
Every Node Counts: Improving the Training of Graph
Neural Networks on Node Classification

Moshe Eliasofa,*, Eldad Haberb,** and Eran Treisterc,***

aDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge
bDepartment of Earth, Ocean and Atmospheric Sciences, University of British Columbia

bDepartment of Computer Science, Ben-Gurion University of the Negev

Abstract. Graph Neural Networks (GNNs) are prominent in han-
dling sparse and unstructured data efficiently and effectively. Specif-
ically, GNNs were shown to be highly effective for node classifica-
tion tasks, where labelled information is available for only a frac-
tion of the nodes. Typically, the optimization process, through the
objective function, considers only labelled nodes while ignoring the
rest. In this paper, we propose novel objective terms for the training
of GNNs for node classification, aiming to exploit all the available
data and improve accuracy. Our first term seeks to maximize the mu-
tual information between node and label features, considering both
labelled and unlabelled nodes in the optimization process. Our sec-
ond term promotes anisotropic smoothness in the prediction maps.
Lastly, we propose a cross-validating gradients approach to enhance
the learning from labelled data. Our proposed objectives are general
and can be applied to various GNNs, and require no architectural
modifications. Extensive experiments demonstrate our approach us-
ing popular GNNs like Graph Convolutional Networks (e.g., GCN
and GCNII), and Graph Attention Networks (e.g., GAT), reading a
consistent and significant accuracy improvement on 10 real-world
node classification datasets.

1 Introduction

1 The field of Graph Neural Networks (GNNs) has gained large pop-
ularity in recent years [24, 39] in a variety of fields and applications
such as computer graphics and vision [46], Bioinformatics [22], node
classification [24, 39, 6] and others. In the context of node classifi-
cation, many methods [24, 39, 6, 58] and others, consider the semi-
supervised setting, where only a small part of the nodes are labelled,
e.g., 20 labelled nodes per class in the Cora dataset, translating to 5%
labelled nodes. Others consider the fully-supervised setting, where
typically [30] 48% of the nodes are labelled. The recipes of the vari-
ous methods share a common factor, which is the training procedure.
While the aforementioned methods propose novel architectures, ag-
gregation schemes or network dynamics, they yet require the mini-
mization of the cross-entropy loss of labelled node predictions. This
gives rise to the research question – it is beneficial to also consider
the unlabelled information and specifically the predictions of unla-
belled nodes in the training procedure, and how?

∗ Email: me532@cam.ac.uk.
∗∗ Email: ehaber@eoas.ubc.ca
∗∗∗ Email: erant@cs.bgu.ac.il
1 Our Appendix can be found in [12].

(a) (b) (c)

Figure 1: t-SNE embeddings of (a) Cora input features, (b) GCN pre-
dictions, (c) ENC-GCN predictions. Our ENC-GCN improves the
node classification accuracy by 4.3% compared to GCN. Zoom in
for a better view.

This question is often treated by requiring the consistency of the
predicted node classification with respect to adversarial perturbations
of the data [14], Laplacian-based regularization [51] of the node pre-
dictions, label entropy minimization [37, 2] and label propagation
methods [43, 10]. Most of the aforementioned methods rely on de-
signing novel objective functions to achieve the desired consistency
and improved performance, highlighting that the research front of de-
signing improved objective functions is an active field of research. In
this paper, we focus on proposing additional objective terms to im-
prove the performance of GNNs on node classification tasks. While
the considered methods show significant improvement over the base-
line, we identify that there are limitations that can be further relieved.
For instance, demanding smoothness according to the Laplacian may
be useful in the case of homophilic (following the definition from
[30]) datasets like Cora, Citeseer and Pubmed. However, for datasets
like Cornell, Texas and Wisconsin, that have a low homophily score
(i.e., heterophilic datasets), such a demand can result in degraded ac-
curacy, as we show in Section 5.3. An adversarial perturbation of the
data is highly dependant on the perturbation policy, and requires ad-
ditional computational costs due to the comparison of two or more
forward computations of the network. Simple label entropy mini-
mization can gravitate the network towards predicting a dominant
class in the labelled data, which may not reflect the real distribution
of the data.

In this paper, we propose to incorporate both labelled and unla-
belled nodes in the objective functions through the perspectives of
Mutual Information (MI) maximization, Total Variation (TV) regu-
larization, as well as a Cross-Validating Gradients (CVG) approach
that improves training from labelled nodes. We find that augmenting
the standard cross-entropy objective function with unlabelled nodes
information and enhanced labelled node information leads to a con-
sistent improvement across all considered datasets and experiments,

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240779

2508

showing that the information from every node counts to improve ac-
curacy. We therefore call our method ENC. An example of the ob-
tained node classification of our ENC approach compared to a base-
line GCN is given in Figure 1. Our contributions are as follows:

• We propose a Mutual Information based objective function that
aims to maximize prediction information between all nodes and
classes for semi-supervised tasks.

• A Total Variation guided objective is proposed to promote node
class predictions that adhere to the natural boundaries of the graph
signal. Our theoretical understanding and experimental results
show the efficacy of this loss compared to alternative smoothness
terms.

• A novel Cross-Validating Gradients approach is introduced as a
stochastic measure to improve the gradient direction from labelled
nodes.

• Through a series of extensive experiments, we demonstrate the
added value of our method, reading a consistent improvement on
all datasets and baselines, that is in line with current state-of-the-
art methods.

2 Related Work

2.1 Graph Neural Networks

Graph Neural Networks were introduced by [34], and became popu-
lar in recent years, with the rise of the the Message-Passing Neural
Network (MPNN) mechanism by [16], where each node aggregates
features (messages) from its neighbours, according to some policy.
Most existing GNNs can be thought of MPNNs. For instance, GCN
[24] and ChebNet [8] polynomials of the graph Laplacian to pa-
rameterize the convolution operator. Attention-based methods like
GAT [39] and SuperGAT [23] learn a non-negative score of the
graph edges to perform local propagation of node features. Computer
Vision oriented methods like DGCNN [46] constructs a k-nearest-
neighbours graph from point-clouds and dynamically updates it. A
shared quality of the aforementioned methods is the training scheme.
While all methods focus on minimizing a problem designated loss
(e.g., the cross-entropy loss function for node or graph classification)
with respect some labelled data, there is no consideration of the unla-
belled data. In this paper we focus on the incorporation of unlabelled
data to improve the training of GNNs on the node-classification task.

