
ANSPRE: Improving Question-Answering in
Large Language Models with Answer-Prefix Generation

Nguyen-Khang Lea,*,1, Dieu-Hien Nguyena,1 and Le Minh Nguyena,**

aJapan Advanced Institute of Science and Technology
ORCID (Nguyen-Khang Le): https://orcid.org/0000-0001-6585-5470, ORCID (Dieu-Hien Nguyen):

https://orcid.org/0000-0001-5238-733X, ORCID (Le Minh Nguyen): https://orcid.org/0000-0002-2265-1010

Abstract. Large language models (LLMs) and Retrieval-
Augmented-Generation (RAG) show remarkable capabilities in
Open-domain question-answering (ODQA). Despite the advance-
ments, LLMs tend to generate verbose responses, of which only a
small part is the answer phrase. Although the ability to produce the
confidence score for the answer is essential when deploying LLMs
in high-risk domains, sequence probabilities obtained from LLMs
do not correlate well with the probabilities of correctness and thus
fail to represent confidence scores. This study introduces Answer-
prefix Generation (ANSPRE) to improve generation quality, allow-
ing the LLMs to output answer phrases and produce highly reli-
able confidence scores. We guide the model in predicting the an-
swer phrase using an answer prefix and design a ranking score that
integrates parametric and non-parametric knowledge. The answer
phrases and their corresponding scores enable ANSPRE to aggre-
gate results from different documents and samplings to boost per-
formance and produce confidence scores highly correlated with cor-
rectness. We show that ANSPRE can be applied to any LLM and
present an approach called SELF-ANSPRE to combine ANSPRE with
Self-reflective RAG, a state-of-the-art framework based on reflection
tokens. Empirical evaluation on popular ODQA benchmarks shows
that ANSPRE and SELF-ANSPRE significantly improve state-of-the-
art LLMs and RAG frameworks. An in-depth analysis shows that
confidence scores produced by ANSPRE are highly correlated to the
likelihood of correctness.

1 Introduction

State-of-the-art Large Language Models (LLMs) have demon-
strated outstanding capabilities in Open-domain question-answering
(ODQA). As the knowledge embedded in the LLMs parameters
does not always suffice and is invalidated by the changing world,
Retrieval-Augmented Generation (RAG) [15, 7] proposes augment-
ing the question with the documents retrieved from a knowledge
base. Consider the question "What gambling game, requiring two
coins to play, was popular in World War I?". Although the desired
answer is the word "Two-Up," RAG with a pre-trained LLM (Fig-
ure 1, left) tends to produce a verbose response, typically by pro-
viding contextual information to elaborate the answer. Although the
response is informative, extracting the answer phrase ("Two-up" in

∗ Corresponding Author. Email: lnkhang@jaist.ac.jp
∗∗ Corresponding Author. Email: nguyenml@jaist.ac.jp
1 Equal contribution.

the example) from the response is not trivial. While we can employ
instruction-tuned [24] and reinforced [18] LLMs to output the an-
swer phrase, experiments show that their performance is inadequate
and highly depends on the models, system prompts, and instructions.

Another crucial aspect of LLMs is their ability to produce confi-
dence scores for answers, particularly crucial when deploying them
in high-risk domains such as law, finance, or healthcare[10]. Lan-
guage model calibration, the property of the predicted confidence
being correlated with the probabilities of correctness [6], is one com-
mon aspect to assess the reliability of the confidence score. Although
LLMs can obtain the sequence probability of the response, we show
that this probability is unreliable in terms of calibration and should
not serve as the confidence score.

The inability to identify the answer phrase and produce the confi-
dence score limits the application of LLMs. First, many practical sys-
tems require further processing of the answer phrase, such as map-
ping to an entity in the database [5, 4] to provide hyperlinks and ref-
erences. Second, unreliable confidence scores restrict the application
of LLMs in high-risk domains. Also, while aggregating the answer
across generation samplings has shown remarkable performance gain
in mathematics tasks [23], applying this method to RAG is problem-
atic because of the lack of consensus in the LLMs’ responses.

This paper introduces Answer-prefix Generation (ANSPRE) to im-
prove the generation quality, allow the model to output the answer
phrase, and produce a reliable confidence score. The main idea is
to append the prompt with a sequence of text that leads to the an-
swer phrase. We refer to this sequence of text as the answer prefix.
Figure 1 (right) shows the overview of ANSPRE. In particular, given
a question, ANSPRE first generates the answer prefix using curated
few-shot examples (Step 1). Our preliminary study shows that only
a handful of handcrafted examples are enough to generate a high-
quality answer prefix. ANSPRE then uses an existing retriever to re-
trieve relevant documents from the knowledge base (Step 2), similar
to ordinary RAG. Subsequently, ANSPRE combines the document,
the question, and the answer prefix and prompts the LLM to gener-
ate the answer phrase (Step 3). Finally, ANSPRE aggregates the an-
swer phrases and their confidence scores across documents and sam-
plings to produce the final answer (Step 4). We show that ANSPRE

outputs high-quality answer phrases and produces confidence scores
that highly correlate with correctness. The answer phrases and con-
fidence scores enable ANSPRE to aggregate answers from multiple
documents and samplings to form a high-quality answer.

ANSPRE can be applied in any LLM and even sophisticated sys-

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240778

2500

Prompt: What gambling game, requiring two
coins to play, was popular in World War I?

"Two-up" was played extensively by
Australia's soldiers during World War I

"Two-up" is a gambling game, involving
throwing two coins or pennies.

Step 1: Retrieve K documents

Prompt +

The game is "Two-up". It
involves throwing two coins..

Based on the paragraph, the
game was Two-up.

Pachinko has remained popular since it
was closed down during World War It is Pachinko, which was

popular since ...

Prompt: What gambling game, requiring two
coins to play, was popular in World War I?

Step 2: Retrieve K documents

Step 2: Doc + Prompt → LLM Generate

Step 1: Generate Answer-Prefix

Prefix: The gambling
game, requiring two
coins to play, that was
popular in World War I
was [...]

