
out frauds. [33] leverages temporal pattern discovery to tackle single-
ton review issue. Birdnest [9] and SpEagle [23] distinguish normal
and suspicious users by examining the difference between their be-
havior patterns and the global patterns.

However, the above approaches lack scalability due to their mas-
sive feature generation and collection process. Besides, they disre-
garded topological information between users and items, which lim-
its the performance. Different from them, we leverage topological
structures to build a more effective and scalable fraud detector.

2.2 Graph-based Fraud Detection

Since PageRank [3] and HITS [13] were introduced, many researches
in different fields started to explore structural relations among nodes
in graph-like data rather than contextual information, such as opin-
ion spam detection [6, 29], recommender systems [34] and finan-
cial fraud detection [35]. For fraud detection, BAP [20] iteratively
computes the bias and prestige of each node, based on the idea that
opinion should weigh significantly even from biased users if it is
in unusual pattern. Similarly, Troll-Trust [31] normalizes measure-
ments with sigmoid-like functions and introduces variable Laplacian
smoothing terms for addressing cold start issue, while it fails to han-
dle with discrete values, i.e., most of ratings across e-commerce web-
sites. Eagle [1] uses loopy belief propagation to update the entire
graph iteratively with prior knowledge. Based on HITS algorithm
[13], Trustiness [27, 28] and Rev2 [14] formulate graphs with more
designed metrics to mathematically examine each entity and edge in
the graph. More recently, Graph Neural Networks (GNNs) like GCN
[12] and GAT [26] have been extensively investigated by many stud-
ies [6, 7, 17, 25] to learn low-dimensional vector representation for
nodes in the graph by aggregating information from neighbors.

However, the above graph-based methods either did not consider
sparsity or they only addressed the issue on graph level. Hence, they
are not adaptive to different graphs with different properties. On the
contrast, this paper addresses sparsity on entity level so that the pro-
posed AdaptFD can perform consistently well across different graphs
without any need for prior knowledge.

3 Problem Formulation

In this section, we present preliminaries needed to formally define the
problem of graph-based fraud detection on e-commerce platforms.
Then, we present three essential metrics for tackling the problem.

3.1 Preliminaries

We define a user-item rating network as a bipartite graph G =
(U ,P,R), consisting of a set of user nodes U = {u1, u2, ..., um}, a
set of item nodes P = {p1, p2, ..., pn}, where m is the total number
of unique user entities and n denotes the amount of unique items.
R denotes the group of interactions from user nodes to item nodes,
where each edge ri,j ∈ R represents the interaction from ui to pj .
For simplicity, we use Ri,∗ to denote all ratings given by user ui

and R∗,j to denote all ratings received by item pj . The weight of
edge ri,j is denoted as w(ri,j). For generalization, we scale w(·) to
the range between −1 and +1, i.e., w(r) ∈ [−1, 1], ∀r ∈ R. With
above preliminaries, we define the problem of graph-based fraud de-
tection as following:

Definition 1 (Graph-based Fraud Detection Problem). Given a bi-
partite rating graph G = (U ,P,R), what is the probability P (ui) of
user node ui to be a fraudster, whose rating behavior is maliciously
deviated from normal users, where 1 ≤ i ≤ m?

3.2 Metrics

To address this problem, we introduce three necessary metrics when
modeling user-item rating networks as bipartite graphs: (1) quality
of item; (2) trustworthiness of rating; (3) fairness of user. The defini-
tions of these three metrics will be explained as below:

Quality measures the inherent goodness of items, which also can
be regarded as the deserved rating from general users. We denote it
as Q(p) ∈ [−1,+1], ∀p ∈ P . Intuitively, high quality Q(p) (close
to +1) refers to high expected rating from fair users on item p, and
vice versa.

Trustworthiness measures how trustworthy is a rating ri,j from
user ui on item pj , denoted as T (r) where r ∈ R. The value of T (·)
ranges from 0 to 1, as 0 and 1 stand for absolute unreliability and
complete authenticity, respectively.