2.2 Improved training of Graph Neural Networks

The study of improved training of neural networks, and in particular
of GNNs is concerned with creating different training policies and
losses. Perhaps the most basic and common remedy for training on
the typically small datasets like Cora, Citeseer and Pubmed is the
incorporation of Dropout after every GNN layer, which has become
a standard practice [24, 6, 58]. Other important tools that improve
training are realized by randomly alternating the data rather than the
neural units of the GNN. For instance, [31] suggest DropEdge, a
method that randomly drops graph edges, and [9] propose DropNode
– a method that randomly removes graph nodes. Other methods like
PairNorm [56] propose adding node features normalization, which
also helps to alleviate the over-smoothing phenomenon in GNNs dis-
cussed in [5]. Another approach is the Mixup [54] technique that
enriches the learning data, and has shown success in image classifi-
cation tasks. Following that, works like GraphMix [41] proposed an
interpolation-based regularization method by parameter sharing of
GNNs and point-wise convolution. The methods above were shown

to improve the training in GNNs. However, they do not consider the
information of the unlabelled nodes during the training.

Recent methods that consider both labelled and unlabelled data in
the context of improved GNN training include InfoGraph [37] that
learns a discriminative network for graph classification tasks. For
graph classification, [53] suggest to utilize unlabelled data through
contrastive learning and data augmentations. Moreover, [2] propose
consistency-diversity augmentations for node and graph classifica-
tion tasks, and [45] suggest a mixup-based method that considers
all available data. Our work differs from the above as follows. First,
we utilize an information maximization approach, with a class en-
tropy balancing term in Eq. (9). Second, we propose a total-variation
smoothing loss that is adherent to the natural edges of the graph sig-
nal, and is shown in Section 5.3 and Table 8 to obtain improved
accuracy compared to a Laplacian smoothing regularization as in
[51] and a standard total-variation loss that was utilized in GNNs
[21, 29, 27, 44]. Third, we propose a cross-validating gradients ap-
proach to further improve learning from labelled nodes on top of the
standard cross-entropy loss. To the best of our knowledge, the idea of
a cross-validation loss through the gradients of the network has not
been utilized in GNNs.

2.3 Mutual Information in Neural Networks

The concept of Mutual Information in machine learning tasks was
originally used for image and volume alignment by [42]. Recently,
it was implemented into CNNs by the seminal Deep InfoMax [20]
and into GNNs by [40], where unsupervised learning tasks are con-
sidered, by defining some task that is defined by the data (e.g., signal
reconstruction) and enforcing information maximization between in-
puts and their reconstruction or predictions. This concept was found
to be useful in a wide array of applications, from image superpixel
segmentation [13] to unsupervised graph related tasks [40]. In this
paper, we show that this concept significantly improves the overall
performance of GNNs when labelled information is partially avail-
able, without any architectural changes.

3 Notations and Technical Background

Notations. We now provide the notations that will be used through-
out this paper. Let us denote an undirected graph defined by the tuple
G = (V, E) where V is a set of n nodes and E is a set of m edges. We
define the neighbourhood of the i-th node by Ni = {j | (i, j) ∈ E}.
Let us denote by f (l) ∈ R

n×c the feature tensor of the nodes V
with c channels at the l-th layer. We denote the adjacency matrix by
A ∈ R

n×n, where Aij = 1 if there exists an edge (i, j) ∈ E and 0
otherwise. We also define the diagonal degree matrix D where Dii

is the degree of the i-th node. We denote the adjacency and degree
matrices with added self-loops by Ã and D̃, respectively.

In this paper, we consider the node classification task, where the
goal is to assign a class to each node in the graph. We denote the
number of classes by k. Since not all nodes are labelled in our con-
sidered datasets, we denote the labelled set of vertices by V lab ⊂ V ,
and the one-hot ground-truth labels by y ∈ R

|Vlab|×k. To present
our approach, which also considers the unlabelled nodes, we denote
the node classification prediction tensor by

ŷ = SoftMax(fout) ∈ R
n×k, (1)

where fout is the output last layer in the network.

M. Eliasof et al. / Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification 2509

GNN Backbones. We consider three popular backbones to demon-
strate our ENC approach. Namely, we utilize GCN [24], GAT [39],
and GCNII [6], as described below.

GCN defines a propagation operator P̃ = D̃− 1
2 ÃD̃− 1

2 , and its
architecture is given by

f (l+1) = σ(P̃f (l)W(l)), (2)

where W(l) is a 1 × 1 convolution matrix, i.e., a linear layer, and σ
is a non-linear activation function.

GAT defines the propagation operator according to the following
edge weight:

α
(l)
ij =

exp
(
LeakyReLU

(
a(l)� [W̃(l)fi || W̃(l)fj]

))
∑

p∈Ni
exp

(
LeakyReLU

(
a(l)� [W̃(l)fi || W̃(l)fp]

)) ,
(3)

where a(l) ∈ R
2c and W̃(l) ∈ R

c×c are trainable parameters and ||
denotes channel-wise concatenation.

By gathering α
(l)
ij for every edge (i, j) ∈ E into a propagation

matrix S ∈ R
n×n, a GAT layer reads:

f (l+1) = σ(S(l)f (l)W(l)). (4)

GCNII alters the propagation of GCN as follows:

S(l)(f (l), f (0)) = (1− α(l))P̃f (l) + α(l)f (0), (5)

where α(l) ∈ [0, 1] is hyper-parameter and f (0) are the features of
the opening (embedding) layer. Then, a GCNII layer is given by:

f (l+1) = σ(β(l)S(l)(f (l), f (0))W(l) + (1− β(l))S(l)(f (l), f (0))),
(6)

where β(l) ∈ [0, 1] is a hyper-parameter.