"Two-up"

Step 3: Doc + Prompt + Prefix → LLM Generate

Step 4: Answer aggreation

Retrieval-Augmented Generation (RAG) Ours: Answer-prefix Generation (ANSPRE)

The World War I gambling
game was Two-up

Few-shot
Examples LLM

+

+

Question: What gambling game, requiring two
coins to play, was popular in World War I?

Response: The gambling game, requiring two
coins to play, that was popular in World War I
was [...]

+ +

Prob: 0.22

Two-up
Prob: 0.42

Pachinko
Prob: 0.12

"Two-up" was played extensively by
Australia's soldiers during World War I

"Two-up" is a gambling game, involving
throwing two coins or pennies.

Pachinko has remained popular since it
was closed down during World War AggregatorFinal Answer: Two-up

Multiple samplings
of response

Sequence probability
can't reflect confidence

Extracting the answer
phrase is not trivial

Aggregating answer
is not possible

Answer
phrase

Input to subsequent systems
(e.g. entity mapping) not possible

Figure 1: Overview of ANSPRE.
tems. Recently, the inspiring work of Self-Reflecive RAG (SEFT-
RAG)[1] improves the LLM generation by introducing reflection to-
kens to decide whether to retrieve documents and ranking the re-
sponse by the utility of the document and the answer, achieving
state-of-the-art results on various ODQA benchmarks. We show
that ANSPRE can further improve SEFT-RAG and introduce the
Self-Reflective Answer-Prefix Generation (SELF-ANSPRE). Figure
2 shows the overall of SELF-ANSPRE. In SELF-ANSPRE, we com-
bine the confidence scores from ANSPRE with the scores from the
reflection tokens to form the final score for ranking.

The contribution of this paper is as follows.

• We introduce ANSPRE to improve the generation quality, allow
the model to output the answer phrase, and produce a reliable
confidence score. The produced confidence scores highly corre-
late with the probabilities of correctness. The answer phrases and
confidence scores broaden the applicability of LLM and enable
the use of aggregating techniques to boost performance further.

• Inspired by the SEFT-RAG approach, we introduce SELF-
ANSPRE. SELF-ANSPRE maintains the beneficial properties of
SEFT-RAG while significantly improving the generation quality
by combining the confidence scores and reflection token scores.

• Empirical results on three ODQA benchmarks and various LLM
architectures show that ANSPRE significantly improves pre-
trained and instruction-tuned LLMs. Also, SELF-ANSPRE signifi-
cantly improves SEFT-RAG. Our analysis indicates the importance
of each ANSPRE component and shows that the confidence scores
from ANSPRE highly correlate with correctness and are more reli-
able than sequence probabilities of LLMs, in terms of calibration.

2 ANSPRE Generation

2.1 Problem Formulation and Overview

Problem Formulation. Consider the question "What gambling
game, requiring two coins to play, was popular in World War I?".
Employing an RAG pipeline with LLM, we want the LLM to output
the phrase "Two-up" with the corresponding confidence score.

Formally, given a question Q, an LLM M, and k relevant docu-
ments D = {D1, D2, ..., Dk} retrieved by an existing retriever, we
aim to obtain the answer phrase to the question Q, along with the
confidence score. The LLM M is formulated by the next token pre-
diction distribution PM(yt|X, y<t) where X is the input prompt and
yt is the t-th token in the response. Let Y be the response generated
by M. The sequence probability of the response is calculated as

PM(Y |X) =

|Y |∏

t=1

PM(yt|X, y<t)

In the context of RAG, let Y be the LLM’s response con-
sisting of multiple tokens Y = [y1, y2, ..., yT] where yt is
the t-th token. The tokens in the response are generated by
the distribution PM(yt|Q,D, y<t). The probability of the re-
sponse is PM(Y |Q,D). In practice, the cumulative log probability
log(PM(Y |Q,D)) is used for computations. Standard RAG poses
some limitations. First, only a small set of tokens in Y belongs to the
answer phrase. Second, we show that PM(Y |Q,D) does not corre-
late well with the probability of correctness and thus cannot represent
the confidence of the answer.

Background on Calibration. Consider an answer with a confi-
dence score in a range [0, 1]. If the confidence score is 0.6, we would
expect this answer’s probability to be correct is 0.6. Formally, given
an answer prediction Ŷ , the true answer Y , and the prediction’s con-
fidence score fcon(Ŷ) estimated by the model fcon, a perfectly cali-
brated model satisfies the following.

P (Ŷ = Y |fcon(Ŷ = p)) = p, ∀p ∈ [0, 1]

Expected Calibration Error (ECE)[6] is a commonly used metric to
measure calibration. In practice, we calculate the ECE by bucketing
predictions into M disjoint equally sized interval bins based on con-
fidence. The ECE is a weighted average of the discrepancy between
each bucket’s accuracy and confidence.

M∑

m=1

|Bm|
n

|acc(Bm)− con(Bm)|

where |Bm| is the m-th bucket, acc(Bm) is the average accuracy, and
con(Bm) is the average confidence of the bucket.

Few-shot and Instruction-tuning Approaches. One straightfor-
ward approach to obtaining the answer phrase is to provide few-shot
examples [19] to guide the LLM to output only the answer phrase.
However, in the RAG pipeline, the input is augmented with the mul-
tiple retrieved documents, whose sequence length can be hundreds of
tokens. This property of RAG requires few-shot examples to be very
long, rendering the few-shot approach infeasible regarding memory
and scalability. Another approach is to use LLMs that are instruction-
tuned [24] and reinforced [18]. Although we can instruct these LLMs
to output the answer phrase, our experiments show that their perfor-
mance is inadequate and highly sensitive to minor changes in system

N.-K. Le et al. / ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation 2501

� � � � � � � � �The gambling
game, requiring two
coins to play, that was
popular in World War I
was played by tossing
two coins ...

Prompt:�What gambling game, requiring two
coins to play, was popular in World War I?

Step 1: Retrieve K documents

Step 2: Generate segment

Step 3: Critique outputs and rank segments

Retrieve

Prompt + Prompt + Prompt +

� � � � � � � � �The game
was called "Two-up"

No retrieve

� � � � � � � � �The game
is played by tossing
two coins and betting
on the ...