Fairness quantifies the reliability of users within the graph, de-
noted as F (u) ∈ [0, 1], ∀u ∈ U . Intuitively, higher fairness score
F (u) indicates more honest user u, and vice versa.

4 Methodology

In this section, we first introduce the basic equations to compute the
metrics presented in Section 3.2. Then, we extend the basic equations
to address the issues described in Section 1. Finally, we introduce the
proposed algorithm AdaptFD with all equations combined.

4.1 Quality

According to [14, 27], the quality of item is decided by the values and
trustworthiness scores of received ratings. Specifically, more trust-
worthy positive ratings lead to a higher quality score. Thus, the qual-
ity of item is calculated as:

Q(pj) =

∑
r∈R∗,j T (r) · w(r)
∑

r∈R∗,j T (r)
(1)
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Figure 1. Behavior analysis of users: deviations and biases.

4.2 Trustworthiness

The key factor to decide the trustworthiness of a rating is the fair-
ness of the corresponding user. In general, fair users are more likely
to give reliable ratings, while fraudsters prefer to give untrustwor-
thy ratings. The trustworthiness of a rating is also dependent on how
it deviates from the intrinsic quality of its target. Formally, we use
D(r) to denote the deviation of rating r, computed as:

D(ri,j) =
w(ri,j)−Q(pj)

z
(2)

where z is a normalization coefficient to ensure D(r) ∈
[−1, 1], ∀r ∈ R. As shown in Fig. 1, in a real-world rating network
from Amazon, normal users tend to rate items close to what targets
deserve, while fraudsters most likely rate items with unexpectedly
low values. Hence, extreme deviations intuitively imply untrustwor-
thy ratings. Then, we infer the trustworthiness of rating as:

T (ri,j) =
γ1 · F (ui) + γ2 · D̃(ri,j)

γ1 + γ2
(3)

where D̃(·) = 1 − ‖D(·)‖ and γ1, γ2 are non-negative coefficients
to control the importance of two factors in the calculation of trust-
worthiness respectively.

4.3 Fairness

The fairness of a user will depend on all its given ratings with respect
to the trustworthiness scores. Intuitively, fair users are more likely to
give trustworthy ratings than fraudsters. Thus, we develop the equa-
tion for computing the fairness of user as:

F (ui) =
∑

r∈Ri,∗

T (r) / |Ri,∗| (4)

where | · | is element count operator. Finally, we infer the probability
P (u) of a user u being fraudulent based on corresponding fairness:

P (ui) = 1− F (ui) (5)

4.4 Alleviate Inconsistency

The inconsistency problem is caused by active users who occasion-
ally give unusual ratings due to specific reasons such as unique per-
sonal preference [18]. Therefore, we include the overall behavior pat-
tern of users to smooth the impacts of few unusual interactions when
computing the trustworthiness for ratings. We use B(u) to denote the
bias of user u, reflecting the pattern of giving higher or lower ratings
than what items deserve, inferred as:

B(ui) =

∑
ri,j∈Ri,∗ w(ri,j)−Q(pj)

|Ri,∗| · z
(6)

Figure 2. Distributions of targets under different ratings from users.

where B(·) is normalized into the same interval [−1, 1] as D(·) using
the same normalization coefficient z. As we can see from Fig. 1,
normal users are more neutral than anomalies in terms of bias score,
which is consistent with our analysis. Then, we revise Eq. (3) as:

T (ri,j) =
γ1 · F (ui) + γ2 · D̃(ri,j) + γ3 · B̃(ui)

γ1 + γ2 + γ3
, ri,j ∈ R (7)

where B̃(·) = 1 − ‖B(·)‖ and γ3 is also a non-negative coefficient
to decide the regularization intensity of overall behavior pattern on
the calculation for trustworthiness.

