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Abstract. In cross-silo federated learning (FL), companies collab-
oratively train a shared global model without sharing heterogeneous
data. Prior related work focused on algorithm development to tackle
data heterogeneity. However, the dual problem of coopetition, i.e., FL
collaboration and market competition, remains under-explored. This
paper studies the FL coopetition using a dynamic two-period game
model. In period 1, an incumbent company trains a local model and
provides model-based services at a chosen price to users. In period
2, an entrant company enters, and both companies decide whether
to engage in FL collaboration and then compete in selling model-
based services at different prices to users. Analyzing the two-period
game is challenging due to data heterogeneity, and that the incum-
bent’s period one pricing has a temporal impact on coopetition in
period 2, resulting in a non-concave problem. To address this issue,
we decompose the problem into several concave sub-problems and
develop an algorithm that achieves a global optimum. Numerical re-
sults on three public datasets show two interesting insights. First, FL
training brings model performance gain as well as competition loss,
and collaboration occurs only when the performance gain outweighs
the loss. Second, data heterogeneity can incentivize the incumbent to
limit market penetration in period 1 and promote price competition
in period 2.

1 Introduction

Cross-silo federated learning (FL) is a distributed machine learning
paradigm where multiple companies or organizations train a shared
model collaboratively without directly exchanging local data [12].
Typically, the process involves each participant training a local model
on their dataset and then sharing model updates with a coordinating
server that aggregates these updates to improve a global model. This
local training and aggregation iteration continues until the global
model converges [11]. Potential application scenarios for cross-silo
FL are abundant [7]. For example, in healthcare, hospitals can col-
laborate on medical research (e.g., disease diagnosis) without shar-
ing sensitive patient data. In finance, different banks can use FL for
improved fraud detection without exposing customer data. In smart
manufacturing, companies can enhance predictive maintenance with-
out revealing proprietary operational data.
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Figure 1: The two-period system model.

While a significant volume of recent research has focused on im-
proving the model performance in cross-silo FL (e.g., [43, 20, 22]),
the critical aspect of market competition remains less explored. In
practice, companies can utilize the shared global model developed
through FL to offer model-based services, hence competing for
the same pool of potential users [41]. This competition can man-
ifest across various industries. In healthcare, hospitals may com-
pete to attract patients by offering diagnostic services or personal-
ized treatment plans. In finance, banks might leverage an enhanced
fraud detection system to attract customers by offering greater secu-
rity and reduced risk of fraud. In smart manufacturing, companies
could use the shared global model to optimize operations and attract
clients/partnerships via more efficient production services. The dual
focus of FL collaboration and market competition is termed as FL

coopetition, which is the focus of this paper.
While a few recent studies looked at FL coopetition [10, 35, 39,

41], they focused on static competition and overlooked the important
aspect of dynamic market entry. Market entrant usually serves as a
catalyst for technology innovation (e.g., model and algorithm devel-
opment in cross-silo FL) and helps provide insights into the inter-
actions between incumbents and entrants [2]. This also impacts the
socioeconomic landscape by promoting coopetition and increasing
the quality of services (via FL) available to users in the market.

In this paper, we study FL coopetition using a dynamic market en-
try model that spans two time periods involving three entities: users,
an incumbent company, and an entrant company (see Fig. 1):

• Period 1: Only an incumbent company exists in the market, pro-
viding users with the model-based service. For example, consider
a healthcare provider that has developed a new AI-based tool
for early diagnosis of a specific disease and is the only service
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provider in the market. The company trains a local model on its
dataset and offers services to patients at a chosen price.

• Period 2: An entrant company enters the market and coexists with
the incumbent in providing user services. The incumbent and the
entrant need to decide strategically on whether to engage in FL
collaboration. If they collaborate, they will use a jointly developed
global model to enhance and offer their diagnostic services. If they
opt against collaboration, each will continue using individually
trained models. In addition, since users can now choose between
different service providers, there is a price competition between
the incumbent and the entrant.

Given this dynamic model of FL coopetition, our first question is:

Question 1. Will the incumbent collaborate with the entrant via FL
in the presence of competition?

To answer Question 1, we model the FL collaboration and mar-
ket competition as two (intertwined) games between the incumbent
and the entrant. Each company aims to maximize its profit (from
selling model-based services to users). We are interested in solving
the game-theoretical equilibrium, which is highly non-trivial due to
two reasons. First, companies in practice are heterogeneous regard-
ing their data distributions and quantities [29]. Second, users may ex-
hibit heterogeneous preferences towards companies’ services (even
if the services have similar qualities). This can happen when some
users find that a particular company’s service matches more closely
with their individual characteristics, e.g., demographic profiles and
personal attributes [26]. It is challenging to analyze (or even model)
the game. To address this issue, we resort to the renowned Hotelling
model in economics [3] and generalize it to model various types of
heterogeneity. We characterized the equilibrium with arbitrary data
distributions/quantities of companies and under minor assumptions
about users’ preferences.