Generate Reflect
Tokens to decide

whether to retrieve

� � � � � � � � �The
mechanical game
Pachinko which
originates in Japan

> >

Answer using
parametric memories

Reflection Tokens

Relevant Irrelevant

Partially

Relevant

Supported

Answer: The game was called "Two-up"

Additional Step: Generate Answer-Prefix

Handcrafted
Examples

Prefix: The gambling
game, requiring two
coins to play, that was
popular in World War I
was [...]

Self-Reflective Retrieval-Augmented Generation (SELF-RAG) Ours: Self-Reflective Answer-prefix Generation (Self-ANSPRE)

Prompt

LLM

+

Prompt + Prompt +

� � � � � � � � �The gambling
game, requiring two
coins to play, that was
popular in World War I
was "Two-up"

Irrelevant

Partially

Relevant

Supported

Prompt +

+ Prefix

Relevant � � � � � � � � �The gambling
game, requiring two
coins to play, that was
popular in World War I
was Pachinko

+ Prefix + Prefix

> >
Answer: "Two-up"

+ ANSPRE�Score + ANSPRE�Score + ANSPRE�Score

Retrieval

Prompt + Prefix Standard ANSPRE Generation

Reflection Token Scores

Figure 2: Overview of SEFT-RAG and the modifications in SELF-ANSPRE

prompts and instruction prompts. Second, unlike pre-trained LLMs,
fine-tuned LLMs require an intensive amount of labeled data for fine-
tuning and reinforcement learning, which is not always available.

Overview. Figure 1 (right) shows the overview of ANSPRE. We
aim to improve LLM generation quality by applying an answer prefix
to the prompt before generating the answer. For the question "What
gambling game, requiring two coins to play, was popular in World
War I", one possible answer prefix is "The gambling game, requiring
two coins to play, that was popular in World War I was ___". Most
LLMs are trained following causal language modeling, which trains
the model to predict the next token in the sequence. Intuitively, by
appending the answer prefix to the question, we can expect that the
next generated tokens will form the answer phrase. The cumulative
probabilities of these tokens can also be used to produce the confi-
dence score of the answer phrase. The next subsection describes the
main steps in ANSPRE and the adaption of ANSPRE to the complex
system Self-Reflective RAG.

2.2 Generating Answer Prefix

Consider the example question "What gambling game, requiring two
coins to play, was popular in World War I?". Suppose the answer
to this question is [ANSWER]. The declarative form of the question
will be "The gambling game, requiring two coins to play, that was
popular in World War I was [ANSWER]". The part of the declarative
form without the [ANSWER] is the answer prefix. We leverage this
intuition and use the LLM to generate the answer prefix.

Let E be the answer prefix. We use the LLM M with few-shot
prompting and handcrafted examples to generate E. Our preliminary
study shows that only a handful of handcrafted examples are enough
to generate a high-quality answer prefix. We manually curate the
questions and their declarative forms to use as few-shot examples.

D1

...

1-1 1-2 1-N...

Documents Answer Sampling

D2 2-1 2-2 2-N...

Dk k-1 k-2 k-N...

R
el

ev
an

cy

Probability�

...

Candidates for aggregating by best document

Candidates for aggregating by best sampling

...

...
OR

Softmax

...

Voting

Answer

Y (i)(s)

Figure 3: Answer aggregation overview

We use the tag [ANSWER] to represent the answer in the declara-
tive form. The questions are across the wh-questions ("who", "what",
"where", "when", "why", "which", "whose", "how"). We create three
examples for each type of wh-question, resulting in 24 few-shot ex-
amples. The number of examples is fixed and does not affect the scal-
ability of the method. We use the following prompt template for the
few-shot examples: "Given an interrogative sentence: "{question}".
Assuming the answer to this question is [ANSWER], transform the
sentence to the declarative form.". We prompt the LLM M using
the few-shot examples to generate E. When the tag [ANSWER] is
generated, we stop the generation to obtain the answer prefix E.

2.3 Answer Phrase Generation

With the answer prefix E obtained from the previous step, we con-
dition the answer generation as the next token generation. For each
document Di, we generate the answer phrase using the next-token

N.-K. Le et al. / ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation2502

distribution PM(yt|Q⊕E,Di, y<t), where ⊕ indicates concatena-
tion. We continue to generate the next tokens until the end of the
phrase, indicated by punctuation or special tokens. We use beam
search with beam width B to obtain the best N answer samplings
(B ≥ N). The samplings are used in the answer aggregation step.

In language models, parametric knowledge refers to the knowl-
edge stored in the model parameters, and non-parametric knowledge
refers to knowledge from external sources such as retrieved docu-
ments. We design the following scores to integrate these two sources
of knowledge.

SPhrase = PM(Y |Q⊕ E,Di)

SSentence = PM(E ⊕ Y)

SPhrase is the probability of the answer phrase conditioned on the
question, the answer prefix, and the retrieved document. SPhrase re-
flects the non-parametric knowledge as it is conditioned on the re-
trieved document. On the other hand, SSentence is the sequence prob-
ability of the answer sentence, which is the concatenation of the an-
swer prefix and the answer phrase. Consider the example in Figure 1
(right); the answer sentence will be "The gambling game, requiring
two coins to play, that was popular in World War I was Two-up". The
model uses only the knowledge stored in the parameters to assess the
probability of this sentence. Therefore, SSentence reflects the paramet-
ric knowledge. The final ANSPRE score is the weighted sum of the
two scores and is calculated as follows.

SANSPRE = wPhrase ∗ SPhrase + wSentence ∗ SSentence

where wPhrase and wSentence are the pre-defined weight terms and
wPhrase + wSentence = 1. We use SPhrase as the confidence score and
use SANSPRE to aggregate and rank the answers.

2.4 Answer Aggregation

After obtaining the candidate answer phrases and their scores, we
propose a method to aggregate them. Figure 3 shows the overview of
the answer aggregation process. We calculate each candidate’s final
score and normalize them using the softmax function. We group the
candidate answer phrases and use the sum of the scores in each group
to rank the answers.

Formally, assuming C = {C1, C2, ...C|C|} is the candidate answer
phrases, A = {A1, A2, ..., A|A|} is the set of normalized answer
phrases, surjective function η : C �→ A is the normalizing func-
tion (removing punctuation and converting to lower case), S(c) is
the final score of the answer phrase c, we calculate the score used for
ranking the answer as follows.

