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Abstract. Deep neural networks (DNNs) often struggle with dis-
tribution shifts between training and test environments, which can
lead to poor performance, untrustworthy predictions, or unexpected
behaviors. This work proposes Domain Feature Perturbation (DFP),
a novel approach that explicitly leverages domain information to
improve the out-of-distribution performance of DNNs. Specifically,
DFP trains a domain classifier in conjunction with the main predic-
tion model and perturbs the multi-layer representation of the latter
with random noise modulated by the gradient of the former. The
domain classifier is designed to share the backbone with the main
model and is easy to implement with minimal extra model param-
eters that can be discarded at inference time. Intuitively, the pro-
posed method aims to reduce the dependence of the main prediction
model on domain-specific features, such that the model can focus on
domain-agnostic features that generalize across different domains.
The results demonstrate the effectiveness of DFP on multiple bench-
marks for domain generalization. Our code is available [39].

1 Introduction

Deep neural networks (DNNs) have exhibited impressive perfor-
mance in solving a wide variety of real-world tasks. A crucial aspect
of their success lies in their ability to learn from a large amount of
training data [32]. However, despite the widely held assumption that
training and test data are sampled from the same underlying proba-
bility distribution [10], real-world data frequently deviates from the
training data distribution. Consequently, a shift occurs between the
training and test data distributions. Such shifts are prevalent in di-
verse tasks; examples include face recognition under varying lighting
conditions or backgrounds [1], medical image recognition with dif-
ferent imaging devices or acquisition protocols [52], and autonomous
driving in different cities [34]. In these cases, the presence of out-of-
distribution (OOD) data poses significant challenges to conventional
supervised learning methods, leading to inaccurate and unreliable
predictions.

To address the challenges of OOD generalization, researchers have
explored various techniques, such as meta-learning [5], causal learn-
ing [24, 22], contrastive learning [15], and disentangled representa-
tion learning [49]. In particular, when given access to training data
that is split into multiple domains and expected to generalize to
an unseen test domain (without any information about them dur-
ing training), which is known as Domain Generalization, one can
leverage domain information (i.e., domain labels) to achieve better
OOD performance. Domain Generalization and Domain Adaptation
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are both techniques used in machine learning to address the chal-
lenge of domain shift. Different from Domain Generalization, Do-
main Adaptation focuses on adapting a model to perform well on a
specific, known target domain that is different from the source do-
mains but is available during training. However, existing approaches
to Domain Generalization have shown limited success in utilizing
such information [11, 46] or relying on complex training procedures
that involve adversarial training [9, 16, 21] or separate auxiliary mod-
els [21, 5, 49].

In this work, we propose a novel approach to leveraging domain
information based on gradients. Specifically, we train a domain clas-
sifier in conjunction with the main prediction model and perturb the
multi-layer representation of the latter with noise modulated by the
gradient of the former. The domain classifier is designed to share
the backbone with the main model, introducing minimal extra model
parameters that can be discarded at inference time. This technique
aims to reduce the dependence of the main prediction model on
domain-specific features, allowing the model to focus on domain-
agnostic features that generalize across different domains. The re-
sulting method, named Domain Feature Perturbation (DFP), is easy
to implement without major modifications to the model architecture
and shows significantly improved performance on multiple domain
generalization benchmarks containing typical image data and graph
data. We summarize our main contributions as follows:

• We explicitly leverage domain information by training a domain
classifier along with the main model. We then compute the gra-
dient of the domain classifier with respect to intermediate repre-
sentations, the magnitude of which is utilized to identify domain-
specific features in a relatively simple manner.

• We propose to perturb intermediate representations with random
noise modulated by the aforementioned gradient magnitude. By
doing so, domain-specific features are automatically identified
and randomized, effectively reducing the dependence of the main
model on these features. In addition, we propose a gradient simi-
larity measure to evaluate the regularization effect.

• We evaluate our method on multiple image-based domain general-
ization benchmarks following a recently proposed evaluation pro-
tocol [46] for a fair comparison with other methods. In addition
to the image datasets, we also validate our method on the graph
data. The experimental results demonstrate competitive or better
performance compared to state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 develops the proposed method. Section
4 evaluates the method on various datasets, and Section 5 concludes
the paper.
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2 Related work

In this section, we review existing approaches to domain generaliza-
tion and discuss their connections to our work.

2.1 Adversarial Training

Adversarial training serves as a key technique in enhancing the ro-
bustness of DNNs to distributional shifts in data. It is particularly em-
ployed to improve OOD generalization by encouraging the learning
of domain-invariant features [25, 16]. In addition, applying adversar-
ial perturbations to intermediate representations has been explored
as a regularization technique [29, 48, 47, 41]. However, adversarial
training can often lead to stability issues or slow convergence during
training, and learning domain-invariant features may suppress useful
features for other tasks in multi-task learning settings. In contrast, our
proposed domain feature perturbation discourages the dependence
of the main classifier on domain-specific features, while keeping the
ability of the model to extract those features. Furthermore, it gen-
erates the perturbations without adversarial training, resulting in a
simpler and more stable training process.

