
Parameter Estimation of Long Memory
Stochastic Processes with Deep Neural Networks

Bálint Csanádya,*, Lóránt Nagya,b, Dániel Borosa, Iván Ivkovica,b, Dávid Kovácsa, Dalma Tóth-Lakitsa,
László Márkusa,c and András Lukácsa,*

aInstitute of Mathematics, ELTE Eötvös Loránd University, Budapest, Hungary
bAlfréd Rényi Institute of Mathematics, Budapest, Hungary

cDepartment of Statistics, University of Connecticut, Connecticut, USA

Abstract. We present a purely deep neural network-based approach
for estimating long memory parameters of time series models that
incorporate the phenomenon of long-range dependence. Parameters,
such as the Hurst exponent, are critical in characterizing the long-
range dependence, roughness, and self-similarity of stochastic pro-
cesses. The accurate and fast estimation of these parameters holds
significant importance across various scientific disciplines, includ-
ing finance, physics, and engineering. We harnessed efficient process
generators to provide high-quality synthetic training data, enabling
the training of scale-invariant 1D Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) models. Our neural
models outperform conventional statistical methods, even those aug-
mented with neural network extensions. The precision, speed, consis-
tency, and robustness of our estimators are demonstrated through ex-
periments involving fractional Brownian motion (fBm), the Autore-
gressive Fractionally Integrated Moving Average (ARFIMA) pro-
cess, and the fractional Ornstein-Uhlenbeck process (fOU). We be-
lieve that our work will inspire further research in the field of stochas-
tic process modeling and parameter estimation using deep learning
techniques.

1 Introduction

Long-range dependence, or long memory, plays a critical role in the
scientific modeling of natural and industrial phenomena. On the one
hand, in the field of natural sciences, long memory finds application
in diverse areas such as climate change [44, 9], hydrology [20], de-
tection of epilepsy [1], DNA sequencing [36], data networks [43],
and in cybersecurity through anomaly detection [27]. On the other
hand, research on long memory implies achievements in financial
mathematics, see for example [35, 7] and [2] for the application of
long memory in volatility modeling. The ubiquity of long memory
across time series data has drawn considerable attention to models
capable of capturing this phenomenon. In most stochastic models,
the impact of past events on future events decays rapidly, making
the effect of observations from the distant past negligible in terms of
forecasting ability. If long-range dependence is present in a system,
predictions concerning the future require information from the com-
plete history of the process, in contrast to Markovian environments,
where the most recent events already contain all the necessary in-
formation for an optimal forecast. Modern literature associates long-

∗ Corresponding authors: csbalint@protonmail.ch, andras.lukacs@ttk.elte.hu

range dependence with a slow hyperbolic decay, namely when auto-
correlations ρt vanish with a rate that is comparable to t−α for some
α ∈ (0, 1) [12]. The range α ∈ (1, 2) is often referred to as anti-
persistence. In broader terms, “long memory” can be used to mean
that autocorrelations have a longer decay than exponential.

When one models data with long memory, it is a crucial task to
estimate model parameters, and classical inference methods are of-
ten not applicable in the case of long memory processes. We focus
our attention on three stochastic processes that are frequently uti-
lized in modern applied mathematics: the fractional Brownian mo-
tion (fBm), the Autoregressive Fractionally Integrated Moving Av-
erage (ARFIMA), and the fractional Ornstein-Uhlenbeck (fOU) pro-
cess. In the case of fBm and fOU, we concentrate on estimating the
Hurst parameter. The Hurst exponent controls the roughness, self-
similarity, and long-range dependence of fractional Brownian motion
paths, and this way also influences the characteristics of derivative
processes such as the fractional Ornstein-Uhlenbeck process. Re-
garding ARFIMA models, our target is the differencing parameter
d, governing the decay of autocovariances, and thus, the decay of
memory in the system.

1.1 Main results

We propose the adoption of well-known neural network architectures
as versatile tools for estimating the parameters that characterize long
memory. A key aspect of our approach is that efficient process gen-
erators provide the opportunity to train the models on large amounts
of data. This facilitates better performance compared to traditional
statistical estimation methods, even those supplemented with neural
networks. Inference is efficient in terms of speed, even for samples
of long sequences, making our approach valuable for practical ap-
plications. We can also guarantee various invariances such as shift,
drift, and scale-invariance. A further advantage of our method is that
it performs consistently across the entire [0, 1] range of the Hurst
parameter. We found that the proposed neural network estimator im-
proves in accuracy when trained on longer sequences, a consistency
that persists even during inference on sequences of lengths different
from those used in training. The above virtues are supported by the
measurements presented in the paper. Our code is publicly available
on GitHub.1

1 https://github.com/aielte-research/LMSParEst

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240784

2548

https://github.com/aielte-research/LMSParEst


1.2 Related work

In recent years, a number of studies have emerged that utilize neu-
ral networks to estimate the Hurst parameter of fBM. Some of these
works apply MLPs which, due to their fixed-size input requirement,
present one of the following alternatives: inference can either be per-
formed only on a fixed-length series [26, 15], or on a set of process
specific statistical measures enabling the fixed-size input to the neu-
ral networks [23, 30]. Amore general approach is the signature-based
method described in [21], which can also be used to estimate fBM
Hurst, where the extracted statistical descriptors are processed by an
LSTM. In the case of these methods, the hybrid application of statis-
tical descriptors and neural networks brings less improvement com-
pared to our purely neural network solutions. This is reflected in the
comparison to several classical estimation methods. Another short-
coming in recently published methods is that they do not address the
possible limitations caused by scaled inputs. Regarding the ARFIMA
and fOU processes, so far, we could not find neural network based
parameter estimators in the literature. We note that our estimator’s
architecture is close to the work by Wang et al. [41] which was used
for the non-fractional Ornstein-Uhlenbeck process. A more complex
architecture in subsequent work by Feng et al. [8] estimates the Hurst
parameter in fBm. In the case of the fOU process, we compared the
neural network-based Hurst estimates with a quadratic variation es-
timator [4], and our method presented much higher accuracy. For the
ARFIMA process Whitte’s method [42] yielded comparable perfor-
mance to our approach.