Score(Ai) =
∑

η(cj)=Ai

eS(Cj)

∑
C∈C eS(C)

The answer with the highest score is selected as the final answer.
We propose two approaches to aggregate the answers. Assuming
that the retrieved documents D = {D1, D2, ..., Dk} are ordered by
the decrease of relevancy, the most relevant document is D1. The
beam search generates N samplings for each document in the an-
swer phrase generation step. We denote Y (i)(s) as the s-th output in
the samplings (1 ≤ s ≤ N) generated using document Di. We as-
sume that the samplings are ordered by the decrease of cumulative
probability (Y (i)(1) has the highest probability). The first approach
aggregates all samplings in the most relevant documents. For this ap-
proach, the candidates are collected as C = {Y (1)(s)|1 ≤ s ≤ N}.

The second approach aggregates the best answer samplings across
all documents. For this approach, the candidates are collected as
C = {Y (i)(1)|1 ≤ i ≤ k}.

2.5 Adaptation to Self-Reflective RAG

Self-Reflective Retrieval-Augmented Generation (SEFT-RAG) [1]
achieves state-of-the-art results on various ODQA benchmarks.
SEFT-RAG (Figure 2, left) trains an LLM that dynamically retrieves
documents as needed during text generation and critiques the doc-
uments and the response using unique tokens known as reflection
tokens. We introduce the modifications to key components of SEFT-
RAG to adapt the ANSPRE technique and propose SELF-ANSPRE

(Figure 2, right).
The overall process of SELF-ANSPRE is similar to SEFT-RAG ex-

cept for some modifications in the answer generation and critique
steps. We use an LLM trained by SEFT-RAG approach [1]. We in-
troduce an additional step to generate the answer prefix, similar to
Section 2.2. Similar to SELF-RAG, the LLM first generates the re-
flection tokens ([Retrieve]/[No retrieve]) to decide whether to re-
trieve documents (Step 1). If no documents are needed, we use the
prompt and the answer prefix to generate the answer, similar to stan-
dard ANSPRE but without the document. If documents are needed,
we retrieve k documents using an existing retriever and use them
to generate the answers (Step 2). In this step, SEFT-RAG uses the
LLM to generate the response with reflection tokens. Each reflection
token critiques different aspects of the triplet (document, question,
response). In SELF-ANSPRE, we modify this component by adding
the answer prefix before the main generation. After generation, we
use the tokens between the answer prefix and the following reflec-
tion tokens as the answer phrase and calculate the ANSPRE score, as
in Section 2.3.

The final step is to critique and rank the outputs (Step 3). In SELF-
RAG, there are three types of critic tokens (ISREL, ISSUP, ISUSE).
During the generation, SELF-RAG uses beam search to acquire the
top sequence continuations at each step t and return the best sequence
at the end. The score of the sequence is updated with the critic score,
which is the linear weighted sum of the normalized probability of
each critic token type. The following is the formula for the critique
score from the work of Asai et al. [1].

Scritique =
∑

G∈G
wGsGt

where G = {ISREL, ISSUP, ISUSE} is the set of critic token
types, sGt is the probability of the desirable token for type G, and
wG is the weights. In SELF-ANSPRE, we extend the formula to in-
clude the ANSPRE score of the answer.

Scritique =
∑

G∈G
wGsGt + wASANSPRE

where wA is the weight terms and SANSPRE is the ANSPRE score.
The sequence with the highest score is returned at the end of the
generation.

3 Experiments

3.1 Tasks and Datasets

We conduct evaluations on three ODQA benchmarks.

N.-K. Le et al. / ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation 2503

TriviaQA PopQA NaturalQuestion
Model Match EM F1 Match EM F1 Match EM F1

Pre-trained Foundation LLM with retrieval
Llama-27B 48.28 9.83 24.83 38.74 6.72 18.65 23.85 0.94 7.42
Llama-27B-ANSPRE 52.85↑4.57 47.61↑37.78 55.55↑30.72 42.17↑3.43 43.1↑36.38 47.01↑28.36 24.9↑1.05 23.71↑22.77 30.73↑23.31

Llama213B 52.48 17.38 32.35 42.17 5.15 18.79 26.15 4.96 14.32
Llama213B-ANSPRE 58.51↑6.03 53.64↑36.26 61.78↑29.43 46.03↑3.86 44.39↑39.24 47.98↑29.19 30.36↑4.21 29.34↑24.38 37.52↑23.2

Mistral7B 54.29 12.59 26.25 44.53 4.50 17.05 33.52 3.32 10.31
Mistral7B-ANSPRE 61.11↑6.82 55.13↑42.54 64.88↑38.63 47.53↑3.0 45.82↑41.32 49.97↑32.92 32.52↓1.0 29.89↑26.57 40.23↑29.92

Gemma7B 58.91 31.40 44.23 42.74 21.30 31.45 38.67 9.72 20.06
Gemma7B-ANSPRE 61.89↑2.98 55.18↑23.78 65.35↑21.12 46.53↑3.79 44.89↑23.59 47.88↑16.43 31.58↓7.09 28.48↑18.76 39.46↑19.4

OPT6.7B 46.37 3.08 11.22 40.89 1.36 9.12 22.13 0.14 3.28
OPT6.7B-ANSPRE 41.52↓4.85 35.16↑32.08 43.19↑31.97 40.1↓0.79 37.6↑36.24 41.21↑32.09 19.83↓2.3 18.64↑18.5 26.23↑22.95

Pre-trained Foundation LLM without retrieval (only parametric memories)
Llama213B 46.47 33.38 42.62 15.23 9.86 13.88 16.29 8.17 15.48
Llama213BANSPRE 61.23↑14.76 55.08↑21.7 64.66↑22.04 24.16↑8.93 23.3↑13.44 26.67↑12.79 30.19↑13.9 28.03↑19.86 38.12↑22.64

Llama27B 28.39 10.64 20.19 11.58 4.65 9.04 12.13 2.96 8.68
Llama27B-ANSPRE 55.59↑27.2 49.31↑38.67 58.34↑38.15 24.37↑12.79 25.66↑21.01 27.13↑18.09 25.24↑13.11 23.68↑20.72 32.41↑23.73