4.5 Uncover Camouflage

To avoid being identified by anti-fraud systems in real world, smart
fraudsters camouflage themselves by intentionally giving reasonable
ratings to popular items and building up strong connections with
benign users to reduce their overall suspiciousness [6]. We explore
the correlations between the distributions of ratings and the targeted
items to uncover camouflage behaviors. Observed from Fig. 2, we
have several insightful discoveries: (1) most of positive ratings from
spammers are given to high-quality items, the same as normal users,
which could be the evidence of camouflage; (2) most of negative
ratings from fraudsters target at high-quality items, which is quite
different from normal users, who prefer to give low ratings on items
with medium quality or below; (3) the lower the ratings, the more
significant rating deviations can be perceived from fraudsters than
benign users. Therefore, we adjust the significance of each rating ac-
cording to its value when computing the fairness of user in Eq. (4) to
alleviate the effects of camouflage behaviors:

F (ui) =
∑

r∈Ri,∗

T (r) · S(r) /
∑

r∈Ri,∗

S(r) (8)

where S(r) indicates the significance of each rating r on deciding
the fairness of its corresponding user u. In this case, we calculate it
as S(r) = (3− w(r)) / 2, so that the lowest ratings have just twice
the significance of the highest ratings.

4.6 Address Sparsity

Our equations for inferring true values of essential metrics work
properly when every entity has adequate interactions in the graph.
While on real-world platforms, the performance of fraud detection
systems suffer from sparsity problem [21, 33]. For example, it is
hard for existing detectors to classify users with only few ratings,
which could either be inactive normal users or malicious users for
executing planned bursty spamming [2]. Similarly for item nodes, it
is difficult to infer the real quality of items when they only receive
few or unreliable ratings. Thus, effective fraud detectors in real world
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are supposed to address the sparsity issue for improving customer ex-
perience and increasing revenue [15].

In Rev2 [14], they attempt to address this issue on graph level.
Specifically, for a single rating graph, they train multiple indepen-
dent models with different settings. The final prediction is based on
the outputs of all model. However, it is not fine-grained to assign the
same parameters on the graph in individual model, since different
entities might be in different contextual situations even within the
same graph. Although this ensemble strategy improves the stability
and capability of managing different graphs to some extents, it actu-
ally sacrifices the scalability to large datasets due to the significantly
increasing computational cost.

In this work, we aim to address the sparsity issue with entity-level
granularity, which is more adaptive and efficient when handling with
different scenarios. For the quality of items, in case they don’t receive
sufficient trustworthy ratings, a variable Laplacian smoothing term is
added to Eq. (1) as:

Q(pj) =

∑
r∈R∗,j T (r) · w(r) + α · q

|R∗,j | (9)

where q denotes the default quality value, which could be the mean
of all quality values in the graph. Term α is calculated during runtime
as α =

∑
r∈R∗,j (1−T (r)), dynamically controlling the proportion

of default. For each item in the graph, the more trustworthy ratings
received, the less dependency on the default. Likewise, when infer-
ring the trustworthiness of ratings, we dynamically tune coefficients
γ1, γ2, γ3 in training process with respect to the interaction intensity
level of the corresponding user as following:

γ1 = min(1.0, |Ri,∗| / σ), 1 ≤ i ≤ m

γ2 = 1.0

γ3 = γ1 · λ
where parameter σ is a positive integer as the threshold value of in-
tensive interactions for users and parameter λ is a positive number to
control the regularization intensity of inconsistency-tolerance term.
As a result, users with more than σ interactions are considered as
active users and will be treated equally. Besides, the coefficient γ3
of bias term is mutually decided by both parameters σ and λ, which
only takes perceptible effect when the corresponding user has enough
interactions to reflect the overall behavior pattern.

Moreover, rating deviation as the key factor to infer the trust-
worthiness of ratings, could be inaccurate when the corresponding
item doesn’t receive adequate reliable ratings and the quality of it is
mainly decided by the default. Hence, we further revise Eq. (7) as:

T (ri,j) = (1− β) · γ1 · F (ui) + γ2 · D̃(ri,j) + γ3 · B̃(ui)

γ1 + γ2 + γ3
+ β · t

(10)
where t refers to the default trustworthiness value in the graph and β
is also a flexible smoothing term to control the importance of default
based on all ratings received by the corresponding item, inferred as:

β =
∑

r∈R∗,j

(1− T (r)) / |R∗,j | (11)

Lastly, we add a fixed smoothing term in Eq. (8) to cope with sparsity
issue as following:

F (ui) = (
∑

r∈Ri,∗

T (r) · S(r) + f) / (
∑

r∈Ri,∗

S(r) + 1) (12)

where f represents the default fairness value in the graph. All default
values can be updated during training process, so it does not matter
which values should be selected as initialization.