The success of the utilized networks (Section 4.3) mostly stems
from a large volume of high-quality training data, manifested with
the software that was built around the framework of the so-called
isonormal processes (see [33] for the mathematical background, and
Section 4.2 on the implementation). The underlying path-generating
methodology includes the circulant embedding of covariance matri-
ces and the utilization of fast Fourier transform.

2 Processes

In this section the most important properties of the stochastic pro-
cesses involved in this paper are summarized.

2.1 Fractional Brownian motion

The fractional Brownian motion fBm(H) :=
(
BH

t

)
t≥0

,H ∈ (0, 1)
is a continuous centered Gaussian process with covariance function

Cov
(
BH

t , BH
s

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

Here, H is called the Hurst exponent of the process. Let
FBM(H,n, S, T ) : S < T denote the distribution of the (T−S)/n-
equidistant realizations of fBm(H) on the time interval [S, T ]. If
ΔFBM(H,n, S, T ) denotes the sequence of increments, it can be
shown thatΔFBM(H,n, S, T ) ∼ λ(H,T−S)ΔFBM(H,n, 0, 1)
where λ(H,T − S) is a scalar. If we want to estimate H from
FBM(H,n, S, T ) we might want to consider a shift invariant neu-
ral network on the increments, since then it will be sufficient to
train it only on FBM(H,n, 0, 1). We might also consider the scaled
and drifted fBm process fBm(H,σ, μ) :=

(
σBH

t + μt
)
t≥0

, with
H ∈ (0, 1), σ > 0, μ ∈ R, which is the fractional counterpart
of the so called Bachelier model [31]. When the network is also
drift invariant, it is still sufficient to train the network on realiza-
tions of FBM(H,n, 0, 1) to yield an estimator for the parameter H
of fBm(H,σ, μ).

2.2 Autoregressive Fractionally Integrated Moving
Average

A covariance stationary sequence of random variables ζj , j ∈ Z

is said to form white-noise if Eζ0 = 0, γ(0) = Eζ20 < ∞, and
γ(k) = 0 for all k ∈ Z, k �= 0. For d > −1 the fractional difference
operator is defined as

∇d =
∞∑

k=0

(
d

k

)
(−B)−k,

where B is the backward shift operator, that is BXj = Xj−1.We
define the ARFIMA(0, d, 0) process for d ∈ (−1/2, 1/2) as the
solution of the difference equation

∇dXj = ζj , (1)

where ζj , j ∈ Z is a white-noise sequence. It is known that when
ζj , j ∈ Z is ergodic (e.g. in the sense of Definition 2.8.4 in [11]),
and d �= 0, there exists a unique stationary solution to Equation (1) –
see Theorem 7.2.2 in [12].

2.3 The fractional Ornstein-Uhlenbeck process

Let H ∈ (0, 1), α, σ > 0, η, μ ∈ R. The fractional Ornstein-
Uhlenbeck process (Yt)t≥0 is the solution of the following stochastic
differential equation:

dYt = −α(Yt − μ) dt+ σ dBH
t

Y0 = η.

Let fOU(η,H, α, μ, σ) denote the distribution of this process on the
Borel σ-algebra of continuous functions. Note that μ and σ are scal-
ing and shifting parameters. If Y ∼ fOU

(
(η − μ)/σ,H, α, 0, 1),

then σY +μ ∼ fOU(η,H, α, μ, σ). This means that if we can guar-
antee the scale and shift invariance of the network, it will be suffi-
cient to train aH-estimator on realizations from fOU

(
η,H, α, 0, 1)

to cover the distribution on fOU(η,H, α, μ, σ).

3 Baseline estimators

To provide baseline comparisons to our neural network based results
we considered the following estimators.

3.1 Rescaled range analysis

The term and concept of rescaled range analysis stems from multiple
works of Harold E. Hurst - see e.g. [20], a study in hydrology, and
for a historical account on the methodology see [14]. The statistics
R/S, defined below, is the rescaled and mean adjusted range of the
progressive sum of a sequence of random variables, more precisely,
given Z1, Z2, ..., for a positive integer n consider the statistics

R/S(n) =

max
1≤k≤n

{
Xk − k

n
Xn

}− min
1≤k≤n

{
Xk − k

n
Xn

}
√

1
n

n∑
k=1

(
Zk − 1

n
Xn

)2 , (2)

whereXk =
∑k

i=1 Zi. The analysis is done via assuming an asymp-
totics for the statistics in Equation (2), namely we postulate that on
the long run, it holds that R/S(n) ≈ cnh, where c is an unknown
constant and h is the parameter we are looking for. Utilizing a one

B. Csanády et al. / Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks 2549



parameter log-log regression on the above formula, that is, using the
relation log(R/S(n)) = log(c) + h log(n), one can estimate h.