Pre-trained Foundation LLM on multilingual data (focus on Chinese and English) with retrieval
Baichuan27B 44.20 13.58 26.46 40.74 4.65 15.34 20.78 2.11 7.78
Baichuan27B-ANSPRE 54.98↑10.78 48.48↑34.9 57.88↑31.42 41.24↑0.5 40.81↑36.16 43.92↑28.58 24.43↑3.65 21.33↑19.22 31.05↑23.27

Baichuan213B 48.99 8.10 21.54 39.10 4.29 14.62 27.12 0.83 6.49
Baichuan213B-ANSPRE 53.89↑4.9 48.04↑39.94 57.07↑35.53 40.53↑1.43 39.53↑35.24 42.85↑28.23 27.34↑0.22 25.4↑24.57 34.9↑28.41

Qwen7B 54.49 0.44 5.27 48.96 0.14 2.10 33.93 0.19 3.68
Qwen7B-ANSPRE 57.09↑2.6 48.0↑47.56 59.64↑54.37 48.61↓0.35 46.18↑46.04 50.94↑48.84 30.72↓3.21 24.43↑24.24 36.17↑32.49

Qwen14B 57.04 1.38 5.76 47.18 0.36 2.86 36.62 0.50 3.55
Qwen14B-ANSPRE 61.0↑3.96 52.0↑50.62 63.48↑57.72 47.75↑0.57 45.89↑45.53 49.4↑46.54 29.53↓7.09 22.91↑22.41 35.07↑31.52

Instruction-tuned & Reinforced LLM
Llama2-C7B 60.41 33.20 48.32 45.18 23.73 36.33 38.14 9.81 21.19
Llama2-C7B-ANSPRE 57.73↓2.68 40.97↑7.77 55.54↑7.22 50.25↑5.07 40.53↑16.8 48.05↑11.72 31.08↓7.06 19.58↑9.77 31.38↑10.19

Llama2-C13B 66.84 5.67 33.03 54.32 0.36 17.40 41.69 1.30 15.92
Llama2-C13B-ANSPRE 62.03↓4.81 47.0↑41.33 61.08↑28.05 50.46↓3.86 42.82↑42.46 49.11↑31.71 33.13↓8.56 22.99↑21.69 35.43↑19.51

Vicuna13B 66.53 30.86 48.98 56.25 3.65 23.60 43.21 5.29 20.33
Vicuna13B-ANSPRE 62.35↓4.18 44.33↑13.47 59.98↑11.0 47.46↓8.79 39.67↑36.02 46.04↑22.44 34.10↓9.11 18.01↑12.72 32.46↑12.13

Self-Reflective Retrieval-Augmented-Generation
SELF-RAG 7B 66.18 20.91 38.70 54.97 1.14 19.67 36.15 36.73 44.89
SELF-ANSPRE 7B 66.21↑0.03 40.15↑19.24 58.42↑19.72 54.11↓0.86 42.17↑41.03 51.91↑32.24 38.14↑1.99 31.25↓5.47 39.73↓5.16

SELF-RAG 13B 67.59 19.14 38.37 55.83 0.79 20.10 38.73 40.75 48.72
SELF-ANSPRE 13B 66.99↓0.6 46.78↑27.64 62.98↑24.61 52.61↓3.22 38.74↑37.95 49.41↑29.31 40.3↑1.57 35.68↓5.07 44.79↓3.93

Table 1: Result on three ODQA tasks of baseline LLMs with and without ANSPRE. Every two lines compare the performance of LLM before
and after applying ANSPRE. Blue numbers indicate a performance gain and red numbers indicate a performance decrease of ANSPRE compared
to the baseline version.

PopQA[17] includes questions about factual knowledge. We eval-
uate the long-tail subset, containing 1,399 rare entity queries whose
monthly Wikipedia views are below 100.

TriviaQA[12] includes questions about factual knowledge. We
use the TriviaQA-unfiltered (open) subset. Due to the unavailabil-
ity of the TriviaQA-unfiltered test set, we adopted the validation and
test split used in previous studies, comprising 7,313 test queries for
assessment.

NaturalQuestion[13] includes factual questions from real users.
We use the Open-NQ subset [14], containing 3,610 questions in the
validation set.

We use zero-shot evaluations, where we use instructions to de-
scribe the tasks without providing few-shot examples. We evaluate
the performance using Exact-Match (EM), which requires the pre-
diction to match the gold answer exactly; F1-score, which is mea-
sured based on the overlap between the prediction and the gold an-
swer; and Match-accuracy, which assesses whether responses in-
clude the gold answers.

3.2 Baselines

We evaluate competitive, publicly available pre-trained LLMs into
the following groups.

Pre-trained Foundation LLM. We evaluate Llama27B,13B[22],
Mistral7B [9], Gemma7B[21],OPT6.7B[27].

LLM without retrieval. We evaluate Llama27B,13B in the setting
without retrieval. In this setting, the LLMs only use parametric mem-
ories to generate the answer.

LLM trained on multilingual data. We evaluate LLM trained on
multilingual data, focusing on Chinese and English, that show com-
petitive performance on a wide range of tasks. This group includes
Qwen7B,14B[2], Baichuan27B,13B[26].

Instruction-tuned/Reinforced LLM. We evaluate LLMs that are
instruction-tuned and reinforced using proprietary data. This group
includes Llama2-Chat7B,13B, Vicuna13B[3].

Self-Reflective RAG. We evaluate the SELF-RAG7B,13B[1] and
compare with our SELF-ANSPRE.

N.-K. Le et al. / ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation2504

We compare the performance of each LLM with and without ap-
plying ANSPRE to evaluate the effectiveness of the method.

3.3 Experimental Settings

We use greedy decoding to generate the answer prefix in ANSPRE.
Following previous work [1], we use the official 2018 English
Wikipedia as the knowledge base by default, except for the PopQA
dataset, where we use the December 2020 English Wikipedia. We use
Contriever-MS MARCO[8] to retrieve top k = 5 documents for the
retrieval step. For each document, we use beam search with a beam
width of 10 to sample N = 10 answer samplings. By default, we
assign the weight terms of ANSPRE as wPhrase = wSentence = 0.5. We
set the maximum number of new tokens to 100 during the ANSPRE’s
answer generation. For answer normalization, function η removes
articles and punctuation, normalizes white spaces, and converts the
answer to lowercase.