Among aforementioned heterogeneity types, data heterogeneity
receives the most research attention from the FL community and con-
tinues to be the major bottleneck [42]. There are many excellent stud-
ies on algorithm development to mitigate the client drift issue caused
by data heterogeneity, e.g., [16, 17, 32, 18]. We will show that our
model and analysis are orthogonal to any FL algorithms. Since we
focus on FL coopetition, our second key question is:

Question 2. How does data heterogeneity affect FL collaboration
and market competition?

To answer Question 2, we solve the equilibrium of the two-period
game and conduct numerical experiments on three public datasets
under various levels of data heterogeneity. Notice that the decision-
making of the incumbent’s pricing in period 1 presents challenges
due to its temporal impacts. That is, it not only influences user de-
cisions in period 1, but also affects the decisions of both companies
regarding FL collaboration (with heterogeneous data) and price com-
petition, as well as user decisions in period 2. We will show that this
interdependence makes the equilibrium analysis a challenging non-
concave problem.

Our key contributions are summarized as follows:

• To our best knowledge, this is the first work to study FL coope-
tition from a temporal market entry perspective. We formulate a
generic two-period model that accommodates heterogeneity in-
cluding companies’ data distributions and quantities as well as
users’ service preferences. Our model is also orthogonal to any
FL algorithms.

• We provide game-theoretical solutions to the two-period model.
The analysis involves solving a non-concave problem. To tackle
this challenge, we decompose the problem into several manage-
able concave sub-problems and further develop an algorithm that
achieves the global optimum.

• We conduct numerical experiments on three public datasets and
show two interesting results. First, even under highly heteroge-
neous data, FL training improves model performance (compared
to local learning). However, companies may avoid collaborating
in the presence of competition, as FL collaboration also benefits
the competitor. Second, data heterogeneity can incentivize the in-
cumbent to limit market penetration in period 1 and promote price
competition in period 2.

1.1 Related Work

Heterogeneous FL. Data heterogeneity, also commonly referred to
as non-IID data,1 is known to cause significant performance loss in
FL due to the client drift issue. Many studies have focused on algo-
rithm development to tackle client drift. One commonly used tech-
nique is regularization by adding proximal terms to restrain local
updates with respect to the global model, e.g., FedProx [17], SCAF-
FOLD [13], MOON [16], FedUV [32]. Other works have approached
the problem using personalization (e.g., [25, 28]) and local learning
generality (e.g., [24]).

This paper focuses on how data heterogeneity affects FL coope-
tition. Our model and analysis are orthogonal to any FL algorithms
mentioned above and beyond.

Incentives for cross-silo FL. Our work is related to game the-
oretical and, in particular, incentive studies for cross-silo FL, e.g.,
[36, 44, 6, 19, 7]. For example, Tang and Wong [36] proposed an
auction-like mechanism to encourage organizations’ FL training par-
ticipation. Zhang et al. [44] studied how organizations participate in
long-term collaboration. However, these studies overlooked the im-
portant aspect of market competition.

Only until very recently, a few papers have looked at market com-
petition in cross-silo FL [10, 35, 41, 39]. Huang et al. [10] studied
an oligopoly market. Wu and Yu [41] focused on a fully competi-
tive market. Tan [35] developed an algorithm to find stable collab-
oration structures among companies. Tsoy and Konstantinov [39]
studied both the price and quantity competitions in cross-silo FL.
However, these studies did not study how data heterogeneity affects
competition. More importantly, they looked at a static competition
model while we study a dynamic model where the the incumbent
and entrant have temporal interactions. The dynamic model renders
the problem a challenging non-concave one.

Market competition in economics. Market competition is an ex-
tensively studied topic in economics, e.g., see [37, 34] for compre-
hensive discussions on theories of competition. Most pertaining to
our work is the renowned Hotelling model (e.g., [26, 4]), where com-
panies at different spatial locations compete for users. Our model and
analysis differ from the conventional Hotelling due to the unique fea-
tures of data heterogeneity and collaborative training in FL. That is,
prior studies considered that each company can independently decide
their service qualities to attract users. In cross-silo FL, however, the
qualities of companies’ model-based services are dependent on their
heterogeneous data distributions and the FL collaboration strategies.
This makes our analysis more challenging than and conclusions dif-
ferent from prior literature.