Turning to fractional Brownian motion, it is shown in [37], that
its increment process, fractional Gaussian noise has the property
R/S(n) ≈ c0n

H , where H is the Hurst parameter of the under-
lying fractional process, and c0 is some positive constant: yielding a
numerical method for the estimation ofH .

A known limitation of this methodology, when the underlying pro-
cess is a fractional Brownian motion, is that using the statistics in (2)
produces inferred values that are lower when the true value of H
is in the long memory range, and substantially higher values when
the time series shows heavy anti-persistence. A possible mitigation
of this is to introduce a correction that calibrates the method to fit
fractional Brownian motion data and use the corrected estimator as a
baseline.

3.2 Variation Estimators

For a stationary increment Gaussian process, consider the lag t sec-
ond order statistics defined by

γp(t) =
1

2
E|Xt −X0|p. (3)

This, when setting p = 2, is also called the variogram of order 2.
Assume that the behavior of γ2(t) at the coordinate origin (that is the
asymptotics when t → 0) is like that of |t|α, for some fractal index
α ∈ (0, 2]. Then, the relationship between the Hausdorff dimension
and the fractal index,

D = 2− α

2

holds – assuming a topological dimension of 1 – and performing a
log-log regression yields an estimate for D.

However, the relationship between the Hausdorff dimension and
the fractal index appears to be more robust and inclusive when we
choose p = 1. In this case, when similar asymptotics holds for γ1(t),
estimators presented e.g. in [13] give statistically efficient procedures
to determine the Hausdorff dimension of Gaussian processes. In our
work, the Hurst parameter of fractional processes is then estimated
using the relationship D = 2 − H . For detailed notes on how γ is
approximated and the optimality of the choice p = 1we refer to [13].

3.3 Higuchi’s method

Higuchi’s method [18] relies on the computation of the fractal di-
mension by a one dimensional box counting. For a sliding box size
b ∈ N and a starting point i ∈ N, i ≤ b, consider

Lb(i) =
1[

n−i
b

] [
n−i
b ]∑

k=1

∣∣Xi+kb −Xi+(k−1)b

∣∣ .
Then let Lb := 1

b

∑b
i=1 Lb(i). If X ∼ fBm(H, 0, σ) then

E(Lb) = cbH holds. Thus, the slope coefficient of the linear re-
gression log(Lb) ∼ log(b) yields an estimate forH .

3.4 Whittle’s method

The likelihood procedure dubbed as Whittle’s method, see e.g. [42],
is based on approximating the Gaussian log-likelihood of a sample of
random variables X = (X1, ..., Xn), where the underlying process
is stationary and Gaussian. We give the details in the case when we
wish to estimate the Hurst parameter of fractional Brownian motion

with Hurst parameterH ∈ (0, 1), and we apply Whittle’s method on
its increments. Denoting with ΓH the covariance matrix correspond-
ing to the vector X , the likelihood of the sample with respect to H

can be written as L(X) = (2π)−n/2 |ΓH |−1/2 e−
1
2
XT Γ−1

H
X , where

|ΓH | and Γ−1
H denotes the determinant and the inverse of the matrix

ΓH respectively, and XT denotes the transpose of the vector X . To
speed up the procedure, instead of numerical computations, an ap-
proximation can be introduced, see e.g. [3], and the Hurst parameter
H can be approximated by minimizing the quantity

Q(H) =

π∫
−π

I(λ)

fH(λ)
dλ, (4)

where I(λ) is the periodogram, an unbiased estimator of the spec-
tral density fH , defined as I(λ) =

∑n−1
j=−(n−1) γ̂(j)e

ijλ, with
the complex imaginary unit i, and where the sample autocovari-
ance γ̂(j), using the sample average X̄ = 1

n

∑n
k=1 Xk, is γ̂(j) =∑n−|j|−1

k=0

(
Xk − X̄

) (
Xk+|j| − X̄

)
. The quantity in Equation (4)

is usually approximated with the sum Q̃(H) =
∑�n/2�

k=1
I(λk)

fH (λk)
,

with λk = 2πk
n

, to obtain an asymptotically correct estimate Ĥ of
the Hurst parameterH .

3.5 The case of ARFIMA and fOU

According to Theorem 7.2.1 in [12], for the autocovariance of an
ARFIMA process, we have γ(k) ≈ cdk

2d−1. Thus, in terms of the
decay of autocovariance and memory properties (see Definition 3.1.2
in [12]), the ARFIMA(0, d, 0) process corresponds to a fractional
noise with Hurst parameter H = d + 1/2. Also, an ARFIMA pro-
cess, in an asymptotic sense, has similar spectral properties to that
of fractional Brownian motion incremets. On one hand this means,
that an ARFIMA process offers a potential way to test estimators
calibrated to fractional Brownian motion. On the other hand, it is
reasonable to apply the above baseline Hurst parameter estimators
for estimating the parameter d of ARFIMA(0, d, 0).

To estimate the Hurst parameter of a fractional Ornstein-Uhlebeck
process, Brouste and Iacus [4] provide a statistical method (QGV)
that is based on building an estimator that compares generalized
quadratic variations corresponding to certain filtered versions of the
input samples. The method presents consistent and asymptotically
Gaussian estimators, and can be considered a state of the art analyti-
cal tool regarding Hurst parameter inference on fOU processes.

4 Methods

4.1 Training paradigm

In contrast to a situation characterized by a limited amount of data,
we can leverage synthetic data generators to train our neural network
models on a virtually infinite dataset. The loss computed on the most
recent training batches simultaneously serves as a validation loss, as
each batch comprises entirely new synthetic data. This setup prevents
overfitting in the traditional sense. The only potential issue associ-
ated with this training paradigm is the quality of the process genera-
tor itself. If the generator fails to approximate the target distribution
effectively, there is a potential risk of “overfitting” on generated dis-
tribution and not generalizing. Thus, high-quality process generators
are essential.