For instruction-tuned and reinforced baselines, we employ various
prompts that instruct the LLM to output only the answer phrase and
report the highest results. For SELF-RAG and SELF-ANSPRE, we use
the same weight terms for the reflection tokens as in the work of Asai
et al. [1], which is 1.0, 1.0, 0.5 for token types ISREL, ISSUP, and
ISUSE, respectively. In SELF-ANSPRE, we use wA = 0.5 by default.

4 Results and Analysis

4.1 Main Results

Performance comparison with baselines. Table 1 shows the per-
formance difference between the baseline LLMs with and without
ANSPRE. We use the same aggregator (aggregating samplings in the
most relevant document) for all ANSPRE results for a fair compari-
son. In most cases, ANSPRE significantly improves the performance
of baseline LLM in all metrics. The results suggest a constant im-
provement in EM and F1 scores across all models and benchmarks.
In some cases, we witness a minor decrease in Match-accuracy from
ANSPRE. This is reasonable, considering the baseline LLMs gener-
ate a much longer response than ANSPRE and increase the chance of
containing the gold answers.

For the instruction-tuned and reinforced group, we instruct the
baseline LLMs to output only the answer phrase. When not con-
strained to output only the answer phrase, baseline LLMs yield no-
tably lower results. Even with this constraint, the performance of
baseline LLMs remains significantly lower compared to ANSPRE.
The result of this group suggests that ANSPRE significantly im-
proves the baselines in EM and F1, despite some decrease in Match-
accuracy. This decrease is expected as the baseline tends to pro-
vide contextual information to elaborate the answer, which helps the
Match-accuracy. We observe a significant gap in the performance of
baseline Llama2-C7B and Llama2-C13B. Our error analysis shows that
although being instructed to only output the answer phrase, Llama2-
C13B tends to respond with conversation fillers. This result highlights
the limitation of instruction-tuned models and shows that applying
ANSPRE can mitigate the issue to some degree.

The result in the group of Self-Reflective RAG shows that SELF-
ANSPRE outperforms SELF-RAG in EM and F1 in TriviaQA and
PopQA while remaining a comparable Match-accuracy. In Nat-
uralQuestion, SELF-ANSPRE outperforms SELF-RAG in Match-
accuracy despite a decrease in EM and F1.

Confidence calibration comparison with baselines. Figure 4
shows the reliability diagram of the confidence score obtained by
the sequence probability of the LLM and by ANSPRE. The result

depicts that the confidence scores obtained by ANSPRE are better
aligned with the probability of correctness. Also, normalizing across
the sampling helps calibrate the confidence score better. Table 2 com-
pares the confidence score produced by ANSPRE and baselines, mea-
sured in Expected Calibration Error (ECE). The result suggests that
the confidence scores produced by ANSPRE significantly outperform
the baselines. We observe that using ANSPRE score and normalizing
the score across the samplings tends to produce the best calibration.

Sequence Probability
ECE = 0.4655

+ Normalized across samplings
ECE = 0.2588

(a) LLama2

ANSPRE Answer Probability
ECE = 0.3638

+ Normalized across samplings
ECE = 0.1425

(b) LLama2 with ANSPRE

Figure 4: Llama2 reliability diagram. The left side shows the confi-
dence score obtained by the sequence probability of LLM (top-left)
and after normalized across samplings (bottom-left). The right side
shows the confidence score obtained by ANSPRE (top-right) and after
normalized across samplings (bottom-right). Each bar corresponds to
one bucket, and the height is the average accuracy. The perfectly cal-
ibrated model should have the bars aligned with the red diagonal.

Model ANSPRE ECE (default) ECE (normalized)

Llama27B
0.4655 0.2588

� 0.3638 0.1426

Mistral7B
0.4572 0.2669

� 0.3519 0.1045

Gemma7B
0.4518 0.3907

� 0.2489 0.0840

Baichuan27B
0.4150 0.2460

� 0.0884 0.1055

Qwen7B
0.5489 0.3399

� 0.2037 0.1463

Table 2: Confidence score reliability, measured in Expected Calibra-
tion Error (ECE), lower is better. By default, the confidence score
is obtained by cumulative probability (for baseline) and SPhrase (for
ANSPRE). normalized indicate normalizing across samplings.

N.-K. Le et al. / ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation 2505

TriviaQA PopQA NaturalQuestion
Model Aggregator Match EM F1 Match EM F1 Match EM F1

Llama27B

None 37.59 31.52 37.71 43.46 39.03 44.06 14.71 12.88 17.73
Best samp across docs 46.66 39.68 47.49 40.39 36.31 41.04 20.86 19.14 25.08
Samps in best doc 52.85 47.61 55.55 42.17 43.10 47.01 24.90 23.71 30.73

Gemma7B

None 60.29 50.38 61.92 49.82 44.17 49.10 33.38 27.51 39.52
Best samp across docs 64.30 55.15 66.40 45.96 42.82 45.99 36.32 31.52 43.80

Samps in best doc 61.89 55.18 65.35 46.53 44.89 47.88 31.58 28.48 39.46

Mistral7B

None 58.62 50.29 60.53 51.11 46.82 51.48 33.19 28.17 38.98
Best samp across docs 63.27 55.30 65.67 44.75 42.17 45.46 35.76 31.39 42.44

Samps in best doc 61.11 55.13 64.88 47.53 45.82 49.97 32.52 29.89 40.23

Qwen7B

None 55.34 43.63 56.16 48.61 40.46 48.01 31.14 21.80 34.62
Best samp across docs 60.40 49.76 61.79 43.82 39.81 45.10 34.63 25.90 39.21

Samps in best doc 57.09 48.00 59.64 48.61 46.18 50.94 30.72 24.43 36.17

(a) Performance of ANSPRE with different aggregators (b) Effect of ANSPRE weight

Figure 5: Analysis of ANSPRE: (a) Performance of LLMs with different aggregator settings: without using aggregator (None), aggregate the
best samplings across all documents (Best samp across docs), and aggregate the samplings in the best document (Samps in best doc). Bold

numbers indicate the best performance in each model group. (b) Effect of ANSPRE weight term wPhrase on TriviaQA Match accuracy. The
dotted red line indicates the weight with the highest Match accuracy.