The concept of generative adversarial training extends to the use
of domain classifiers in addressing domain generalization challenges.
Adopting the idea of joint disentanglement and generative adversar-
ial training, Wu et al. [43] attempt to separate irrelevant information
by constraining the domain discriminator. Zhu et al. [53] incorporate
a localized domain classifier with adversarial learning to produce lo-
cally mixed domains. Our method also integrates a domain classifier;
however, it diverges from generative adversarial constraints and does
not focus on identifying unseen domain data.

2.2 Conventional Methods

Data augmentation, extraction of invariant representations, and gen-
eral regularization techniques collectively contribute to a broader un-
derstanding of domain generalization, offering diverse perspectives
and solutions to the challenges in this field.

Data augmentation is a prevalent technique to enhance data diver-
sity in various machine learning tasks [33, 45]. In the context of do-
main generalization, existing methods often emphasize feature-level
augmentation [18]. Mixstyle [51] generates new styles by blending
feature statistics from two instances with random convex weights. Xu
et al. [44] employ Fourier-based data augmentation, consolidating
information from multiple source domains. Other approaches, in-
cluding domain randomization [35, 13, 8], introduce perturbations
to data statistics to simulate diverse visual styles. We note that DFP
is loosely related to domain randomization in that it also aims to
randomize domain-specific features. Nevertheless, the perturbations
introduced by DFP are applied to intermediate representations and
are automatically generated with a domain classifier.

Another challenge for OOD generalization is the tendency of
DNNs to overly specialize in extracting features that are useful for
the training data. As such, several strategies have been developed
to cultivate robust representations. These include invariant represen-
tations [26], meta-learning [23, 5, 50], transfer learning [4], repre-
sentation disentanglement [49], model calibration [38], and causal
learning [24, 22]. Contrary to learning invariant representation, Shi
et al. [31] and Rame et al. [27] focus on gradient invariance during
training. While DFP does not explicitly learn invariant representa-
tions, its carefully crafted perturbation encourages more dependence

on invariant representations as discussed in Section 3.2. This dis-
tinction makes DFP potentially better suited for multitask learning,
which requires the extraction of diverse features.

In addition to data augmentation and invariant learning, more gen-
eral regularization techniques have been explored to tackle the OOD
challenge, including ensemble learning [2, 30, 19], sharpness-aware
optimization [6, 54], and several others [28, 15, 7].

3 Methods

In this section, we first explain the basic concepts crucial to our ap-
proach, including out-of-distribution (OOD) generalization and di-
versity shift. Subsequently, we present our method in detail and de-
fine gradient similarity for the purpose of evaluation. Figure 1 pro-
vides an overview of the framework of our method.

3.1 Preliminaries

3.1.1 OOD generalization

We begin by framing the general OOD generalization problem. Let
X denote the input space and Y the target label space. We define a
parametric model fθ : X → Y , mapping input features to labels
with parameters θ. The loss function L : θ × (X × Y ) → R quan-
tifies the discrepancy between the predicted and true labels. Given
a supervised learning task with N training samples, {(xi, yi)}Ni=1,
where xi ∈ X and yi ∈ Y , and sourced from the training distribu-
tion Ptr(X,Y ), the objective of OOD generalization is to identify
a model that generalizes effectively to data from the test distribu-
tion Pte(X,Y ). However, without access to Pte(X,Y ) at training
time, the model is usually optimized to minimize the empirical risk
on Ptr(X,Y ):

f̂θ = argmin
θ

EX,Y ∼PtrL (fθ(X), Y ). (1)

In standard supervised learning, it’s typically assumed that both
training and test samples are i.i.d. samples from a shared distribu-
tion, denoted as Ptr(X,Y ) = Pte(X,Y ). However, in the broader
OOD context, training and test data may originate from different dis-
tributions, implying Ptr(X,Y ) �= Pte(X,Y ). For domain gener-
alization tasks in particular, the combined training and test data are
partitioned into k domains, represented as D = {Di}ki=1, with each
domain stemming from a unique distribution. During training, k− 1
of these domains form the training set, while the remaining domain
is held out for testing.