4 Method

The core idea of our method is that unlike the typical training scheme
in GNNs, we treat every node in the data, regardless if it is labelled
or not. Our experiments in Section 5 show that every node counts to
improve performance, and thus we call our method ENC, which is
summarized by the (three-term) extended objective function:

L = LCE + αLMI + βLTV + γLCV G, (7)

where α , β , γ are non-negative hyper-parameters. Here, LCE is the
standard cross-entropy objective used in node classification tasks:

LCE = − 1

| V lab |
∑

i∈Vlab

k∑
s=1

yi,s log(ŷi,s), (8)

where ŷ is the prediction tensor defined in Eq. (1). By definition, it
considers only the labelled nodes V lab.

Overall, our method can potentially be applied to any GNN that is
optimized in an end-to-end fashion, as we propose a objective func-
tion modification, rather than architectural. The overall flow of our
method is shown in Fig. 2.

In what follows, we present each of the proposed objectives. Later,
in Section 5, we show the empirical contribution of each individual
term, as well as the combinations of the terms, in Fig. 3 and Fig.
4. Furthermore, we perform an hyper-parameter study in Appendix
A.2. We further note that our method in Eq. (7) does not require any
architectural modifications to the baseline GNNs.

4.1 Node-Class Mutual Information

As discussed in Section 2.3, the idea of mutual information max-
imization was utilized in unsupervised settings to improve results.
Here, we will use it to improve the performance of GNNs for semi-
supervised tasks. We define the mutual information objective as:

LMI =
1

| V |
∑
i∈V

k∑
s=1

−ŷi,s log ŷi,s + λ
k∑

s=1

ỹs log ỹs, (9)

where ỹs = 1
|V|

∑
i∈V ŷi,s measures the mean prediction probabil-

ity of the s-th class. The first term in Eq. (9) describes the entropy
of the class prediction [ŷi,s]

k
s=1 for each node i ∈ V individually,

pushing the predicted classification vector to be deterministic. The
second term considers the negative entropy of the mean class pre-
diction probability, promoting the class-uniformity of the prediction.
Note that LMI considers all of the nodes V , and in particular, is not
dependent on ground-truth labels as the standard cross-entropy loss.
The value of λ is a hyper-parameter and is dependent on the dataset,
as a higher value promotes the network to equalize the number of
predictions per class. In case λ = 1, Eq. (9) maximizes the mutual
information of the node and class features [3]. Unless stated other-
wise, in all experiments we set λ = 2, and in Appendix A.2, we
report the obtained accuracy using different values of λ.

4.2 Total-Variation Regularization

The objective LTV measures the node prediction discrepancy of
neighbouring nodes, by utilizing the Total-Variation (TV) [32]
anisotropic smoothness prior that promotes correspondence between
smooth regions while preserving boundaries in input features of the
graph. To this end, we first define the gradient operator of the graph
node features f as:

(∇Gw f)ij = (wifi −wjfj), (10)

where nodes i and j are connected via the (i, j)-th edge, and w ∈
R

|V| is a node weight vector, which we discuss further below. Note
that ∇Gw f is a matrix of size | E | ×c. With this definition, the
standard TV regularization term is given by:

1

| E |
∑

(i,j)∈E
‖(∇Gw ŷ)ij‖1 , (11)

where ŷ is the prediction tensor defined in Eq. (1) and f in ∈ R
n×cin

are the input features tensor with cin channels. We augment Eq. (11)
with an additional term that guides the TV regularization term to
adhere to the boundaries in the input node features, as follows:

LTV =
1

| E |
∑

(i,j)∈E

(
‖(∇Gw ŷ)ij‖1 exp−‖(∇Gw fin)ij‖22/σ

)
,

(12)
where σ is a scalar, set to 10 in our experiments. The exp term in
Eq. (12) was also proposed in the context of unsupervised image
semantic segmentation tasks [18].

Total-Variation and the Dirichlet energy. In Eq. (10) we set
wi = 1/

√
di + 1, where di is the degree of the i-th node, and fi

and fj are the features of the i-th and j-th nodes, respectively. Note
that the gradient operator is a mapping from the graph nodes to the
edges, i.e., ∇Gw : V −→ E , and in particular its �2 norm coincides
with the Dirichlet energy:

E(f) =
∑

(i,j)∈E

1

2

∥∥∥∥ fi√
(1+di)

− fj√
(1+dj)

∥∥∥∥
2

2

= ‖∇Gw f‖22. (13)

M. Eliasof et al. / Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification2510

Figure 2: The overall scheme of our method. ENC is a novel loss objective for training GNNs. Given a GNN (e.g., GCN or GAT), we compute
our loss defined in Eq. (7), and update the model weights using backpropagation.

This observation uncovers an important nature of the proposed regu-
larization technique — it demands the similarity of the Dirichlet en-
ergy between input features and the node classification predictions.
Nonetheless, using an �2 norm to measure similarity is known not to
respect the signal boundaries [48], and typically smooth them. We
therefore resort to the �1 norm in Eq. (12), which was shown to be
useful for color image processing when boundaries need to be pre-
served [26]. The concept of preserving the Dirichlet energy is of-
ten used to avoid the over-smoothing phenomenon [6, 58] by adding
terms to the network architecture. Although the focus of this work is
to obtain improved training, our experiments in Section 5 show that
ENC also somewhat eases over-smoothing, albeit does not prevent it,
as the architectures are not changed. Also, we show that compared
with other smoothness objective terms like P-reg [51], our Total-
Variation loss tends to yield improved results also on heterophilic
datasets, as presented and discussed in Section 5.3 and Table 8.

4.3 Cross-Validating Gradients

The components in previous sections consider the inclusion of un-
labelled nodes to the optimization objective. In this section we pro-
pose a third and final piece of our approach that seeks to improve the
learning from the labelled nodes. As discussed in Section 1, the typ-
ical training of GNNs involves the minimization of the cross-entropy
loss of the labelled nodes, as described in Eq. (8). Here we use a
mechanism to improve the training by requiring gradient consistency
throughout the training process, which we obtain by demanding a
cross-validation of the training procedure that we describe now.