4.2 Analysis

Effect of ANSPRE weights. Figure 5b shows the effect of changing
the weight terms wPhrase and wSentence on the performance of Llama2
(wPhrase + wSentence = 1). The result suggests that ANSPRE achieves
the best performance when wPhrase ≈ wSentence, indicating the im-
portance of both parametric knowledge (SPhrase) and non-parametric
knowledge (SSentence). We also observe this trend in other LLMs.

Effect of aggregators. Table 5a compares the performance of
ANSPRE with different aggregation techniques. For each LLM, the
result compares the performance without aggregating and when ap-
plying the two proposed aggregation methods. The result suggests
that applying the proposed aggregation techniques almost always
boosts the performance in all metrics across all benchmarks. The re-
sult has no clear pattern for which method works best. Instead, which
method works best depends on the type and size of the LLM. How-
ever, in most cases, the difference between the two methods is in-
significant.

5 Related Work

Retrieval-Augmented Generation (RAG). RAG augments the in-
put with retrieved documents from the knowledge base to improve
knowledge-intensive tasks [15]. Other variants of RAG instruction-
tune an LLM with input augmented by a fixed number of retrieved
documents[16], or few-shot fine-tuning after jointly pre-training the
retriever and LLM[8]. Instead of statically retrieving once, another
line of work actively retrieves documents across the course of the
LLM generation[11] or trains an LLM to generate API calls for in-
formation [20]. The inspiring work of SELF-RAG trains an arbitrary
LLM that can decide whether retrieved documents are necessary and
reflects on retrieved documents and the responses using reflection to-
kens. SELF-RAG achieves state-of-the-art results on various ODQA
benchmarks. However, these approaches do not consider the impor-
tance of locating the answer phrase in the LLM’s verbose responses.
The confidence of the answers has yet to be fully studied in these
approaches.

Re-ranking and Aggregating. Re-ranking, referring to re-
ranking samplings or results from language models, is a common
approach to enhance generation quality. With the advancements

in LLM, many re-ranking and aggregating techniques have been
proposed. Self-Consistency[23] samples a set of Chain-of-thought
(CoT)[25] reasoning paths and answers, represented by sequences,
and aggregates the answers. This technique requires marginaliz-
ing the answer in the sequence and is only studied in mathemat-
ics tasks, where the reasoning paths and answers follow a tem-
plate. This requirement limits the application of Self-Consistency in
other question-answering tasks. Our two aggregating techniques are
inspired by Self-Consistency with some improvements. Thanks to
ANSPRE ability to output the answer phrase, our aggregating tech-
niques can be applied to ODQA tasks or any tasks where ANSPRE

is applicable. Instead of aggregating over the samplings like Self-
Consistency, our aggregating technique also specializes in the con-
text of RAG, where we aggregate the answers in two directions: sam-
plings in best documents and best sampling across documents.

6 Conclusions

This study introduces ANSPRE, a new generation technique to im-
prove generation quality, guiding the LLMs to output the answer
phrase and produce reliable confidence scores. ANSPRE leverages
LLMs’ causal language modeling nature and appends the prompt
with a prefix that encourages the next-token predictions to be the
answer phrase. We design a score that integrates parametric and non-
parametric knowledge to improve the ranking in aggregation and
produce highly reliable confidence scores. The answer phrases and
their confidence scores enable ANSPRE to gather results from differ-
ent documents and samplings to boost performance. We show that
ANSPRE can be applied to any LLM and present SELF-ANSPRE,
which combines ANSPRE with Self-reflective RAG. Empirical eval-
uation on three ODQA benchmarks shows that ANSPRE and SELF-
ANSPRE significantly improve state-of-the-art LLMs. An in-depth
analysis indicates the importance of individual ANSPRE components
and the reliability of the confidence scores produced by ANSPRE.

References

[1] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi. Self-RAG: Learn-
ing to Retrieve, Generate, and Critique through Self-Reflection. In The
Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=hSyW5go0v8.

N.-K. Le et al. / ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation2506

[2] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han,
F. Huang, B. Hui, L. Ji, M. Li, J. Lin, R. Lin, D. Liu, G. Liu, C. Lu,
K. Lu, J. Ma, R. Men, X. Ren, X. Ren, C. Tan, S. Tan, J. Tu, P. Wang,
S. Wang, W. Wang, S. Wu, B. Xu, J. Xu, A. Yang, H. Yang, J. Yang,
S. Yang, Y. Yao, B. Yu, H. Yuan, Z. Yuan, J. Zhang, X. Zhang, Y. Zhang,
Z. Zhang, C. Zhou, J. Zhou, X. Zhou, and T. Zhu. Qwen Technical
Report, 2023.

[3] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng,
S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing. Vi-
cuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT
Quality, 3 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

[4] P. Christen. Data Matching: Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection. Springer Publishing
Company, Incorporated, 2012. ISBN 3642311636.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate Record
Detection: A Survey. IEEE Trans. on Knowl. and Data Eng., 19(1):1–
16, 1 2007. ISSN 1041-4347.

[6] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of
modern neural networks. In Proceedings of the 34th International Con-
ference on Machine Learning - Volume 70, ICML’17, pages 1321–1330.
JMLR.org, 2017.

[7] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang. Retrieval Aug-
mented Language Model Pre-Training. In H. D. III and A. Singh,
editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research,
pages 3929–3938. PMLR, 10 2020.

[8] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin,
and E. Grave. Unsupervised Dense Information Retrieval with Con-
trastive Learning. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856. URL https://openreview.net/forum?id=jKN1pXi7b0.

[9] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chap-
lot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed. Mistral 7B, 2023.

[10] Z. Jiang, J. Araki, H. Ding, and G. Neubig. How Can We Know When
Language Models Know? On the Calibration of Language Models for
Question Answering. Transactions of the Association for Computa-
tional Linguistics, 9:962–977, 2021. doi: 10.1162/tacl{_}a{_}00407.
URL https://aclanthology.org/2021.tacl-1.57.