3.1.2 Diversity shift

Distribution shifts between training and test data can be categorized
into diversity shift and correlation shift [46]. Consider a training dis-
tribution Ptr(X,Y ) and a test distribution Pte(X,Y ) with proba-
bility functions p and q, respectively. The labeling rule of the data,
f : X → Y , usually depends on a particular set of features Z1,
whereas the rest of the features Z2 are not causal to the prediction of
Y . That is, while both Z1 and Z2 jointly determine the input variable
X , the target variable Y is determined by Z1 alone. The following
property for every z ∈ Z1 makes OOD generalization possible:

p(z) · q(z) �= 0 ∧ ∀y ∈ Y : p(y|z) = q(y|z). (2)

And the opposite property of z ∈ Z2 makes OOD generalization
challenging:
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Figure 1. Overview of the training procedure of DFP. The two
classification heads share a single backbone network. The first backward

pass generates the modulated perturbation, followed by a second backward
pass that updates the model parameters.

p(z) · q(z) = 0 ∨ ∃y ∈ Y : p(y|z) �= q(y|z). (3)

Diversity shift further assumes that p(z) · q(z) = 0 for z ∈ Z2,
meaning that the diversity of data is embodied by unique features
not shared by the different domains. These features are defined as
S = {z ∈ Z2|p(z) · q(z) = 0}. The extent of diversity shift can be
measured by

Ddiv(p, q) :=
1

2

∫
S |p(z)− q(z)| dz. (4)

It is observed that many practical datasets for domain generaliza-
tion exhibit significant diversity shifts [46]. Therefore, exploiting the
property of diversity shift may improve OOD generalization on such
datasets.

3.2 Domain Feature Perturbation

Given sufficient capacity, a parametric model fθ trained with the ob-
jective in Equation 1 is expected to capture the causal features in
Z1, which is desirable for OOD generalization. However, fθ may
also rely on the non-causal features in Z2 if they correlate with Y .
While the dependency on non-causal features can aid in i.i.d. gener-
alization in the training environment, it is unlikely to generalize to the
unseen test environment, especially considering the non-overlapping
supports of Z2 caused by diversity shift (i.e. p(z) · q(z) = 0 for
z ∈ Z2). Theoretically, one can reduce the dependence on Z2 to
achieve better OOD generalization. However, there is no guarantee
that features from Z1 and Z2 captured by fθ are well-separated, and
identifying them is even more challenging. To tackle this challenge,
we observe that, compared to Z1, the non-overlapping supports of
Z2 across different domains make it particularly useful for domain
classification. As such, we propose to train a domain classifier to dif-
ferentiate among different training domains, and use its gradient to
approximately identify the features in Z2. Subsequently, we perturb

the identified features with noise, reducing the dependence of fθ on
them in the training process. We refer to this approach as Domain
Feature Perturbation (DFP).

Concretely, alongside the main classifier, we train a domain clas-
sifier to capture domain-specific features. The two classifiers can be
implemented with two output heads that share the same backbone,
and thus introduces negligible extra parameters. Let gθ : X → Yd

denote the domain classifier, where Yd is the set of training domain
labels. The overall loss function is as follows:

L(θ) = EX,Y,Yd∼Ptr [αL (fθ(X), Y ) + (1− α)Ld (gθ(X), Yd)] ,
(5)

where L and Ld correspond respectively to the main classifier and
the domain classifier, and α ∈ (0, 1) is a hyperparameter to weight
the two losses. To utilize the gradient of the domain classifier, the
training process of DFP involves two forward passes and two back-
ward passes in each iteration. In the first forward pass and backward
pass, we compute Ld, as well as its gradient with respect to the in-
termediate representations of the backbone network, i.e.,

∇zLd =
∂Ld

∂z
, (6)

where z ∈ R
m represents the pre-activations of neurons. Let zi be

the i-th element of z, and ε a positive constant. The magnitude of
∇zLd then serves to modulate a random noise vector n ∼ N (0,Σ),
such that

Σ = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
m

)
, and σi =

ε

‖∇zLd‖p

∣∣∣∣∂Ld

∂zi

∣∣∣∣ . (7)

In the second forward pass, DFP applies modulated noise n to z
at each layer as z̃ = z + n, and proceeds with the second backward
pass to update model parameters. Note that in Equation 7, the σi’s
are normalized by the �p norm of ∇zLd to keep the overall mag-
nitude of Σ stable. In addition, p is set to 2 throughout this paper
unless otherwise specified. At test time, the domain classifier can be
discarded, and the inference of the main classifier can be done in a
single forward pass.