Our setup to obtain parameter estimators by utilizing generators
for given families of stochastic processes is as follows: Let Θ be the

B. Csanády et al. / Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks2550



set of the possible parameters and P be the prior distribution on Θ.
For a fixed a ∈ Θ, the generatorGa denotes an algorithm that gener-
ates sample paths of a stochastic process, where the sample paths are
distributed according to the process distribution Qa. This is deter-
ministic in the sense that every iteration, returns a sample path. The
generated sample path however can be treated as a random object,
by introducing randomness into the parameter a by setting a = ϑ,
where ϑ is a random variable distributed according to some law P .
Denote the compound generator by G(ϑ). Now, suppose we have
G(ϑ) as input and we would like to estimate ϑ. Formally, an opti-
mal M estimator would minimize the MSE E[M(G(ϑ)) − ϑ]2. By
having independent realizations of series from G(ϑ), we can con-
sider the training set T . Training a proper neural network M on T
with the squared loss function would be a heuristic attempt to obtain
the aboveM estimator. We may assume thatQ is only parameterized
by the target a without loss of generality. If Q is parameterized by
other parameters besides a, then these can be randomized obtaining
a redefined Qa mixed distribution.

4.2 Generating fractional processes

To generate the fractional processes fBM and fOU, we employed
the circular matrix embedding method belonging to the Davies-
Harte procedure family [6]. In the available Python packages [5],
the original Davies-Harte method for generation is accessible. How-
ever, the generation procedure we use is based on Kroese’s method
[25], which we have re-implemented specifically for generating se-
quences using the most efficient tools within the Python framework.
In our implementation, for multiple sequences, we store the covari-
ance structure so that it does not need to be recomputed each time
it is needed. Additionally, the modified version of the traditional
Cholesky method is available in the implemented package, which
yields a similar level of acceleration for generating large quantities
of data, comparable to the currently available solutions.

4.3 Neural network architecture

The neural network architecture M is designed for regression on a
sequential input, and consists of three main components: an optional
standardizing layer to ensure invariances, a sequence transformation,
and a regression head. There are three kinds of invariances that we
might require from M: shift, scale, and drift invariance. In order
to make an fBm Hurst-estimator which works well in practice, we
want to rely on all three of the above invariances. Shift invariance
can be obtained by transforming the input sequence to the sequence
of its increments. Differentiating the input this way also turns drift in-
variance to shift invariance. By performing a standardization on the
sequence of increments we can ensure all three invariances. Such a
standardizing step can also be considered as a preprocessing layer to
the network, applying the transformation x 
→ (x−x)/σ̂(x) to each
sequence x in the input batch separately, where σ̂(x) is the empirical
standard deviation over the sequence x, and x is the arithmetic mean
over x. Given the ergodicity properties of the underlying processes,
the term “standardizing” remains adequate even with co-dependent
data points as inputs. We considered two alternatives for sequence
transformation. InMconv the transformation is realized by a 1D CNN
[22], and inMLSTM, it is achieved by an LSTM [19]. The regression
head first takes the transformed sequence and applies global aver-
age pooling resulting in an average feature vector which has a fixed
dimension (the same as the output feature size in the sequence trans-

formation). The head then obtains the final scalar output from the
average feature vector using an MLP [17].

We found that unless it is severely underparameterized, the spe-
cific hyperparameter configuration does not have a significant ef-
fect the performance of M. Generally MLSTM achieves a somewhat
smaller loss than Mconv, while Mconv is computationally faster than
MLSTM. Slight differences can arise in the speed of convergence, but
these are not relevant due to the unlimited data and fast generators.
The following are the hyperparameters that we used in the experi-
ments below.

We implement Mconv using a 1D convolutional network with 6
layers. The input has 1 channel, and the convolution layers have out-
put channels sizes of 64, 64, 128, 128, 128, and 128. Every layer
has stride 1, kernel size 4 and no padding. The activation function
is PReLU after each layer. Our MLSTM consists of an unidirectional
LSTM with 2 layers, its input dimension is 1 and the dimension of
its inner representation is 128. In both models, the regression head
uses an MLP of 3 layers (output dimensions of 128, 64 and 1), with
PReLU activation function between the first two layers. Unless stated
otherwise the models also include a standardizing layer to ensure
shift and scale invariance, and when drift invariance necessary, the
model also contains a finite differentiation step. AdamW optimiza-
tion on the MSE loss function was used for training the models [28].
The learning rate was set to 10−4 and the train batch size to 32.

4.4 Technical details

The process generators were implemented in Python [39], using
NumPy [16] and SciPy [40]. We imported Higuchi’s method from
the package AntroPy [38]. The R/S method was imported from the
package hurst [29]. We generated the ARFIMA trajectories using the
arfima package [24]. The framework responsible for the training pro-
cess was implemented in PyTorch [34]. Every neural module we used
was readily available in Pytorch. We managed our experiments us-
ing the experiment tracker [32]. The neural models were trained on
Nvidia RTX 2080 Ti graphics cards. Training took approximately
one GPU hour to one GPU day per model, depending on the type of
process, the applied architecture, and on the length of sequences used
for training. A shorter training time can mostly be expected from the
acceleration (parallelization) of the sequence generation.