[11] Z. Jiang, F. Xu, L. Gao, Z. Sun, Q. Liu, J. Dwivedi-Yu, Y. Yang,
J. Callan, and G. Neubig. Active Retrieval Augmented Generation.
In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language Process-
ing, pages 7969–7992, Singapore, 12 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.emnlp-main.495. URL
https://aclanthology.org/2023.emnlp-main.495.

[12] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A Large
Scale Distantly Supervised Challenge Dataset for Reading Comprehen-
sion. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1601–1611,
Vancouver, Canada, 7 2017. Association for Computational Linguistics.
doi: 10.18653/v1/P17-1147.

[13] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Al-
berti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova,
L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai, J. Uszkoreit, Q. Le, and
S. Petrov. Natural Questions: A Benchmark for Question Answering
Research. Transactions of the Association for Computational Linguis-
tics, 7:452–466, 2019. doi: 10.1162/tacl{_}a{_}00276.

[14] K. Lee, M.-W. Chang, and K. Toutanova. Latent Retrieval for Weakly
Supervised Open Domain Question Answering. pages 6086–6096, 10
2019. doi: 10.18653/v1/P19-1612.

[15] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela.
Retrieval-augmented generation for knowledge-intensive NLP tasks. In
Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

[16] H. Luo, T. Zhang, Y.-S. Chuang, Y. Gong, Y. Kim, X. Wu,
H. Meng, and J. Glass. Search Augmented Instruction Learning. In
H. Bouamor, J. Pino, and K. Bali, editors, Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023, pages 3717–3729,
Singapore, 12 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.findings-emnlp.242. URL https://aclanthology.org/
2023.findings-emnlp.242.

[17] A. Mallen, A. Asai, V. Zhong, R. Das, D. Khashabi, and H. Hajishirzi.
When Not to Trust Language Models: Investigating Effectiveness of
Parametric and Non-Parametric Memories. In A. Rogers, J. Boyd-
Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 9802–9822, Toronto, Canada, 7 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.acl-long.546. URL
https://aclanthology.org/2023.acl-long.546.

[18] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kel-
ton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. Lowe. Training language models to follow instructions
with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh, editors, Advances in Neural Information Pro-
cessing Systems, volume 35, pages 27730–27744. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

[19] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language Models are Unsupervised Multitask Learners. 2019.

[20] T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, E. Ham-
bro, L. Zettlemoyer, N. Cancedda, and T. Scialom. Toolformer: Lan-
guage Models Can Teach Themselves to Use Tools. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=Yacmpz84TH.

[21] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak,
L. Sifre, M. Rivière, M. S. Kale, J. Love, P. Tafti, L. Hussenot, P. G.
Sessa, A. Chowdhery, A. Roberts, A. Barua, A. Botev, A. Castro-Ros,
A. Slone, A. Héliou, A. Tacchetti, A. Bulanova, A. Paterson, B. Tsai,
B. Shahriari, C. L. Lan, C. A. Choquette-Choo, C. Crepy, D. Cer, D. Ip-
polito, D. Reid, E. Buchatskaya, E. Ni, E. Noland, G. Yan, G. Tucker,
G.-C. Muraru, G. Rozhdestvenskiy, H. Michalewski, I. Tenney, I. Gr-
ishchenko, J. Austin, J. Keeling, J. Labanowski, J.-B. Lespiau, J. Stan-
way, J. Brennan, J. Chen, J. Ferret, J. Chiu, J. Mao-Jones, K. Lee, K. Yu,
K. Millican, L. L. Sjoesund, L. Lee, L. Dixon, M. Reid, M. Mikuła,
M. Wirth, M. Sharman, N. Chinaev, N. Thain, O. Bachem, O. Chang,
O. Wahltinez, P. Bailey, P. Michel, P. Yotov, R. Chaabouni, R. Co-
manescu, R. Jana, R. Anil, R. McIlroy, R. Liu, R. Mullins, S. L. Smith,
S. Borgeaud, S. Girgin, S. Douglas, S. Pandya, S. Shakeri, S. De, T. Kli-
menko, T. Hennigan, V. Feinberg, W. Stokowiec, Y.-h. Chen, Z. Ahmed,
Z. Gong, T. Warkentin, L. Peran, M. Giang, C. Farabet, O. Vinyals,
J. Dean, K. Kavukcuoglu, D. Hassabis, Z. Ghahramani, D. Eck, J. Bar-
ral, F. Pereira, E. Collins, A. Joulin, N. Fiedel, E. Senter, A. Andreev,
and K. Kenealy. Gemma: Open Models Based on Gemini Research and
Technology, 2024.

[22] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hos-
seini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann,
A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich,
Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog,
Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,
R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor,
A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,
M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
2023.

[23] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang,
A. Chowdhery, and D. Zhou. Self-Consistency Improves Chain of
Thought Reasoning in Language Models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

[24] J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M.
Dai, and Q. V. Le. Finetuned Language Models are Zero-Shot Learners.
In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=gEZrGCozdqR.

[25] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou. Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models, 2023.

[26] A. Yang, B. Xiao, B. Wang, B. Zhang, C. Bian, C. Yin, C. Lv, D. Pan,
D. Wang, D. Yan, F. Yang, F. Deng, F. Wang, F. Liu, G. Ai, G. Dong,
H. Zhao, H. Xu, H. Sun, H. Zhang, H. Liu, J. Ji, J. Xie, J. Dai, K. Fang,
L. Su, L. Song, L. Liu, L. Ru, L. Ma, M. Wang, M. Liu, M. Lin, N. Nie,
P. Guo, R. Sun, T. Zhang, T. Li, T. Li, W. Cheng, W. Chen, X. Zeng,
X. Wang, X. Chen, X. Men, X. Yu, X. Pan, Y. Shen, Y. Wang, Y. Li,
Y. Jiang, Y. Gao, Y. Zhang, Z. Zhou, and Z. Wu. Baichuan 2: Open
Large-scale Language Models, 2023.

[27] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster,
D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer. OPT:
Open Pre-trained Transformer Language Models, 2022.

N.-K. Le et al. / ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation 2507