Algorithm 1 The AdaptFD Algorithm
Input Bipartite rating network G = (U ,P,R)
Input: Parameters σ and λ
Input: Training epochs epochs, error threshold ε
Output: Probability P (u) for each user entity being fraudulent

1: Randomly initialization default values for each metric i.e., q, t, f
2: Let i = 0
3: repeat

4: i := i+ 1
5: Compute Qi(p), ∀p ∈ P using Eq. (9) and update q
6: Compute T i(r), ∀r ∈ R using Eq. (10) and update t
7: Compute F i(u), ∀u ∈ U using Eq. (12) and Update f
8: error :=

∑ ‖F i(u)− F i−1(u)‖ / |U|, ∀u ∈ U
9: until i == epochs Or error < ε

10: return P (u), ∀u ∈ U , computed by Eq. (5)

4.7 The AdaptFD Algorithm

By combining all the equations above (Section 4.1 to Section 4.6),
the proposed algorithm AdaptFD is presented in this section. Specif-
ically, AdaptFD iteratively computes values of metrics for all entities
and edges within the bipartite rating graph as shown in Algorithm 1,
where superscript i and i−1 indicate the current and last iteration of
the training process respectively.

4.7.1 Time Complexity Analysis

In each iteration of training, the proposed AdaptFD goes through all
user nodes twice, all items nodes twice and all ratings four times
for updating values of metrics. Hence the time complexity of each
iteration is denoted as O(2m + 2n + 4l), where m,n, l represent
the total number of users, items and ratings respectively. Let, k be
the number of training iterations required for AdaptFD to converge.
Then, the overall time complexity for AdaptFD is O(k∗ (2m+2n+
4l)), where k is a constant. In conclusion, AdaptFD has a linear time
complexity, which is scalable to large-scale datasets in practice.

4.7.2 Error Bound Analysis

The error between the calculated value for the metric at any iteration
and the true value is bounded, as shown by the theorem below. The
proofs of the below lemmas and theorem can be found in the Ap-
pendix. Let, Q∞(p) and F∞(u) represent the true quality value of
item p and true fairness value of user u, respectively.

Lemma 1. In any two iterations i and j, the difference between the
computed quality values for any item p is at most 1, i.e. ‖Qi(p) −
Qj(p)‖ ≤ 1.

Lemma 2. Similarly, in any two iterations i and j, the difference of
the computed trustworthiness values for any rating r is at most 1+z

2z
;

the difference of the computed fairness values for any user u is at
most 1+z

2z
.

Theorem 3. The difference between the true fairness of user u
and calculated value at any iteration i is bounded, i.e. ‖F∞(u) −
F i(u)‖ ≤ ( 1+z

2z
)i. Similarly, the difference between the true qual-

ity of item p and calculated value at any iteration i is bounded, i.e.
‖Q∞(p)−Qi(p)‖ ≤ ( 1+z

2z
)i−1; and the difference between the true

trustworthiness of rating r and calculated value at any iteration i is
bounded, i.e. ‖T∞(r)− T i(r)‖ ≤ ( 1+z

2z
)i.
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Table 1. Statistics for the four real-world datasets.

Datasets # Users (% Fraud) # Items # Ratings Density

FineFoods 256,059 (0.09%) 74,258 568,454 2.22
Instruments 339,231 (0.12%) 83,046 500,176 1.47
Electronics 192,403 (0.27%) 63,001 1,689,188 8.78

Beauty 22,363 (0.66%) 12,101 198,502 8.88

4.7.3 Training Convergence Analysis

After analyzing error bound for metrics within the graph during train-
ing process, we now analyze the convergence behavior of the pro-
posed AdaptFD. Given an error threshold ε, the number of training
iterations needed for convergence k should satisfy ( 1+z

2z
)k−1 < ε.