5 Experiments

5.1 Metrics

In addition to the standard MSE loss we use two metrics. For a H-
estimatorM , let bε(x) = mε(x)−x be the empirical bias function of
radius ε, wheremε(x) is the average of estimations the estimatorM
produces for the input sequences withH ∈ [x− ε, x+ ε]. Similarly,
let the function σε(x) be defined as the empirical standard deviation
of the estimations M produces for inputs inside the sliding window
of radius ε.

Let us denote the approximate absolute area under the Hurst–bias
curve by b̂ε := ε

∑[1/ε]
j=0 |bε(εj)|, and the approximate area under

the Hurst–σ curve by σ̂ε := ε
∑[1/ε]

j=0 σε(εj). We use these two met-
rics in addition to MSE, as they highlight different aspects of the
estimators performance.

5.2 Evaluating neural fBm Hurst estimators

Due to self-similarity properties of fractional Brownian motion,
and the stationarity of increments, a standardizing layer in the

B. Csanády et al. / Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks 2551



(a) Comparison of baseline estimators and neural models. (b) Empirical consistency of different LSTM models.
Figure 1: MSE losses of different fBm Hurst-estimators by sequence length on a log-log scale.

(a) Empirical bias b0.025. (b) Standard deviation σ0.025.
Figure 2: Empirical bias and deviation of the different fBm estimators by Hurst value, measured on sequences of length 12800. The neural
models were fine tuned until n = 12800. The bias of the R/S estimator ranges from 0.125 to -0.075, and was truncated on the plot.

(a) Empirical bias b0.025. (b) Standard deviation σ0.025.
Figure 3: Empirical bias and deviation of the ARFIMA(0, d, 0) estimators by d. Measured on sequences of length 12800.

(a) Trained on fBm, inferring on ARFIMA sequences. (b) Trained on ARFIMA, inferring on fBm sequences.
Figure 4: Scatterplots of MLSTM model inferences on cross-processes of length 12800. The fBm model was fine-tuned on sequences up to
length 12800, and the ARFIMA(0, d, 0) model was trained on sequences of length 12800.

B. Csanády et al. / Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks2552



network architecture enables us to train only on realizations
ΔFBM(H,n, 0, n). This simplified procedure yields an estima-
tor that, in case of inference, is universally efficient regardless of
the equidistant time-scale we choose, and regardless of the termi-
nal time of the targeted process. Consequently, we generated se-
quences for training and evaluation fromΔFBM(H,n, 0, n), where
H ∼ U(0, 1) is random, and included the standardization layer in
our models.

In the first experiment we fine-tuned the neural models Mconv and
MLSTM up to n = 12800. An initial training phase on trajectories of
length n = 100 was performed on 200 and 100 virtual epochs each
containing 100000 sequences forMconv andMLSTM respectively. The
models were fine tuned on n = 200, 400, 800, 1600, 3200, 6400
and 12800 for an additional 20 and 10 virtual epochs for Mconv and
MLSTM respectively. At the end we got a model which was trained on
all of the sequence lengths in the list, albeit not all at the same time.
The results can be found in Table 1 and Figure 1a, where the loss for
sequence length of n was measured after fine tuning on trajectories
of length n. The neural models outperform all baseline estimators
especially as the sequence length increases. It is of note that while
MLSTM achieved slightly smaller loss than Mconv, MLSTM requires a
bit more computational resources. Figure 2 compares the empirical
bias and standard deviation of the final fine-tuned neural models and
the baseline estimators as a function on the Hurst parameter.

Table 1: MSE losses of different fBm Hurst-estimators by se-
quence length. To enable direct comparisons with other solutions in
the literature, we also included the performance of MLSTM where
only shift invariance is ensured by turning off the standardizing
layer (M∗

LSTM), here the training and evaluation was performed on
ΔFBM(H,n, 0, 1).

MSE loss (×10−3)
seq.
len. R/S variogram Higuchi Whittle Mconv MLSTM M∗

LSTM

100 27.6 9.30 10.6 4.33 4.27 4.07 0.214
200 18.9 5.05 4.21 2.00 1.99 1.91 0.0826
400 13.9 2.92 1.99 1.00 0.959 0.917 0.0366
800 10.8 1.75 1.05 0.540 0.476 0.453 0.0141
1600 8.62 1.09 0.593 0.324 0.240 0.224 0.0072
3200 6.74 0.724 0.360 0.225 0.122 0.114 0.0037
6400 5.57 0.502 0.229 0.179 0.063 0.058 0.0029
12800 4.70 0.365 0.155 0.157 0.033 0.030 0.0032

We evaluated the empirical consistency of MLSTM trained exclu-
sively on certain length sequences. We can see the results in Table
2, and Figure 1b. Trained on shorter sequences the performance of
MLSTM improved when tested on longer sequences, but not as fast as
MLSTM variants trained on longer sequences.MLSTM variants trained
on longer sequences still performed well on shorter sequences, but
not as well as dedicated variants.