Algorithm 1 Training procedure with domain feature perturbation
(DFP)

Input: Main classifier fθ; Domain classifier gθ; Loss function
L(θ); Training data Dtr; Batch size B; Number of training epochs
E.
Training:

1: for epoch e = 1, 2, ..., E do

2: for batch b = b1, b2, ... ⊂ Dtr with batch size B do

3: bi = {xi, yi, yd,i}
4: ŷd,i = gθ(xi) � First forward
5: ∇zLd = ∂Ld(ŷd,i, yd,i)/∂z � First backward
6: n ∼ N (0,Σ) � Sample DFP as per Equation 7
7: ŷi = fθ(xi), ŷd,i = gθ(xi) with z̃ = z+ n � Second

forward
8: L(θ) = αL(ŷi, yi) + (1− α)Ld(ŷd,i, yd,i)
9: ∇θL(θ) = ∂L(θ)/∂θ � Second backward

10: θ ← Optimizer (θ,∇θL(θ))
11: end for

12: end for

The intuition behind Equation 7 is that the features in Z2 are pre-
dominantly utilized by the domain classifier compared to those in
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Z1, and thus are more likely to have larger gradient magnitudes,
|∂Ld/∂zi|. Analogous to Fisher information, which is the variance
of the score, or the expected value of the observed information, we
maintain the noise mean at zero while modulating the noise variance
in response to the domain gradient. Thereby emulating the correla-
tion between the magnitude of noise and variance. By injecting noise
with high variance into the features in Z2, we aim to diminish the
reliance of fθ on these features, thereby improving OOD generaliza-
tion. The training procedure with DFP is detailed in Algorithm 1.

3.3 Gradient Similarity

As discussed in Section 3.2, a model trained with DFP is expected
to focus more on the features in Z1 than those in Z2. To verify this,
one can compare the magnitudes of L’s gradients with respect to
the two sets of features, which again requires separating and iden-
tifying the features in Z1 and Z2. To circumvent this requirement,
we observe that, compared to Z2, the model relies on Z1 should
have similar gradients across different domains, since Z1 is domain-
agnostic while Z2 is domain-specific. Therefore, we propose a sim-
ple gradient similarity measure to evaluate how much a model relies
on domain-agnostic features. Specifically, given k different domains,
D = {Di}ki=1, we denote the mean absolute gradient of L with re-
spect to z for each domain as

ηi =
1

|Di|
∑

(x.y)∈Di
Abs

(
∂L (fθ(x), y)

∂z

)
, (8)

then the gradient similarity on D is defined as

S(D) =
2
∑

1≤i<j≤k CosSim (ηi, ηj)

k(k − 1)
,

where CosSim (μ,ν) =
μ · ν

‖μ‖‖ν‖ .
(9)

Intuitively, Equation 9 calculates the cosine similarity between
every possible pair of ηi and ηj that are derived from two different
domains, and averages the similarity values together.

4 Experiments

4.1 Experimental Setup

In order to validate the effectiveness of our method, we mainly test it
on two types of data: general image data and graph data.

4.1.1 Image datasets

We evaluate our proposed method on three domain generalization
datasets with image data: PACS [17] with four artistic styles and
seven categories, OfficeHome [37] with 4 artistic styles and 65 cat-
egories, and Terra Incognita [3] with 4 camera locations and 10 cat-
egories. As noted by Ye et al. [46], these datasets exhibit significant
diversity shifts and thus are suitable for our evaluation. Figure 2 il-
lustrates several images from the PACS dataset. Figure 3 also shows
the cosine similarity values across different domains in the PACS
dataset. It is readily apparent that there are significant differences in
the data distribution across domains.

D
og

(a) Art-painting (b) Cartoon (c) Photo (d) Sketch

Figure 2. Illustration of images of the dog category in different domains in
the PACS dataset.

Figure 3. Cosine similarity between different domains on PACS.

4.1.2 Graph datasets

We investigate the scenario where there are multiple observed graphs
in one dataset, and a model trained on a subset of them is expected to
generalize to unseen graphs. The graphs in a dataset share the same
input feature space and output space, but can have different sizes and
data distributions since they are collected from different domains. In
our experiments, we use the public social network dataset Facebook-
100 [20].

4.1.3 Model Selection Methods

There are three model selection strategies commonly used for do-
main generalization tasks: training-domain validation, test-domain
validation, and leave-one-domain-out validation. Test-domain vali-
dation involves model selection where the validation set follows the
same distribution as the test domain. It is important to adapt the de-
gree of model invariance according to the test domain. The training-
domain validation technique divides each training domain into train-
ing and validation subsets and selects the model with the highest
accuracy based on the union of the validation subsets. This tech-
nique implies that the distributions of the training and test cases are
similar. Both methods are reasonable and arguable, so in our experi-
ments, we adopt training-domain validation and test-domain valida-
tion following the evaluation protocol used by Ye et al. [46], Gul-
rajani and Lopez-Paz [11], and Wang et al. [40]. To conduct a fair
comparison, we compare our results with some results from exist-
ing benchmark work [46, 11]. We also run several methods that
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were recently proposed, such as Sharpness-Aware Gradient Match-
ing (SAGM) [40] (for image data) and Explore-to-Extrapolate Risk
Minimization (EERM) [42] (for graph data), to demonstrate the ef-
fectiveness of our method. All experiments are conducted using Py-
Torch on Tesla V100 GPUs.