Let us denote a random disjoint partition of the labelled nodes in-
dices p1, p2 ⊂ V lab where p1

⋃
p2 = V lab and p1

⋂
p2 = ∅, that is

uniformly drawn at each iteration during training. Let us consider the
partial cross-entropy loss with respect to p1 and p2, i.e., LCE(V lab

p1)
and LCE(V lab

p2). We wish that a gradient step computed with respect
to the nodes p1 will decrease the objective computed with respect
to p2 and vice versa. If this is not the case then the proposed direc-
tion may over-fit to a particular partition of points. This discussion
is at the core of the rationale for using Generalized Cross Validation
(GCV) [19] designed to prevent over-fitting for the mean square error
loss and uses Jacobians with respect to the parameters.

To avoid using Jacobians for the cross-entropy loss, we penalize
the gradient steps that point to directions that fit one set of points p1
and not the other p2 by measuring their negative cosine similarity:

LCV G = − gp1θ · gp2θ
‖gp1θ ‖‖gp2θ ‖ , (14)

where gp1θ =
∂LCE(Vlab

p1
)

∂θ
and gp2θ =

∂LCE(Vlab
p2

)

∂θ
are the gradi-

ents of the partial cross-entropy losses with respect to the weights
θ, and · is the dot-product operation. During training, we randomly
generate equally-sized p1 , p2 using random permutations of the la-
belled nodes V lab. Each iteration can be thought of as a 2-fold cross-
validation and it promotes steps that generalize the fit of the data. We
show the positive effect of the stochasticity of p1 , p2 in Section 5.3.

4.4 Computational Costs

The losses LMI and LTV do not add significant computations, as
they only consider the output of the network and perform simple op-
erations. The loss LCV G requires additional computations as it first
computes the gradients gp1θ and gp2θ . We provide run-times and ac-
curacy of the GNN baselines and ENC in Appendix A.3. We can see
that our approach offers a significant accuracy improvement over the
baselines, at an insignificant additional cost using LMI and LTV .
Using all our losses from Eq. (7) (that is, also including LCV G) re-
quires more computations, yielding further accuracy improvements.

5 Experiments

We demonstrate our ENC on semi- and fully-supervised node classi-
fication followed by an ablation study. In all experiments, we con-
sider three popular baselines, namely GCN, GAT, and GCNII, to
which we incorporate our ENC. We note that our method is general
and can be incorporated into most GNNs, as it requires no archi-
tectural changes. A detailed description of the baselines that serve
as backbones to our ENC approach is given in Section 3, and the
general architecture is provided in Table 1, and further information
about the architecture is given in Appendix A.1. We use the Adam
optimizer, and perform a grid search to choose the hyper-parameters.
The range and selected values are reported in Appendix A.2. Our
code is implemented using PyTorch, trained on an Nvidia Titan RTX
GPU. The datasets’ statistics are provided in Table 2. We show that
for all tasks and datasets, ENC offers a consistent improvement over
baseline methods. For example, in Table 3, ENC-GCN obtains 85.3%
accuracy on Cora vs. 81.2% using the standard GCN, an improve-
ment of 4.1%. Since some baseline methods do not report standard-
deviation, we report mean accuracy in the main paper. In Appendix
A.4, we provide the mean and standard-deviation accuracy of ENC.

5.1 Semi-Supervised Node Classification

We consider Cora, Citeseer and Pubmed datasets and the standard
public training/validation/testing split as in [52], with 20 nodes per
class for training. We follow the training and evaluation scheme of
[6] and consider various GNN models like GCN, GAT, superGAT

M. Eliasof et al. / Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification 2511

�� �� �� �� �� �� 	�
� �� ���
�
�������������������
��

	

�

�

�

�

��
��
�

��
��

�
��
��
�

 !"

!#
!#$%&
!#$�'
!#$!'
!#$%&$�'
!#$%&$�'$!'

�� �� �� �� �� �� 	�
� �� ���
�
�������������������
��

	

�

�

�

�

��
��
�

��
��

�
��
��
�

 (�

!#
!#$%&
!#$�'
!#$!'
!#$%&$�'
!#$%&$�'$!'

�� �� �� �� �� �� 	�
� �� ���
�
�������������������
��

	

�

�

�

�

��
��
�

��
��

�
��
��
�

 !"&&

!#
!#$%&
!#$�'
!#$!'
!#$%&$�'
!#$%&$�'$!'

Figure 3: Cora test accuracy (%) with a varying number of labels and 100 random splits per configuration. We compare the influence of the
proposed losses. Our ENC approach (all losses together) consistently improves accuracy by an average of 2%.

Table 1: The GNN architecture in our experiments.

Input size Layer Output size

n× cin Dropout(p) n× cin
n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× ENC-GNN layers n× c
n× c Dropout(p) n× c
n× c 1× 1 Convolution n× k

Table 2: Datasets statistics.

Dataset Classes Nodes Edges Features

Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703
Pubmed 3 19,717 44,338 500
Chameleon 5 2,277 36,101 2,325
Actor 5 7,600 33,544 932
Squirrel 5 5,201 198,493 2,089
Cornell 5 183 295 1,703
Texas 5 183 309 1,703
Wisconsin 5 251 499 1,703
Ogbn-arxiv 40 169,343 1,166,243 128

[23], APPNP [25], JKNet [49] , GCNII, GRAND [4], PDE-GCN
[11] and EGNN[58] and superGAT [23]. Also, we compare our ap-
proach with label propagation (LP) and regularization/augmentation
based methods. For the former, we consider GCN-LPA [43] and PTA
[10]. For the latter, we compare with GAUG [57], DropEdge [31],
GraphVAT [14], GRAND [15], P-reg [51], GraphMix [41], NodeAug
[47], NASA [2] and local augmentations (LA) by [28]. We summa-
rize the results in Table 3 where we see better or on-par performance
with other state-of-the-art methods and a significant increase over the
baselines of GCN, GAT, and GCNII. For example, we obtain 83.8%
accuracy on Pubmed using our ENC-GCNII compared to 80.3% with
GCNII. We also provide a tSNE plot of the node predictions on Cora
using GCN and our ENC-GCN in Figure 1. Additionally, we ex-
periment with a varying number of layers, from 2 to 64, and report
the results in Table 4. The evaluation of our method with a varying
number of layers sheds light on the ability of our method to ease
the over-smoothing phenomenon. While our method does not pre-
vent the over-smoothing of the baseline method (as it does not alter
the architecture), we can see that compared to the over-smoothing
baseline methods GCN and GAT, their counterparts ENC-GCN and
ENC-GAT, respectively, show a slower accuracy degradation.