Table 2: MSE losses of LSTM-based fBm Hurst-estimators trained
on different sequence lengths.

train
MSE loss by validation seq. len. (×10−3)

seq.
len. 100 200 400 800 1600 3200 6400

100 4.14 2.17 1.41 1.09 0.962 0.918 0.915
200 4.21 1.88 0.947 0.528 0.344 0.264 0.231
400 4.78 2.02 0.940 0.477 0.281 0.196 0.161
800 4.80 2.00 0.913 0.443 0.230 0.134 0.0888
1600 5.01 2.11 0.952 0.447 0.220 0.113 0.0617
3200 5.44 2.23 0.972 0.454 0.221 0.111 0.0608
6400 5.59 2.30 1.01 0.471 0.229 0.121 0.0692

5.2.1 Testing on real-world data

To evaluate the real-world performance of our neural fBm Hurst-
estimators, we analyzed historical data from the S&P 500 stock mar-
ket index. Volatility in financial markets can be modeled using fBm
with Hurst exponent H ≈ 0.1 [10]. Volatility is often calculated
with overlapping sliding windows, but this increases the correlation
between the neighboring values and skews the Hurst-estimates to be
around 0.5. To avoid this, we calculated the daily volatility from 15
minute log-returns, which enabled us to estimate the Hurst param-
eter in yearly windows, without overlaps in the volatility calcula-
tion. Figure 5 shows the results, indicating that MLSTM and Mconv

effectively capture the temporal dynamics of market volatility, cor-
relating well with traditional methods, most closely with Whittle’s
method, which was the best-performing classical method in the syn-
thetic measurements. The neural models yield Hurst-estimations in
the (0, 0.3) range, in the anti-persistent Hurst regime.

Figure 5: The figure shows Hurst-estimates for the daily S&P 500
log-volatility, calculated from 15-minute log-returns. Estimates use
252-day (one year) sliding windows with 189-day overlaps.

5.2.2 Inference times

In our experimental setup, the neural network estimators demon-
strated a favorable balance between accuracy and speed at inference.
The advantage was only partly due to GPU usage, as suggested by
the overall inference times shown in Table 3. The indicated inference
times depend on various factors, including the implementation and
available hardware resources; they reflect the specific setup used at
the time of writing.

Table 3: Overall running times for fBm Hurst-inference measured on
10000 sequences of length 3200.

CPU GPU

R/S variogram Higuchi Whittle Mconv MLSTM Mconv MLSTM

7s 38m 42s 8s 2h 54m 1m 32s 5m 43s 10s 9s

5.3 Evaluating neural ARFIMA parameter estimators

We trained MLSTM models for estimating the parameter d of the
ARFIMA(0, d, 0) process. These models contain no standardization,
and work with the input sequence, not the increments. The models
were trained on sequences of length 200, 400, 800, 1600, 3200, 6400
and 12800. Classical Hurst estimation techniques were evaluated for
the inference of d as described in Section 3.5. Whittle’s method was
calibrated specifically for the ARFIMA d-estimation. The results are
presented in Table 4 and Figure 3.

B. Csanády et al. / Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks 2553



Table 4: MSE losses of different ARFIMA(0, d, 0) d-estimators by
sequence length.

MSE loss (×10−3)

seq. len. R/S variogram Higuchi Whittle MLSTM

100 33.1 17.3 14.8 9.51 5.96

200 24.0 12.6 8.33 4.00 3.03

400 18.6 9.83 5.67 1.82 1.54

800 14.9 8.11 4.67 0.846 0.787

1600 12.6 7.70 4.24 0.401 0.390

3200 9.90 7.00 3.80 0.200 0.199

6400 8.64 6.95 3.80 0.0960 0.104
12800 7.51 6.94 3.75 0.0487 0.0552

5.3.1 Stress-testing with ARFIMA

We conducted cross-tests on MLSTM models, by training them on
ARFIMA and fBm trajectories, and then evaluating them against
the alternate process. The ARFIMA d-estimator was trained on n =
12800, and the fBmH-estimator was finetuned up to n = 12800. In
both cases the models were tested on sequences of length 12800. As
Figure 4 shows, the models perform remarkably, with minor asym-
metric bias with respect to the parameter range. This suggests that the
model either captures the decay rate of autocovariance of fractional
noise or some fractal property of sample paths.

5.4 Evaluating neural fOU parameter estimators

Estimating the parameters of the fractional Ornstein-Uhlenbeck pro-
cess is significantly more difficult. We evaluated MLSTM on the es-
timation of the Hurst parameter of fOU. Here MLSTM does not work
with the increments, but includes standardization to ensure scale and
shift invariance. As we stated in Section 2.3 these invariances enable
training on FOU(η,H, α, 0, 1) without the loss of generality. Addi-
tionally we evaluated the quadratic generalized variation (QGV) esti-
mator for the Hurst parameter, as described in [4]. We trainedMLSTM

on sequences of length 200, 400, 800, 1600, 3200 and 6400 with
the fine-tuning technique similar to the one in Section 5.2. We gener-
ated the sequences for training and evaluation of the Hurst estimators
from FOU(η,H, α, 0, 1), where H ∼ U(0, 1), α ∼ Exp(100) and
η ∼ N(0, 1) are random.

Table 5: Performance metrics of different fOU Hurst-estimators by
sequence length.

MSE loss (×10−3) b̂0.025 (×10−3) σ̂0.025 (×10−2)

seq. len. QGV MLSTM QGV MLSTM QGV MLSTM

100 41.0 3.38 106 9.26 9.86 5.53

200 34.2 1.74 97.1 4.84 8.07 4.00

400 29.4 0.919 86.4 2.59 6.92 2.92

800 25.0 0.494 76.2 1.52 5.88 2.15

1600 20.6 0.269 65.1 0.827 5.09 1.59

3200 16.3 0.149 53.8 0.575 4.37 1.18

6400 12.6 0.081 43.7 1.95 3.68 0.842

5.4.1 Stress-testing with OU

We stress-tested the MLSTM Hurst-estimators trained on fBm, fOU
and ARFIMA processes (in the case of ARFIMA, originally trained
for estimating d) on the standard Ornstein-Uhlenbeck process
FOU(0, 0.5, α, 0, 1); results are shown in Figure 6. The inferred
value at α = 0 is 0.5 as expected since the model receives an input
that it already encountered in the learning phase. As the parameter α

increases, all models return values tending towards zero. This could
suggest that larger α values have a similar effect to smaller Hurst
values, and sequences generated with a larger speed of mean rever-
sion resemble trajectories that have greater anti-persistence. More-
over when α > 0, the Ornstein-Uhlenbeck autocovariance shows
exponential decay, contrary to the power decay associated with the
data that the models were calibrated on. However, the fOU Hurst-
estimator does stay around 0.5 longer, corresponding to the α range
it encountered during training.