4.2 Domain Generalization On Image Data

In this section, we present the test accuracy of various methods on
unseen domain image data to evaluate their domain generalization
performance. We employ ResNet-18 [12] as the backbone architec-
ture for most experiments. In addition, to further substantiate the ef-
fectiveness of our method, we also conduct experiments on the PACS
dataset using ResNet-50 as the backbone. We also train the model
without dropout.

For the PACS dataset, we perform eight rounds of random search-
ing procedures for weight initialization, dataset division, and batch
size. For the OfficeHome and Terra Incognita datasets, we perform
three rounds of random searches for the basic hyperparameters. For
all datasets, we train the model for the same number of steps and
conduct three independent training runs to obtain the average results.
We also evaluate the sensitivity of the proposed method to differ-
ent loss weights (α, 1 − α), and the results are shown in Figure 4.
We observe that a higher weight for the main classifier works bet-
ter in practice. As such, we primarily use loss weights (α, 1 − α) ∈
{(0.9, 0.1), (0.99, 0.01)} for following experiments.

Figure 4. Accuracy results of different loss weights on PACS.

4.2.1 PACS

The PACS dataset comprises four training domain combinations {(C,
P, S), (A, P, S), (A, C, S), (A, C, P)} that correspond to four test do-
mains {A, C, P, S}. We set ε ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}
for different domain combinations in the PACS dataset. Table 1
presents the best results on the PACS dataset, with upward and down-
ward arrows indicating increases and decreases in the data, respec-
tively. Compared to Empirical Risk Minimization (ERM) [36], DFP
improves the accuracy on every test domain, resulting in a 2.9% in-
crease in the average accuracy. And DFP also surpasses the effect of
the Representation Self-Challenging (RSC) [14] in overall average
accuracy. It is worth noting that the improvement varies across dif-
ferent domains and is more significant in difficult domains such as
A, C, and S.

Table 1. Test accuracies of ERM, RSC and DFP on PACS.

PACS A C P S Avg

ERM 77.9 ± 0.9 72.7 ± 0.3 95.8 ± 0.2 74.1 ± 0.4 80.1
RSC 79.8 ± 0.2 77.1 ± 0.7 94.8 ± 0.1 76.3 ± 0.6 82.0 ↑ +1.9
DFP (Ours) 80.6 ± 0.9 75.8 ± 1.4 96.2 ± 0.3 79.3 ± 1.0 83.0 ↑ +2.9

To compare the performance of different model sizes, we also re-
peat the experiments on the PACS dataset using Resnet-50 as the
backbone. Following Cha et al. [6], we select the model with test-
domain validation and train the model for the same number of steps.
We compare DFP with state-of-the-art methods, including Fishr [27],
SWAD [6], SAGM_DG [40], which also use Resnet-50 as the back-
bone. The best results are highlighted in Table 2 as part of out-
domain test accuracy. Compared to ERM using the same backbone,
DFP improves the average test accuracy by 1.1%, which is competi-
tive to other state-of-the-art methods.

Table 2. Test accuracies on PACS with Resnet-50.

In/Out Method A C P S Avg

SWAD 86.1 ± 1.2 78.3 ± 3.6 97.3 ± 0.3 70 ± 3.3 82.9 ↓ −2.2
Fishr 85.6 ± 0.4 78.7 ± 1.1 96.3 ± 0.0 78.9 ± 1.3 84.9 ↓ −0.2

Out-domain ERM 81.7 ± 0.9 80.9 ± 0.1 97.1 ± 0.3 80.7 ± 1.0 85.1
SAGM_DG 86.1 ± 1.2 80.7 ± 0.6 96.7 ± 0.1 83.8 ± 0.5 86.8 ↑ +1.7
DFP(Ours) 84.9 ± 0.3 82.0 ± 1.1 97.6 ± 0.2 80.4 ± 0.7 86.2 ↑ +1.1

SWAD 97.6 ± 0.1 97.0 ± 0.3 96.3 ± 0.9 95.6 ± 2.1 96.6 ↓ −0.6
Fishr 97.9 ± 0.1 97.1 ± 0.1 96.4 ± 0.1 97.8 ± 0.2 97.3 ↑ +0.6

In-domain ERM 97.2 ± 0.0 97.2 ± 0.2 96.4 ± 0.1 98.0 ± 0.1 97.2
SAGM_DG 98.4 ± 0.1 97.9 ± 0.4 97.3 ± 0.1 98.5 ± 0.0 98.0 ↑ +0.8
DFP(Ours) 96.6 ± 0.2 97.4 ± 0.3 96.1 ± 0.2 97.8 ± 0.2 97.0 ↓ −0.2

To further understand how DFP affects the performance of the
model, we compare the in-domain (the training data and the test data
are independent and identically distributed) test accuracies of differ-
ent methods. As shown in Table 2, DFP has a negative but marginal
effect on the in-domain accuracy, suggesting that DFP is able to trade
a slightly worse in-domain performance for significantly better out-
domain performance.