Table 3: Semi-supervised node classification accuracy (%).

Method Cora Citeseer Pubmed

GCN 81.1 70.8 79.0
GAT 83.1 70.8 78.5
GCNII 85.5 73.4 80.3

ChebNet 81.2 69.8 74.4
APPNP 83.3 71.8 80.1
JKNET 81.1 69.8 78.1
GRAND [4] 84.7 73.6 81.0
PDE-GCN 84.3 75.6 80.6
EGNN 85.7 – 80.1
superGAT 84.3 72.6 81.7

GCN-LPA 82.8 72.3 78.6
PTA 83.0 71.6 80.1

GAUG 83.6 73.3 80.2
DropEdge 82.8 72.3 79.6
GraphVAT 82.9 73.8 79.5
GraphMix 84.0 74.7 81.1
P-reg 83.9 74.8 80.1
NodeAug 84.3 74.2 81.5
GRAND [15] 85.4 75.4 82.7
NASA 85.1 75.5 80.2
LA-GCN 84.6 74.7 81.7
LA-GAT 84.7 73.7 81.0
LA-GCNII 85.7 74.1 80.6
LA-GRAND 85.7 75.8 83.4

ENC-GCN (Ours) 85.3 75.5 81.9
ENC-GAT (Ours) 85.2 75.8 82.6
ENC-GCNII (Ours) 86.0 75.0 83.8

5.2 Fully-Supervised Node Classification

To further validate the efficacy of our method, we employ fully super-
vised node classification on 10 datasets. We examine our ENC-GCN,
ENC-GAT and ENC-GCNII on Cora, Citeseer, Pubmed, Chameleon,
Squirrel, Actor, Cornell, Texas and Wisconsin using the 10 splits
from [30] with train/validation/test label split of 48%, 32%, 20%
respectively, and report their average accuracy. In all experiments,
64 channels are used and a grid search is used to determine the
hyper-parameters. To establish a strong baseline, we consider vari-
ous methods, namely, GCN, GAT, Geom-GCN [30], APPNP, JKNet,
WRGAT [38], GCNII, PDE-GCN, DropEdge, H2GCN [59], GGCN
[50], MagNet [55], GPRGNN [7], FAGCN [1], GraphCON [33], and
GRAFF [17]. For GGCN, we use the results reported in [17], as the
splits used in GGCN [50] are different than the splits considered in
our experiments. Additionally, we evaluate our ENC using the larger
Ogbn-arxiv dataset using the official train/validation/test split in Ta-
ble 6. To distinguish between homophilic and heterophilic datasets,
we report the results of the former in Table 5, and of the latter in

M. Eliasof et al. / Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification2512

Table 4: Semi-supervised node classification accuracy (%). – indi-
cates not available results.

Dataset Method Layers
2 4 8 16 32 64

Cora GCN 81.1 80.4 69.5 64.9 60.3 28.7
GAT 83.1 81.3 74.5 68.2 58.9 34.1
GCNII 82.2 82.6 84.2 84.6 85.4 85.5

GCN (Drop) 82.8 82.0 75.8 75.7 62.5 49.5
JKNet (Drop) – 83.3 82.6 83.0 82.5 83.2
GCNII* 80.2 82.3 82.8 83.5 84.9 85.3

PDE-GCND 82.0 83.6 84.0 84.2 84.3 84.3

EGNN 83.2 – – 85.4 – 85.7

ENC-GCN 85.3 84.4 83.3 80.9 75.4 60.6
ENC-GAT 85.2 84.5 82.5 80.4 75.1 66.3
ENC-GCNII 84.7 85.0 85.2 85.9 85.9 86.0

Citeseer GCN 70.8 67.6 30.2 18.3 25.0 20.0
GAT 70.8 68.6 55.7 31.2 22.0 20.9
GCNII 68.2 68.8 70.6 72.9 73.4 73.4
GCN (Drop) 72.3 70.6 61.4 57.2 41.6 34.4
JKNet (Drop) – 72.6 71.8 72.6 70.8 72.2
GCNII* 66.1 66.7 70.6 72.0 73.2 73.1
PDE-GCND 74.6 75.0 75.2 75.5 75.6 75.5
ENC-GCN 75.5 73.9 73.8 73.0 72.1 70.0
ENC-GAT 75.8 72.1 70.1 65.1 52.2 40.1
ENC-GCNII 72.5 73.4 73.8 74.0 74.6 75.0

Pubmed GCN 79.0 76.5 61.2 40.9 22.4 35.3
GAT 78.5 76.4 69.8 50.1 41.0 42.3
GCNII 78.2 78.8 79.3 80.2 79.8 79.7
GCN (Drop) 79.6 79.4 78.1 78.5 77.0 61.5
JKNet (Drop) – 78.7 78.7 79.7 79.2 78.9
GCNII* 77.7 78.2 78.8 80.3 79.8 80.1
PDE-GCND 79.3 80.6 80.1 80.4 80.2 80.3
EGNN 79.2 – – 80.0 – 80.1

ENC-GCN 81.9 81.0 80.1 78.1 77.5 73.3
ENC-GAT 82.6 81.9 81.5 81.6 80.0 80.1
ENC-GCNII 81.0 81.4 81.8 82.6 83.2 83.8

Table 5: Fully-supervised node classification accuracy (%) on ho-
mophilic datasets.