Figure 6: Scatterplot of Hurst estimations byMLSTM models finetuned
up to 12800 length sequences, inferring on Ornstein–Uhlenbeck pro-
cesses of length 12800.

6 Conclusion

In this work, we have demonstrated the effectiveness of sequence-
processing neural networks as powerful tools for estimating statisti-
cal parameters associated with long memory, such as the Hurst ex-
ponent. We have demonstrated the superior performance and consis-
tency of purely neural network-based models over several commonly
used statistical techniques in the context of fBm, fOU, and ARFIMA
processes. This suggests that complex statistical descriptors can be
effectively represented by relatively simple neural networks, a phe-
nomenon that deserves further investigation.

The compact size of the neural networks used in our study en-
ables fast inference, and the quality of the estimates they provide is
on par with, or superior to, the most precise yet resource-intensive
existing methods. A limitation of our arguments is the length of the
sequences used in the measurements, nevertheless, in practice, the se-
quence lengths dealt with are sufficient in the vast majority of cases.

We believe that the proposed parameter estimators of stochastic
processes, based on recurrent neural networks, with their usability
and flexibility, form a good basis for the estimation methods that can
be used for more intricate processes.

Acknowledgements

The research was supported by the Hungarian National Research,
Development and Innovation Office within the framework of the
Thematic Excellence Program 2021 – National Research Sub pro-
gramme: “Artificial intelligence, large networks, data security: math-
ematical foundation and applications” and the Artificial Intelligence
National Laboratory Program (MILAB), and the Hungarian National
Excellence Grant 2018-1.2.1-NKP-00008. We would also like to
thank GitHub and neptune.ai for providing us academic access.

B. Csanády et al. / Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks2554



References

[1] U. R. Acharya, S. V. Sree, P. C. A. Ang, R. Yanti, and J. S. Suri. Ap-
plication of non-linear and wavelet based features for the automated
identification of epileptic EEG signals. International journal of neural
systems, 22(02):1250002, 2012.

[2] R. T. Baillie. Long memory processes and fractional integration in
econometrics. Journal of Econometrics, 73(1):5–59, 1994.

[3] J. Beran. Statistics for Long-Memory Processes. Routledge, 11 2017.
ISBN 9780203738481. doi: 10.1201/9780203738481.

[4] A. Brouste and S. Iacus. Parameter estimation for the discretely ob-
served fractional Ornstein–Uhlenbeck process and the Yuima R pack-
age. Computational Statistics, 28(4):1529–1547, 2013.

[5] Christopher Flynn. fbm: Exact methods for simulating frac-
tional brownian motion and fractional gaussian noise in python.
https://github.com/crflynn/fbm, 2020.

[6] R. B. Davies and D. S. Harte. Tests for hurst effect. Biometrika, 74(1):
95–101, 1987.

[7] Z. Eisler and J. Kertesz. Size matters: some stylized facts of the stock
market revisited. The European Physical Journal B-Condensed Matter
and Complex Systems, 51:145–154, 2006.

[8] J. Feng, X. Wang, Q. Liu, Y. Li, and Y. Xu. Deep learning-based param-
eter estimation of stochastic differential equations driven by fractional
brownian motions with measurement noise. Communications in Non-
linear Science and Numerical Simulation, 127:107589, 2023.

[9] C. L. Franzke, S. M. Osprey, P. Davini, and N.W.Watkins. A dynamical
systems explanation of the hurst effect and atmospheric low-frequency
variability. Scientific reports, 5(1):1–6, 2015.

[10] J. Gatheral, T. Jaisson, and M. Rosenbaum. Volatility is rough. In
Commodities, pages 659–690. Chapman and Hall/CRC, 2022.

[11] I. I. Gikhman and A. V. Skorokhod. The theory of stochastic processes
I. Springer Science & Business Media, 2004.

[12] L. Giraitis, H. Koul, and D. Surgailis. Large Sample Inference For Long
Memory Processes, pages 33–54. World Scientific, 04 2012. ISBN 978-
1-84816-278-5. doi: 10.1142/p591.

[13] T. Gneiting, H. Ševčíková, and D. B. Percival. Estimators of fractal di-
mension: Assessing the roughness of time series and spatial data. Sta-
tistical Science, pages 247–277, 2012.

[14] T. Graves, R. Gramacy, N. Watkins, and C. Franzke. A brief history
of long memory: Hurst, mandelbrot and the road to arfima, 1951–1980.
Entropy, 19(9):437, 2017.

[15] D. Han, N. Korabel, R. Chen, M. Johnston, A. Gavrilova, V. J. Allan,
S. Fedotov, and T. A. Waigh. Deciphering anomalous heterogeneous
intracellular transport with neural networks. Elife, 9:e52224, 2020.