Theoretically, the maximum number of training iterations k required
for AdaptFD to converge is:

k = �log
( 1+z

2z
)
(ε) + 1�

5 Experiments

In this section, we conduct extensive experiments on real-world
datasets to show the effectiveness of the proposed AdaptFD. In par-
ticular, we aim to answer the following research questions:

• RQ1. Does AdaptFD effectively identify frauds across different
rating networks compared with the state-of-the-art baselines?

• RQ2. How do different designed components of AdaptFD con-
tribute to the overall performance?

• RQ3. How does the performance of AdaptFD change under dif-
ferent parameter settings?

• RQ4. Is AdaptFD scalable to large datasets in real world?

5.1 Experiment Setup

5.1.1 Datasets

To validate the effectiveness of AdaptFD, we conduct experiments on
four real-world datasets [8, 19] FineFoods, Instruments, Electron-

ics and Beauty, collected from Amazon from different categories
with different properties in terms of size, extent of sparsity and class
imbalance. The detailed information of datasets is shown in Table 1,
where the column "Density" indicates the average number of ratings
given by users. As we can observe from the statistics, class imbalance
is prevalent in all datasets. Besides, we include both sparse and dense
datasets to examine the adaptability of AdaptFD and other baselines.
These original datasets do not provide ground truth for fraud detec-
tion. Hence following by [14], we use helpfulness votes to generate
labels for test.

5.1.2 Baselines

We compare AdaptFD with five state-of-the-art baselines to show
the effectiveness of the proposed algorithm for fraud detection on e-
commerce platforms. For fair comparison, we convert all baselines
to calculate the probability of each user being fraudulent. Birdnest

[9] only considers distributions and timestamps of ratings, utilizing
Bayesian inference to examine the deviation between the estimated
distribution and posterior distribution. BAP [20] measures the bias
of users and the prestige of items, based on the idea that ratings even
from biased users should be weighed significantly if the ratings show
unusual pattern. Eagle [1] regards fraud detection as a a node clas-
sification problem in signed graphs with prior knowledge, and uses

loopy belief propagation to update the entire graph iteratively. Be-

havior [16] extracts multiple features relevant to rating behaviors
and combine them together to calculate the anomaly scores for users.
Rev2 [14] is based on HITS [13] algorithm and iteratively computes
three intrinsic metrics in the bipartite rating graph until convergence.

5.1.3 Evaluation Metrics

As shown in Table 1, all datasets are extremely imbalanced in terms
of the ratio of fraudulent users to normal users. Thus, we select
Area Under the ROC Curve (AUC) as one of evaluation metrics,
which is widely used in imbalanced data classification problems. We
also choose three widely-used evaluation metrics in ranking systems
Average Precision (AP), Normalized Discounted Cumulative Gain
(NDCG) and Precision@K to evaluate the capabilities of different
models on separating malicious users from massive normal users.

5.1.4 Implementation Details

For BAP and Rev2, we follow the instructions from their original pa-
pers to implement algorithms with reported parameters if available.
For Birdnest, we use the source codes provided by authors to run
experiments. For Eagle and Behavior, we carry out available open-
source implementations online. As for the proposed AdaptFD, pa-
rameters are selected and tuned on validation set, as σ is chosen from
{ 5, 8, 11, 14, 17 } and λ is chosen from { 0.1, 0.3, 0.5, 0.7, 0.9 }. We
set training epochs as 100 and the raining error threshold ε = 10−4

as many other works did. All models are running on Python3.9.16,
16GB RAM, 12th Gen Intel Core i7-12700 CPU.

5.2 Performance Comparison (RQ1)

5.2.1 Overall Evaluation

To answer the RQ1, we evaluate the performance of the proposed
AdaptFD and all the compared methods on identifying frauds on
across four real-world datasets as shown in Table 2. We can obtain
the following observations from the experiment results.