4.2.2 OfficeHome

Similar to PACS, the OfficeHome dataset also has four training do-
main combinations, as well as four test domains {A,C, P,R}. We
set ε ∈ {0.1, 0.01, 0.001} for this dataset. As shown in Table 3, DFP
improves the average test accuracy by 1.4% over ERM and 1.2%
over RSC. While there is a notable improvement on every domain,
the overall difficulty of this dataset is substantially higher than that
of PACS as indicated by the average accuracies.

Table 3. Test accuracies of ERM, RSC and DFP on OfficeHome.

OfficeHome A C P R Avg

ERM 54.8 ± 0.2 49.8 ± 0.4 72.3 ± 0.4 73.4 ± 0.1 62.6
RSC 56.3 ± 0.4 49.5 ± 0.2 72.1 ± 0.1 73.4 ± 0.4 62.8 ↑ +0.2
DFP (Ours) 57.4 ± 0.9 51.0 ± 0.4 73.4 ± 0.1 74.3 ± 0.4 64.0 ↑ +1.4

4.2.3 Terra Incognita

The Terra Incognita dataset also includes four training domain com-
binations, as well as four test domain types {L100, L38, L43, L46}.
And we set the combination of ε and the loss weights (ε, α, 1−α) ∈
{(0.1,0.9,0.1), (0.01,0.9,0.1), (0.01,0.99,0.01)} for the Terra Incog-
nita dataset. As shown in Table 4, our method can enhance the test
accuracy of the Terra Incognita dataset by 1.9% when compared to
the ERM. The Terra Incognita dataset contains images of wild ani-
mals captured by camera traps in a variety of natural environments,
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simulating a real-world scenario. Despite the fact that DFP has im-
proved test accuracies across domains, the baseline and DFP results
are not particularly impressive. These results show that OOD gener-
alization is more difficult in photos with more intricate and realistic
backgrounds, such as The Terra Incognita dataset.

Table 4. Test accuracies of ERM, RSC and DFP on Terra Incognita.

TerraIncognita L100 L38 L43 L46 Avg

ERM 44.4 ± 4.2 38.0 ± 2.8 50.5 ± 1.1 36.3 ± 0.1 42.3
RSC 48.4 ± 1.9 40.1 ± 1.8 53.5 ± 0.9 35.8 ± 0.9 44.4 ↑ +2.1
DFP (Ours) 47.4 ± 1.9 39.7 ± 2.7 52.6 ± 0.0 37.2 ± 0.9 44.2 ↑ +1.9

4.2.4 Comparison with other DG methods

Drawing on the findings from Ye et al. [46] and Wang et al. [40], we
conduct a comparative analysis between our method and some state-
of-the-art techniques. Table 5 presents these results, which are based
on ResNet-18, and Table 6 presents test results of more recent meth-
ods based on ResNet-50, indicating that our approach consistently
surpasses several established methods. Additionally, Table 5 includes
our own results for Empirical Risk Minimization (ERM) [36] and
Representation Self-Challenging (RSC) [14]. ERM is a standard
baseline for comparisons in domain generalization (DG) challenges.
Following benchmark results, we also evaluate RSC, which outper-
forms many other techniques. RSC employs gradient characteristics
to mute feature representations with the highest gradient, compelling
the model to rely on other features for predictions. In contrast, our
method aims to isolate domain-related features and introduce pertur-
bations to them.

Table 5. Test accuracy comparison with other methods based on
ResNet-18. Results of the first block are taken from Ye et al. [46].

Method
Dataset

PACS OfficeHome TerraIncognita Avg

MLDG 73 ± 0.4 52.4 ± 0.2 27.4 ± 2.0 50.93 ↓ −11.54
GroupDRO 80.4 ± 0.3 63.2 ± 0.2 36.8 ± 1.1 60.13 ↓ −2.34
ANDMask 79.5 ± 0.0 62 ± 0.3 39.8 ± 1.4 60.43 ↓ −2.04
Mixup 79.8 ± 0.6 63.3 ± 0.5 39.8 ± 0.3 60.97 ↓ −1.5
MTL 81.2 ± 0.4 62.9 ± 0.2 38.9 ± 0.6 61.00 ↓ −1.47
DANN 81.1 ± 0.4 62.9 ± 0.6 39.5 ± 0.2 61.17 ↓ −1.3
ARM 81 ± 0.4 63.2 ± 0.2 39.4 ± 0.7 61.20 ↓ −1.27
CORAL 81.6 ± 0.6 63.8 ± 0.3 38.3 ± 0.7 61.23 ↓ −1.24
MMD 81.7 ± 0.2 63.8 ± 0.1 38.3 ± 0.4 61.27 ↓ −1.2
ERDG 80.5 ± 0.5 63 ± 0.4 41.3 ± 1.2 61.60 ↓ −0.87
IGA 80.9 ± 0.4 63.6 ± 0.2 41.3 ±0.8 61.93 ↓ −0.54
VREx 81.8 ± 0.1 63.5 ± 0.1 40.7 ± 0.7 62.00 ↓ −0.47
IRM 81.1 ± 0.3 63 ± 0.2 42 ± 1.8 62.03 ↓ −0.44
SagNet 81.6 ± 0.4 62.7 ± 0.4 42.3 ± 0.7 62.20 ↓ −0.27
ERM 81.5 ± 0.0 63.3 ± 0.2 42.6 ± 0.9 62.47
RSC 82.8 ± 0.4 62.9 ± 0.4 43.6 ± 0.5 63.10 ↑ +0.63