[16] C. R. Harris, K. J. Millman, S. J. van derWalt, et al. Array programming
with NumPy. Nature, 585(7825):357–362, Sept. 2020. doi: 10.1038/
s41586-020-2649-2.

[17] S. Haykin. Neural networks: A comprehensive foundation. Prentice
Hall PTR, 1994.

[18] T. Higuchi. Approach to an irregular time series on the basis of the
fractal theory. Physica D: Nonlinear Phenomena, 31(2):277–283, 1988.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[20] H. E. Hurst. The problem of long-term storage in reservoirs. Hydrolog-
ical Sciences Journal, 1(3):13–27, 1956.

[21] P. Kidger, P. Bonnier, I. Perez Arribas, C. Salvi, and T. Lyons. Deep sig-
nature transforms. Advances in Neural Information Processing Systems,
32, 2019.

[22] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.
Inman. 1D convolutional neural networks and applications: A survey.
Mechanical systems and signal processing, 151:107398, 2021.

[23] L. Kirichenko, K. Pavlenko, and D. Khatsko. Wavelet-based estimation
of hurst exponent using neural network. In 2022 IEEE 17th Interna-
tional Conference on Computer Sciences and Information Technologies
(CSIT), pages 40–43. IEEE, 2022.

[24] A. Kononovicius. arfima: Python implementation of arfima process with
an aim to simulate series. https://github.com/akononovicius/arfima,
2021.

[25] D. P. Kroese and Z. I. Botev. Spatial process simulation. In Stochastic
geometry, spatial statistics and random fields: Models and algorithms,
pages 369–404. Springer, 2014.

[26] S. Ledesma-Orozco, J. Ruiz-Pinales, G. García-Hernández, G. Cerda-
Villafaña, and D. Hernández-Fusilier. Hurst parameter estimation using
artificial neural networks. Journal of applied research and technology,
9(2):227–241, 2011.

[27] M. Li. Change trend of averaged hurst parameter of traffic under DDOS
flood attacks. Computers & security, 25(3):213–220, 2006.

[28] I. Loshchilov and F. Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

[29] D. Mottl. hurst: Hurst exponent evaluation and R/S-analysis in Python.
https://github.com/Mottl/hurst, 2019.

[30] S. Mukherjee, B. Sadhukhan, A. K. Das, and A. Chaudhuri. Hurst ex-
ponent estimation using neural network. International Journal of Com-
putational Science and Engineering, 26(2):157–170, 2023.

[31] M. Musiela and M. Rutkowski. Martingale methods in financial mod-
elling, volume 36. Springer Science & Business Media, 2006.

[32] neptune.ai. neptune.ai: experiment tracking and model registry, 2022.
URL https://neptune.ai.

[33] D. Nualart and E. Nualart. Introduction to Malliavin Calcu-
lus. Cambridge University Press, 1th edition, 2018. doi: 10.1017/
9781139856485.

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imper-
ative style, high-performance deep learning library. Advances in neural
information processing systems, 32, 2019.

[35] B. Qian and K. Rasheed. Hurst exponent and financial market pre-
dictability. In IASTED conference on Financial Engineering and Ap-
plications, pages 203–209. Proceedings of the IASTED International
Conference Cambridge, MA, 2004.

[36] M. N. R.C. Lopes. Long memory analysis in dna sequences. Physica
A, 361(2):569–588, 2006.

[37] M. S. Taqqu, V. Teverovsky, and W. Willinger. Estimators for long-
range dependence: an empirical study. Fractals, 3(04):785–798, 1995.

[38] R. Vallat. Antropy: entropy and complexity of (eeg) time-series in
python. https://github.com/raphaelvallat/antropy, 2022.

[39] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateS-
pace, Scotts Valley, CA, 2009. ISBN 1441412697.

[40] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al.
SciPy 1.0: fundamental algorithms for scientific computing in python.
Nature methods, 17(3):261–272, 2020.

[41] X. Wang, J. Feng, Q. Liu, Y. Li, and Y. Xu. Neural network-based pa-
rameter estimation of stochastic differential equations driven by lévy
noise. Physica A: Statistical Mechanics and its Applications, 606:
128146, 2022.

[42] P. Whittle. Hypothesis Testing in Time Series Analysis. PhD thesis,
Uppsala, 1951.

[43] W. Willinger, V. Paxson, R. Riedi, and M. S. Taqqu. Long-range depen-
dence and data network traffic. Theory and applications of long-range
dependence, pages 373–407, 2003.

[44] N. Yuan, C. L. Franzke, F. Xiong, Z. Fu, and W. Dong. The impact
of long-term memory on the climate response to greenhouse gas emis-
sions. npj Climate and Atmospheric Science, 5(1):70, 2022.

B. Csanády et al. / Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks 2555

https://github.com/Mottl/hurst
https://neptune.ai
https://github.com/raphaelvallat/antropy

	Introduction
	Main results
	Related work

	Processes
	Fractional Brownian motion
	Autoregressive Fractionally Integrated Moving Average
	The fractional Ornstein-Uhlenbeck process

	Baseline estimators
	Rescaled range analysis
	Variation Estimators
	Higuchi's method
	Whittle's method
	The case of ARFIMA and fOU

	Methods
	Training paradigm
	Generating fractional processes
	Neural network architecture
	Technical details

	Experiments
	Metrics
	Evaluating neural fBm Hurst estimators
	Testing on real-world data
	Inference times

	Evaluating neural ARFIMA parameter estimators
	Stress-testing with ARFIMA

	Evaluating neural fOU parameter estimators
	Stress-testing with OU


	Conclusion