Firstly, AdaptFD outperforms all baselines in terms of all eval-
uation metrics on four datasets. Even though class imbalance and
sparsity issues exist in all datasets to different extents, AdaptFD still
boosts performance significantly, especially in AP value by 4.80%,
2.99%, 4.76% and 10.14% respectively. This implies that AdaptFD
is not only capable of effectively identifying fraudsters in one specific
graph, but also adaptive to different scenarios with only topological
structure provided.

Secondly, Birdnest has poor results in all metrics across all
datasets, mainly because it only focuses on rating patterns of users
and ignore interactions between users and items. Although Behav-
ior achieves promising results by relying on behavior- and text-
based features extraction and analysis, AdaptFD still shows better
performance, especially on dense datasets Electronics and Beauty,
by 2.71% and 4.09% in AUC value, respectively. The experi-
ment results validate the superiority of analyzing structural informa-
tion for fraud detection on rating networks, especially when inter-
connections in the graph are relatively dense.

Thirdly, graph-based fraud detectors, like BAP, Eagle and Rev2,
also attempt to exploit transmitted information upon interactions as
what AdaptFD does. However, BAP and Eagle fail to deal with graph
sparsity problem, which leads to worse performance than Rev2 and
AdaptFD, especially across sparse datasets. The reason of Eagle
achieving higher AUC values than other baselines on dense graph
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Table 2. Overall performance comparison of the proposed AdaptFD with five state-of-the-art baselines on four real-world datasets. The best of each
evaluation metric is highlighted in bold. The second best result of each metric is underlined.

Dataset FineFoods Instruments Electronics Beauty

Metric AP AUC NDCG AP AUC NDCG AP AUC NDCG AP AUC NDCG

Birdnest 0.1158 0.5568 0.6479 0.1098 0.5253 0.6134 0.0684 0.4806 0.6287 0.0497 0.4526 0.5336
BAP 0.4309 0.8348 0.8290 0.6399 0.8846 0.9251 0.2971 0.7144 0.8171 0.2105 0.6484 0.7344
Eagle 0.3828 0.8275 0.8345 0.4865 0.8986 0.8639 0.2772 0.8246 0.7926 0.2185 0.7582 0.7216

Behavior 0.4466 0.8566 0.8452 0.6621 0.9139 0.9327 0.3568 0.8033 0.8433 0.2565 0.7462 0.7617
Rev2 0.4623 0.8478 0.8558 0.6584 0.9060 0.9311 0.3456 0.7985 0.8393 0.2406 0.7067 0.7525

AdaptFD\S 0.4407 0.8452 0.8405 0.6528 0.9023 0.9294 0.3601 0.8042 0.8445 0.2544 0.7101 0.7589
AdaptFD\I 0.4833 0.8683 0.8558 0.6789 0.9257 0.9371 0.3715 0.8126 0.8487 0.2743 0.7672 0.7703
AdaptFD\C 0.4830 0.8704 0.8547 0.6824 0.9286 0.9383 0.3588 0.8183 0.8447 0.2781 0.7768 0.7763

AdaptFD 0.4845 0.8704 0.8560 0.6819 0.9288 0.9381 0.3738 0.8251 0.8502 0.2825 0.7767 0.7762

Electronics and Beauty is that it sacrifices true positive rate in ex-
change of low false positive rate, which is not preferred in practice.
Although Rev2 tries to alleviate impacts of sparsity issue on graph
level by running different parameter combinations on the same rating
network, it actually becomes very computationally expensive to train
many similar independent models. This leads to the lack of scala-
bility compared with the proposed AdaptFD, which addresses graph
sparsity on entity level. As a result, AdaptFD achieves remarkable
improvements even on sparse datasets FineFoods and Instruments,
by 4.80% and 3.57% in AP value, respectively.

5.2.2 Ranking Evaluation

In practice, effective fraud detection systems are supposed to sepa-
rate fraudsters from massive normal users. The motivation is to re-
strict suspicious activities from potential fraudsters in time and re-
duce the chance to bother normal users for identification verification
[15]. Therefore, we further evaluate the AdaptFD against all base-
lines in terms of capability of distinguishing fraudulent and normal
users on two representative datasets, as shown in Table 3.