ERM (Our runs) 80.1 ± 0.2 62.6 ± 0.1 42.3 ± 1.1 62.03
RSC (Our runs) 82.0 ± 0.5 62.8 ± 0.1 44.4 ± 0.0 63.27 ↑ +1.27
DFP (Ours) 83.0 ± 0.7 64.0 ± 0.3 44.2 ± 0.6 63.73 ↑ +1.7

Table 6. Test accuracy comparison with recent methods based on
ResNet-50. Results of the first block are taken from Wang et al. [40].

Method
Dataset

PACS Difference

CDANN 82.6±0.9 ↓-2.9
Mixstyle 85.2±0.3 ↓-0.3
RSC 85.2±0.9 ↓-0.3
Miro (with CLIP) 85.4±0.4 ↓-0.1
ERM 85.5±0.2 0.0
Fish 85.5±0.3 0.0
SelfReg 85.6±0.4 ↑+0.1
SAM 85.8±0.2 ↑+0.3
GSAM 85.9±0.1 ↑+0.4
mDSDI 86.2±0.2 ↑+0.7
SAGM 86.6±0.2 ↑+1.1

DFP(Ours) 86.2 ↑ +0.7

4.3 Domain Generalization On Graph Data

According to Wu et al. [42], the graph is a non-linear data struc-
ture consisting of vertices V and edges E. And an input graph
G = (E,X) contains an adjacency matrix E = {evu|v, u ∈ V }
and node features X = {xv|v ∈ V }. Apart from these, each
node in the graph has a label, which can be represented as a vec-
tor Y = {yv|v ∈ V }. Gv is a random variable of ego-graphs whose
realization is Gv = (Ev, Xv). Based on this, we can adapt the defi-
nition of general OOD problem via instantiating the input as Gv and
the target as Y , and then the data generation can be characterized
as p(G, Y |e) = p(G|e)p(Y |G, e) where e is a random variable of
environments that is a latent variable and impacts data distribution.
More formally, the OOD problem can be written as:

min
f

max
e∈ε

EG∼p(G|e=e)

[
1

|V |
∑
v∈V

Ey∼p(y|GV =Gv,e=e)[l (f(Gv), y)]

]
.

(10)
In order to verify the effectiveness of our method when training

with multiple graphs and generalizing to unseen domains, we test our
method on the FB-100 dataset. We select three groups of data, and
each group has three graphs for training, two graphs for validation,
and the remaining three for testing. The training graphs are [(John
Hopkins, Caltech, Amherst), (Bingham, Duke, Princeton), (WashU,
Brandeis, Carnegie)], and we also use test accuracy for evaluation.
We use Graph Convolutional Networks (GCN) as the backbone and
compare using different configurations of training graphs, as shown
in Table 7. We conduct 5 independent runs with the same epochs
for each training group. We compare our method with ERM and
Explore-to-Extrapolate Risk Minimization (EERM) [42], and the re-
sults show that DFP outperforms ERM on average by up to 3.7%.
Notably, the test accuracy achieved by our method is comparable to
that of EERM, a technique specifically designed to tackle graph OOD
issues. These results demonstrate that our method is more adaptable
and can be applied to data with various types of structures.

Table 7. Test accuracy on graph data for domain generalization.