Method Cora Cite. Pub.
Homophily 0.81 0.80 0.74

GCN 85.77 73.68 88.13
GAT 86.37 74.32 87.62
GCNII 88.49 77.08 89.57

Geom-GCN-I 85.19 77.99 90.05
Geom-GCN-P 84.93 75.14 88.09
Geom-GCN-S 85.27 74.71 84.75
APPNP 87.87 76.53 89.40
JKNet (Drop) 87.46 75.96 89.45
WRGAT 88.20 76.81 88.52
GCNII* 88.01 77.13 90.30

GGCN 87.95 77.14 89.15
H2GCN 87.87 77.11 89.49
GPRGNN 87.95 77.13 87.54

ENC-GCN (Ours) 89.07 78.15 88.63
ENC-GAT (Ours) 89.05 78.20 88.59
ENC-GCNII (Ours) 90.01 79.34 89.35

Table 7. We see a significant improvement across all benchmarks
and types of datasets compared to the baseline methods of GCN,
GAT and GCNII. To measure the homophily score of the different
datasets, we follow the definition in [30]. Compared to methods like
GraphCON, GGCN, and H2GCN, our method reads better or similar
accuracy while offering an the simplicity of keeping the baseline ar-
chitectures and changing only their objective. For instance, our ENC-

Table 6: Ogbn-arxiv node classification accuracy (%).

Method Acc. (%)

GCN 71.74
GAT 71.59
GCNII 72.74

APPNP 71.82
GATv2 71.87
EGNN 72.70
APPNP 72.23
GRAND 72.70

ENC-GCN (Ours) 72.95
ENC-GAT (Ours) 73.38
ENC-GCNII (Ours) 73.56

Table 7: Fully-supervised node classification accuracy (%) on het-
erophilic datasets.

Method Squirrel Actor Cham. Corn. Texas Wisc.
Homophily 0.22 0.22 0.23 0.30 0.11 0.21

GCN 23.96 26.86 28.18 52.70 52.16 48.92
GAT 30.03 28.45 42.93 54.32 58.38 49.41
GCNII 38.47 32.87 60.61 74.86 69.46 74.12

Geom-GCN-I 38.32 29.09 60.31 56.76 57.58 58.24
Geom-GCN-P 38.14 31.63 60.90 60.81 67.57 64.12
Geom-GCN-S 36.24 30.30 59.96 55.68 59.73 56.67
JKNet (Drop) 35.93 29.54 62.08 61.08 57.30 50.59
PairNorm 50.44 27.40 62.74 58.92 60.27 48.43
GCNII* 39.92 33.61 62.48 76.49 77.84 81.57
GRAND 40.05 35.62 54.67 82.16 75.68 79.41
WRGAT 48.85 36.53 65.24 81.62 83.62 86.98
MagNet – – – 84.30 83.30 85.70
GGCN 55.17 37.81 71.14 85.68 84.86 86.86
H2GCN 36.48 35.70 60.11 82.70 84.86 87.65
GPRGNN 31.61 34.63 46.58 80.27 78.38 82.94
FAGCN 42.59 34.87 55.22 79.19 82.43 82.94
GraphCON-GCN – – – 84.30 85.40 87.80
GraphCON-GAT – – – 83.20 82.20 85.70
GRAFF 59.01 37.11 71.38 84.05 88.38 88.83

ENC-GCN (Ours) 51.81 31.89 58.72 73.14 61.08 59.80
ENC-GAT (Ours) 46.77 32.71 60.41 76.95 69.72 64.31
ENC-GCNII (Ours) 54.20 34.82 66.32 88.38 86.21 87.84

GCNII achieves 90.01% accuracy on Cora compared to 87.95% and
87.87% of GGCN and H2GCN. On a heterophilic dataset like Texas,
our ENC-GCNII obtains an accuracy of 86.21%, while methods like
GraphCON and H2GCN obtain 85.40% and 84.86%.

5.3 Ablation Study

Influence of the objectives As our ENC objective is comprised
of several objectives, it is important to delve into their contribution,
individually and jointly, under different settings. We again use the
GCN, GAT and GCNII architectures, and the Cora dataset. For a
comprehensive study, we vary the number of labelled nodes per class
from 10 to 100, with intervals of 10, and report the obtained test ac-
curacy. To ensure statistically meaningful results and following ob-
servations from [35] regarding the evaluation of GNNs, for each ex-
periment we report the average accuracy of 100 random splits with
the respective number of labelled nodes. We present the results in
Figure 3, where we can see that all of our objectives positively con-
tribute to the obtained accuracy compared with the baseline case of
using cross-entropy loss only. That is, we see that our ENC approach
presented in Eq. (7) obtains the best results across all considered set-

M. Eliasof et al. / Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification 2513

� �
 �� �� ��
�
����

��

��

��

��

	�

�

��
��
�

��
��

�
��
��
�

!#
!#$%&
!#$�'

 !"
 (�
 !"&&

Figure 4: MI vs. TV loss on Cora using GCN, GAT, GCNII with
a variable number of layers. TV loss obtains the best results with
respect to the network’s depth.

�) *) +) �) �) ,) �) -) .) �))
��/01102��320	�
04�51�		

�,

�-

-)

-*

-�

-,

�0
	6
��
55
�4
�5

�
78
9

�:;02
���23<
���=�	01:�0

���
�>�
�����

Figure 5: The effect of randomly sampling p1 and p2 demonstrated
on the Cora dataset using GCN, GAT and GCNII. Compared with
CE as baseline, CVG is most helpful in low-labelled data regime.

tings. Also, while ENC does not prevent over-smoothing, it is ob-
served from Table 4 that it can somewhat ease over-smoothing, while
not changing the architecture, but only the loss function. To further
investigate where this property stems from, we examined the perfor-
mance on the public split of Cora with each of the proposed losses.
We found that the LMI and LTV improve the performance of deep
networks based on the GCN and GAT baselines, which are known
to be over-smoothing [5, 56]. Specifically, we find that the TV loss
yields the best results as an individual loss with respect to the depth
of the networks. We found that using the CVG loss does not achieve
a similar effect. For a complete comparison, we also report the re-
sults with GCNII as a baseline. The results are reported in Figure 4.