As we can observe from the experiment results, AdaptFD identi-
fies 64 and 65 real fraudsters among predicted top 100 suspicious
users on two datasets respectively, which both are the best com-
pared with all baselines. By addressing graph sparsity issue on entity
level, AdaptFD improves the performance under both 20% and 80%
recalls. Notably, AdaptFD outperforms the second best model in
AP@20%Recall by 6.94% on FineFoods, indicating the better ability
to filter out obvious fraudsters. Likewise, AdaptFD has the best Pre-
cision@80%Recall result led by 10.80% on FineFoods, which shows
the effectiveness of the proposed algorithm on separating fraudu-
lent users from massive normal users. Although the graph sparsity
issue is not prevalent in dense rating networks, AdaptFD still out-
performs other baselines due to the inconsistency-tolerance and anti-
camouflage modules, which help to improve ranking performance by
2.77% and 4.18% on Electronics in AP value at 20% and 80% re-
calls, respectively.

In summary, by analyzing the experiment results, AdaptFD outper-
forms the state-of-the-art baselines with respect to all our evaluations
on different real-world datasets, which validates the effectiveness and
adaptability of AdaptFD.

5.3 Ablation Study (RQ2)

To answer the RQ2, we identify three key components of AdaptFD
for addressing graph sparsity (S), tolerating inconsistency (I) and al-
leviating camouflage (C). Then, we construct three ablation models
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Figure 3. Sensitivity analysis on parameter λ (FineFoods & Electronics).
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Figure 4. Sensitivity analysis on parameter σ (FineFoods & Electronics).

by removing each of component respectively to validate each of their
contributions to the overall performance of AdaptFD. The experi-
ment results are shown in Table 2.

As we can see from the results, by removing the module for ad-
dressing graph sparsity (AdaptFD\S), the performance decreases on
all datasets (more obviously in AP). This result suggests that the
sparsity issue exists in all rating networks. In particular, AdaptFD\S
is consistently outperformed by other two ablation models on all
datasets, demonstrating the importance and necessary of component
(S) in AdaptFD to tackle sparsity issue.

By removing the inconsistency-tolerance module (AdaptFD\I ),
the performance of AdaptFD drops marginally on sparse datasets
than dense datasets. This is because inactive nodes cannot provide
sufficient interactions to reflect their behavior patterns with AdaptFD
for avoiding overfitting. On the contrast, the performance drops
more on dense datasets by removing the anti-camouflage component
(AdaptFD\C ) than on sparse datasets.

In summary, experiment results show the module (S) is critical to
AdaptFD’s performance, since the sparsity issue is prevalent in all
rating networks. The (I) and (C) modules still occasionally improve
the overall performance.
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Table 3. Ranking performance evaluation (%) with baselines on two representative real-world datasets FineFoods (sparse) and Electronics(dense), where
each model ranks users based on computed probabilities of being fraudsters. The best of each metric is in bold.

Dataset Metric Baselines Ours

Birdnest BAP Eagle Behavior Rev2 AdaptFD

FineFoods

Precision@100 12 63 46 62 62 64

Precision@20%Recall 13.37 64.00 46.15 64.86 68.57 70.59

AP@20%Recall 14.70 62.45 54.48 63.49 66.82 71.46

Precision@80%Recall 9.65 26.30 29.27 27.83 27.23 32.43

AP@80%Recall 12.11 50.17 44.39 51.57 53.78 55.88

Electronics

Precision@100 1 64 44 62 61 65

Precision@20%Recall 5.70 51.98 37.63 50.48 48.39 52.50

AP@20%Recall 5.06 67.79 41.71 67.50 66.14 69.67

Precision@80%Recall 7.80 10.04 17.31 15.32 14.95 17.40

AP@80%Recall 6.54 35.01 31.21 41.86 40.47 43.61

5.4 Parameter Sensitivity (RQ3)

To answer the RQ3, we explore the sensitivity of AdaptFD with re-
spect to the parameters λ and σ, which control the regularization in-
tensity and the threshold for intensive interactions. When varying the
value of each parameter, we keep another constant, then record the
variations of performance on two representative datasets as shown in
Fig. 3 and Fig. 4. We have several observations from the results.