Training graphs
Method

Test
Penn Brown Texas Avg

JohnHopkins ERM 51.0 ± 0.7 56.4 ± 0.6 55.8 ± 1.2 54.4
+Caltech EERM 50.2 ± 0.9 56.4 ± 0.4 52.3 ± 1.5 52.9 ↓ −1.5
+Amherst DFP (Ours) 50.5 ± 0.4 56.7 ± 0.2 55.5 ± 1.3 54.2 ↓ −0.2

Bingham ERM 50.1 ± 1.2 49.7 ± 5.0 50.3 ± 5.9 50.1
+Duke EERM 50.4 ± 0.8 51.1 ± 4.2 53.1 ± 4.3 51.5 ↑ +1.4
+Princeton DFP (Ours) 50.6 ± 1.0 49.9 ± 2.9 53.6 ± 3.6 51.4 ↑ +1.3

WashU ERM 49.5 ± 1.0 47.2‘± 5.5 54.2 ± 3.9 50.3
+Brandeis EERM 52.5 ± 1.4 54.1 ± 5.8 56.0 ± 0.5 54.2 ↑ +3.9
+Carnegie DFP (Ours) 51.7 ± 1.1 54.3 ± 5.8 56.0 ± 0.6 54 ↑ +3.7

4.4 Gradient Similarity

To illustrate the effect of domain feature perturbation, we examine
the similarity computation on the PACS dataset. We define four train-
ing domain combinations {(C, P, S), (A, P, S), (A, C, S), (A, C,
P)} and their respective test domains {A,C, P, S}. We employ the
gradients’ absolute values to compute the cosine similarity across
different dimensions of hidden representations. Gradient similarities
across domains may reflect feature similarities they emphasize. For
each training domain set, we independently assess the similarity. For
the three domains in each set, we determine the average gradient of
hidden representations as described in Section 3.3.
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(a) Dtr = {C,P, S} (b) Dtr = {A,P, S}

(c) Dtr = {A,C, S} (d) Dtr = {A,C, P}

Figure 5. Gradient similarities at different layers of ERM and DFP.

As illustrated in Figure 5, we calculate the average gradient sim-
ilarity for each layer subjected to perturbation. To contrast the gra-
dient similarities between DFP and ERM, we select the optimal pre-
trained model from each method and perform an additional train-
ing step. Evaluating each approach 50 times, we determine the mean
similarity value. The findings suggest that DFP can induce a similar
gradient change between different source domains.

4.5 Ablation Studies

In this section, we present two ablation studies focusing on: (1) a
comparison with random perturbations and (2) the optimal position
for noise injection. All experiments utilize the ResNet-18 architec-
ture. For both studies, trials are conducted on the PACS dataset with
a fixed initial learning rate of lr=5e-5 and the same training steps.
In each of the three independent training iterations, we perform eight
rounds of random hyperparameter search.

4.5.1 Random perturbation

To evaluate the effectiveness of noise modulation, we train a
baseline model with random noise. Experiments using random
perturbations are conducted at the same insertion position as
DFP. We set the random noise n ∼ N (0, σ2) with σ ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2}. Table 8 displays the best results
of random perturbations. The average accuracy of random perturba-
tions is 81.3%, and the results suggest that our proposed method out-
performs random perturbations by 1.7%, which is lower than DFP.

Table 8. Test accuracies of ERM with random perturbations.

PACS A C P S Avg

ERM 77.9 ± 0.9 72.7 ± 0.3 95.8 ± 0.2 74.1 ± 0.4 80.1
Random 79.6 ± 0.5 75.3 ± 0.9 95.4 ± 0.2 74.8 ± 0.7 81.3 ↑ +1.2
RSC 79.8 ± 0.2 77.1 ± 0.7 94.8 ± 0.1 76.3 ± 0.6 82.0 ↑ +1.9
DFP (Ours) 80.6 ± 0.9 75.8 ± 1.4 96.2 ± 0.3 79.3 ± 1.0 83.0 ↑ +2.9

4.5.2 Noise injection point

We compare the effect of two different noise injection points, pre-
activation and activation. We set the ε ∈ {0.001, 0.005, 0.01, 0.05,
0.1, 0.2} and the loss weights (α, 1 − α) ∈ {(0.9,0.1), (0.99,0.01)}.
Table 9 shows the best results, and there is no notable difference
between the two cases.

Table 9. Test accuracies of DFP with different injection points.

PACS A C P S Avg

Pre-act 80.6 ± 0.9 74.7 ± 0.6 95.9 ± 0.4 77.7 ± 0.8 82.2
After-act 79.9 ± 0.4 76.0 ± 1.0 96.0 ± 0.3 77.2 ± 0.9 82.2

5 Conclusion

In this work, we proposed a novel approach to domain generaliza-
tion, named domain feature perturbation (DFP). DFP incorporates a
domain classifier to produce perturbations for domain-specific fea-
tures, aiming to reduce the dependence of the model on such fea-
tures. Furthermore, we conducted extensive experiments on multiple
domain generalization datasets, demonstrating the effectiveness of
DFP, as well as competitive or better OOD performance than state-
of-the-art methods.

Our method has several limitations. First, DFP relies on two for-
ward and backward passes in each training iteration, rendering it
slower at training time than simple approaches such as empirical risk
minimization. Second, using the gradient of the domain classifier,
we can only approximately identify domain-specific features, mak-
ing the regularization effect of DFP less precise. Therefore, future
research might present methods for the more efficient and precise
extraction of these features.
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