Fixed vs. Random nodes partition We study the effect of ran-
domly partitioning the set of labelled nodes V lab to p1 , p2 at every
iteration compared to fixing p1 p2 throughout the training stage on
the Cora dataset, using GCN, GAT and GCNII. In the case of the lat-
ter, we report the average accuracy obtained by 10 random initializa-
tions of p1 and p2 to ensure the significance of the results. We present
the results in Figure 5. We can immediately see a large performance
gap between the two choices, leading us to employ the random sam-
pling of the node partition at every iteration in our experiments.

TV vs. P-reg terms The P-reg [51] regularization leverages on
the known Laplacian regularization [36], to improve the training of
GNNs by promoting smooth node predictions. While it was demon-
strated to be effective on homophilic datasets like Cora, Citeseer and
Pubmed, it is interesting to find whether such a strategy can be ben-
eficial in heterophilic dataets like Cornell, Texas and Wisconsin. In-
tuitively, one may expect such a method to perform worse, as it de-
mands the similarity of predicted labels and their smoothing by the

normalized adjacency matrix, as follows:

LP−reg = ‖ŷ − D̃−1Ãŷ‖22. (15)

In contrast, our TV regularization in Eq. (12) suggests to promote
learning predictions that are both smooth and adherent to the natural
boundaries of the input features. We therefore expect that for het-
erophilic datasets, our method will perform better. To this end we
experiment with GCN joint with each of the regularizations, one at
a time, and report the test accuracy obtained on Cora, Citeseer and
Pubmed, Cornell, Texas and Wisconsin using the splits from [30] in
Table 8. We find that for homophilic datasets, both methods improve
the baseline GCN. However, for heterophilic datasets, P-reg regular-
ization can harm the accuracy, further highlighting the contribution
of TV as a smoothing but also boundary-preserving regularizer.

Table 8: TV vs. P-reg regularization applied to GCN. Metric is ac-
curacy (%). Hom. denotes Homophily. Our TV regularization (Eq.
(12)) improves accuracy on homophilic and heterophilic datasets.

Dataset Hom. GCN GCN+ GCN+ GCN+
Eq. (11) P-reg. Eq. (12) (Ours)

Cora 0.81 85.77 87.47 87.42 88.17

Citeseer 0.80 73.68 77.02 76.96 77.10

Pubmed 0.74 88.13 87.14 88.34 88.34

Cornell 0.30 52.70 63.22 61.25 66.71

Texas 0.11 52.16 56.80 50.21 58.16

Wisconsin 0.21 48.92 57.83 47.88 58.39

6 Conclusion

In this paper, we propose an orthogonal path to the recent advances in
GNNs. While most methods focus on improving GNN architectures
and relying on the standard cross-entropy loss, we show that by in-
cluding our ENC objectives in the optimization process leads to ma-
jor improvements of baseline methods like GCN, GAT and GCNII.
Our method often achieves better or similar results to other state-
of-the-art methods that are more complex. We motivate our objec-
tives by adapting knowledge and concepts from fields like Computer
Vision, Image Processing and Optimization methods that are often
found in CNNs but not in GNNs, and validate their efficacy in our
extensive set of experiments. Our method is general, and we deem
that it will also be beneficial for training future GNN architectures.

References

[1] D. Bo, X. Wang, C. Shi, and H. Shen. Beyond low-frequency informa-
tion in graph convolutional networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3950–3957, 2021.

[2] D. Bo, B. Hu, X. Wang, Z. Zhang, C. Shi, and J. Zhou. Regularizing
graph neural networks via consistency-diversity graph augmentations.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 3913–3921, 2022.

[3] J. Bridle, A. Heading, and D. MacKay. Unsupervised classifiers, mu-
tual information and’phantom targets. Advances in neural information
processing systems, 4, 1991.

[4] B. P. Chamberlain, J. Rowbottom, M. Gorinova, S. Webb, E. Rossi,
and M. M. Bronstein. Grand: Graph neural diffusion. arXiv preprint
arXiv:2106.10934, 2021.

[5] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and
relieving the over-smoothing problem for graph neural networks from
the topological view. Proceedings of the AAAI Conference on Artificial
Intelligence, 34:3438–3445, 04 2020. doi: 10.1609/aaai.v34i04.5747.

[6] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph
convolutional networks. In H. D. III and A. Singh, editors, Proceedings
of the 37th International Conference on Machine Learning.

M. Eliasof et al. / Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification2514

[7] E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal gener-
alized pagerank graph neural network. In International Conference on
Learning Representations, 2021.

[8] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844–3852, 2016.

[9] T. H. Do, D. M. Nguyen, G. Bekoulis, A. Munteanu, and N. Deligiannis.
Graph convolutional neural networks with node transition probability-
based message passing and dropnode regularization. Expert Systems
with Applications, 174:114711, 2021.

[10] H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui. On the
equivalence of decoupled graph convolution network and label propa-
gation. In Proceedings of the Web Conference 2021, 2021.

[11] M. Eliasof, E. Haber, and E. Treister. PDE-GCN: Novel architectures
for graph neural networks motivated by partial differential equations.
Advances in Neural Information Processing Systems, 34, 2021.

[12] M. Eliasof, E. Haber, and E. Treister. Every node counts: Improving the
training of graph neural networks on node classification. arXiv preprint
arXiv:2211.16631, 2022.

[13] M. Eliasof, N. B. Zikri, and E. Treister. Rethinking unsupervised neural
superpixel segmentation. arXiv preprint arXiv:2206.10213, 2022.

[14] F. Feng, X. He, J. Tang, and T.-S. Chua. Graph adversarial training:
Dynamically regularizing based on graph structure. IEEE Transactions
on Knowledge and Data Engineering, 33(6):2493–2504, 2019.

[15] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Khar-
lamov, and J. Tang. Graph random neural networks for semi-supervised
learning on graphs. Advances in neural information processing systems,
33, 2020.

[16] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the
34th International Conference on Machine Learning, 2017.