Firstly, from Fig. 3, as the parameter λ increases from 0.1 to 0.9
with step size 0.2, the performance of AdaptFD on sparse dataset
FineFoods remains stable. This suggests that AdaptFD is insensitive
to parameter λ on sparse rating networks due to the marginal effects
of inconsistency-tolerance module when the entities are inactive.
While on dense dataset Electronics, the performance of AdaptFD
reaches its best when λ = 0.1 and starts to decline as λ increases.

Likewise from Fig. 4, as the value of parameter σ grows, AdaptFD
is actually more sensitive to the interaction intensity. As a result, the
performance on both datasets tend to have stable gains as we grad-
ually increase σ until reaching the peak. This is more obvious on
sparse dataset FineFoods, where the AP@20%Recall value is im-
proved by around 3.08% when σ = 14 compared with σ = 5.

In summary, the performance of AdaptFD is generally stable when
changing parameters λ and σ. We also observe that AdaptFD is more
sensitive to parameter λ on dense graphs and to parameter σ on
sparse graphs.

5.5 Scalability (RQ4)

To answer the RQ4, we generate training samples in different mag-
nitudes of amount from 103 to 107 each time, then we record the
training time of AdaptFD with generated samples, shown as blue
points in Fig. 5. As we see from the figure, the time cost is increasing
linearly with respect to the growing number of samples. Addition-
ally, we record the training time cost of AdaptFD on the real-world
datasets, marked as red circles in Fig. 5. The results basically comply
with our analysis about linear scalability, despite of some fluctuations
due to different extents of graph sparsity.

Moreover, we compare the training time cost of AdaptFD on
dataset FineFoods with other baselines as shown in Fig. 5. From the
result, we can see AdaptFD is slightly slower than Birdnest, BAP
and Behavior when handling with real-world dataset. However, the
time cost of AdaptFD is still on the same order of magnitude with
the fastest method, even though AdaptFD incorporates more func-
tional modules to achieve better predictions. Rev2 is the only one
in baselines that considers graph sparsity problem and tries to alle-
viate it on graph level by exhausting different parameter combina-
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Figure 5. (Left) The training time cost of AdaptFD under different number
of samples. (Right) The training time of all methods on the same dataset
FineFoods. Blue bars represent models ignoring the sparsity issue, while

brown bars take that into consideration.

tions to obtain better adaptability. Nevertheless, Rev2 become more
computationally expensive and less scalable. Compare with Rev2,
AdaptFD achieves a 560x acceleration by adapting variable coeffi-
cients for each node and edge during the runtime.

In summary, experiment results show AdaptFD achieves linear
scalability and is able to cope with different rating networks well.

6 Conclusion

We have proposed AdaptFD for detecting frauds on e-commerce
platforms, which focuses on tackling three existing challenges in real
world; i.e., graph sparsity, behavior inconsistency and fraud camou-
flage. Extensive experiments on four public real-world datasets have
shown that AdaptFD consistently outperforms other state-of-the-art
baselines in multiple evaluations. In particular, by considering spar-
sity issue on entity level, AdaptFD is more effective and adaptive
when handling different graphs. Additionally, AdaptFD achieves two
degrees of magnitude faster (up to 560x) on real-world datasets com-
pared with the baseline that uses ensemble strategy, indicating the
better scalability of AdaptFD on large-scale data in practice.

The proposed AdaptFD doesn’t include all important elements of
interactions on e-commerce platforms such as textual and temporal
information, which might limit the performance of AdaptFD in real-
world scenarios. Specifically, many irrelevant advertisement-type in-
teractions could be detected by analyzing special characters or key-
words. Besides, planned spams are usually bursty and time-related,
which can be identified by temporal pattern analysis. However, it re-
mains challenging to maintain the tradeoff between effectiveness and
efficiency of fraud detectors when considering more elements. Our
future work is to include other elements such as textual content (e.g.,
user reviews) in AdaptFD.
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