[17] F. D. Giovanni, J. Rowbottom, B. P. Chamberlain, T. Markovich, and
M. M. Bronstein. Understanding convolution on graphs via energies.
Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

[18] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular
depth estimation with left-right consistency. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017.

[19] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as
a method for choosing a good ridge parameter. Technometrics, 21(2):
215–223, 1979.

[20] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, and Y. Bengio. Learning deep representations by
mutual information estimation and maximization. In International Con-
ference on Learning Representations, 2019.

[21] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang. Graph struc-
ture learning for robust graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery
& data mining, pages 66–74, 2020.

[22] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al. Highly
accurate protein structure prediction with alphafold. Nature, 2021.

[23] D. Kim and A. Oh. How to find your friendly neighborhood: Graph
attention design with self-supervision. In International Conference on
Learning Representations, 2020.

[24] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[25] J. Klicpera, A. Bojchevski, and S. Günnemann. Combining neural net-
works with personalized pagerank for classification on graphs. In Inter-
national Conference on Learning Representations, 2019.

[26] D. Kong, R. Fujimaki, J. Liu, F. Nie, and C. Ding. Exclusive feature
learning on arbitrary structures via �_{1, 2} -norm. Advances in neural
information processing systems, 27, 2014.

[27] P. Liao, H. Zhao, K. Xu, T. Jaakkola, G. J. Gordon, S. Jegelka, and
R. Salakhutdinov. Information obfuscation of graph neural networks.
In International Conference on Machine Learning. PMLR, 2021.

[28] S. Liu, R. Ying, H. Dong, L. Li, T. Xu, Y. Rong, P. Zhao, J. Huang, and
D. Wu. Local augmentation for graph neural networks. In International
Conference on Machine Learning, pages 14054–14072. PMLR, 2022.

[29] X. Liu, W. Jin, Y. Ma, Y. Li, H. Liu, Y. Wang, M. Yan, and J. Tang.
Elastic graph neural networks. In International Conference on Machine
Learning, pages 6837–6849. PMLR, 2021.

[30] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Ge-
ometric graph convolutional networks. In International Conference on
Learning Representations, 2020.

[31] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International
Conference on Learning Representations, 2020.

[32] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based

noise removal algorithms. Physica D: Nonlinear Phenomena, 1992.
[33] T. K. Rusch, B. Chamberlain, J. Rowbottom, S. Mishra, and M. Bron-

stein. Graph-coupled oscillator networks. In International Conference
on Machine Learning, pages 18888–18909. PMLR, 2022.

[34] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2008.

[35] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of
graph neural network evaluation. arXiv preprint arXiv:1811.05868.

[36] A. J. Smola and R. Kondor. Kernels and regularization on graphs. In
Learning theory and kernel machines, pages 144–158. Springer, 2003.

[37] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang. Infograph: Unsupervised
and semi-supervised graph-level representation learning via mutual in-
formation maximization. arXiv preprint arXiv:1908.01000, 2019.

[38] S. Suresh, V. Budde, J. Neville, P. Li, and J. Ma. Breaking the limit of
graph neural networks by improving the assortativity of graphs with lo-
cal mixing patterns. Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 2021.

[39] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio. Graph Attention Networks. International Conference on Learning
Representations, 2018.

[40] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm. Deep graph infomax. In International Conference on Learning
Representations, 2019.

[41] V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Kannala, and
J. Tang. Graphmix: Improved training of gnns for semi-supervised
learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pages 10024–10032, 2021.

[42] P. Viola and W. M. Wells III. Alignment by maximization of mutual
information. International journal of computer vision, 24(2), 1997.

[43] H. Wang and J. Leskovec. Unifying graph convolutional neural net-
works and label propagation. arXiv preprint arXiv:2002.06755, 2020.

[44] X. Wang, H. Liu, C. Shi, and C. Yang. Be confident! towards trust-
worthy graph neural networks via confidence calibration. Advances in
Neural Information Processing Systems, 34:23768–23779, 2021.

[45] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi. Mixup for node and
graph classification. In Proceedings of the Web Conference 2021.

[46] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon. Dynamic graph cnn for learning on point clouds. arXiv
preprint arXiv:1801.07829, 2018.

[47] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi. Nodeaug:
Semi-supervised node classification with data augmentation. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery; Data Mining (KDD), 2020.

[48] J. Weickert. Anisotropic diffusion in image processing, volume 1. Teub-
ner Stuttgart, 1998.

[49] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka.
Representation learning on graphs with jumping knowledge networks.
In Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80, 2018.

[50] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra. Two sides of
the same coin: Heterophily and oversmoothing in graph convolutional
neural networks. arXiv preprint arXiv:2102.06462, 2021.

[51] H. Yang, K. Ma, and J. Cheng. Rethinking graph regularization for
graph neural networks. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 4573–4581, 2021.

[52] Z. Yang, W. Cohen, and R. Salakhudinov. Revisiting semi-supervised
learning with graph embeddings. In International conference on ma-
chine learning, pages 40–48. PMLR, 2016.

[53] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph con-
trastive learning with augmentations. Advances in Neural Information
Processing Systems, 33:5812–5823, 2020.

[54] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[55] X. Zhang, Y. He, N. Brugnone, M. Perlmutter, and M. Hirn. Magnet:
A neural network for directed graphs. Advances in Neural Information
Processing Systems, 34:27003–27015, 2021.

[56] L. Zhao and L. Akoglu. Pairnorm: Tackling oversmoothing in gnns. In
International Conference on Learning Representations, 2020.

[57] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah. Data
augmentation for graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 2021.

[58] K. Zhou, X. Huang, D. Zha, R. Chen, L. Li, S.-H. Choi, and X. Hu.
Dirichlet energy constrained learning for deep graph neural networks.
Advances in Neural Information Processing Systems, 34, 2021.

[59] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Be-
yond homophily in graph neural networks: Current limitations and ef-
fective designs. Advances in Neural Information Processing Systems.

M. Eliasof et al. / Every Node Counts: Improving the Training of Graph Neural Networks on Node Classification 2515