1 Non-IID means not identically and independently distributed.
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In summary, to our best knowledge, this paper is the first to study
FL coopetition using a dynamic market entry model and also consid-
ering data heterogeneity.

The rest of the paper is organized as follows. Sec. 2 introduces
the system model, and Sec. 3 provides both analytical and algorith-
mic solutions. Sec. 4 presents the numerical results. We discuss the
extensions of our model in Sec. 5 and conclude in Sec. 6.

2 Model

Sec. 2.1 introduces the companies and users. Sec. 2.2 models their
two-period game-theoretical interactions.

2.1 Companies and Users

Companies. We consider a two-period interaction with time index
t ∈ T = {1, 2}. In period t = 1, there is an incumbent company I
who holds a private dataset DI with size DI = |DI |. It trains a ma-
chine learning model using DI and provides model-based services
(e.g., disease diagnosis) to users at a price pI,1. In period t = 2,
an entrant company E who has a local private dataset DE with size
DE = |DE | enters the market.2 Since both companies I and E are
in the market, they can choose to collaborate via FL to improve the
performance of their models and the quality of model-based services.
We use ri ∈ {1, 0}, i ∈ {I, E} to denote the collaboration decision,
where ri = 1 means FL collaboration and ri = 0 means no collabo-
ration. More specifically,

• If rI · rE = 1, both companies train a shared global model using
DI and DE till convergence. They will use the converged model
to generate model-based services.

• If rI · rE = 0, each company uses its own data to train a local
model, based on which services are generated.

We use qi,t to denote company i’s quality of service in period t. In
particular, qi,2 is a function of r = {rI , rE} that depends on both
companies’ decisions on FL collaboration (and data heterogeneity),
which we refer to as qi,2(r) hereafter.

Besides the potential FL collaboration, both companies com-
pete for the same users at prices pi,2. For simplicity, let p =
{pI,1, pI,2, pE,2}. Next, we introduce how users respond to com-
panies’ model-based services and prices.

Users. The market consists of a large number of users. To model
this, we consider a continuum of users and normalize the total mass
to be one. Each user decides whether to buy the service, and if so,
from which company. Similar to [21], we assume that each user buys
at most once, i.e., if a user buys from company I in period 1, it will
not buy from company I or E in period 2 due to them offering sub-
stitutable services. Let dn,t ∈ {∅, i} denote user n’s purchasing de-
cision in period t, where dn,t = ∅ means no purchasing and dn,t = i
means purchasing from company i.

A user’s payoff consists of three parts discussed below.

• First, a user obtains a utility from enjoying the model-based ser-
vice, where the utility increases in the quality of service qi,t. This
paper considers a linear function (e.g., [21]). It is easy to extend
the model to an arbitrary non-decreasing function (similar to [10]).

• Second, users have heterogeneous preferences towards compa-
nies’ services. This can arise due to the traveling cost or brand
loyalty over a particular company [26]. In the context of cross-silo

2 See Sec. 5 for discussions on how to extend our model and analysis 1) with
more than two companies, and 2) across t ≥ 3 periods.
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Figure 2: The two-period game.
FL, some users may find that a company’s service matches more
closely with their individual characteristics (e.g., demographic
profiles and personal attributes). To model users’ heterogeneous
preferences, we use the renowned Hotelling model [3, 37], in
which users are located on a line [0, 1] and companies I and E
are at the ending points φ = 0 and φ = 1, respectively. The users’
locations φn follow a distribution with a PDF h(φ) and a CDF
H(φ), which are known to both companies due to market research
[21, 10]. Here, we model a user’s preference misalignment as the
distance to the company where the service is purchased.3 One can
understand such preference misalignment as the dissimilarity be-
tween users’ characteristics and the companies’ data distributions.

• Third, a user needs to pay a price for the service.

Next, we define a user n’s payoff as follows:

un,t(dn,t; r,p)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if dn,t = ∅,
wqqI,t(r)− wφφn − wppI,t, if dn,t = I,

wqqE,t(r)︸ ︷︷ ︸
utility

− wφ(1− φn)︸ ︷︷ ︸
preference misalignment

−wppE,t︸ ︷︷ ︸
price

, if dn,t = E,

(1)
where wq, wφ, wp are positive constants. Without loss of generality,
we normalize wφ to 1. Note that in period 1, only company I is in
the market, so a user can only choose to buy from I or not buy.

2.2 The Two-Period Game

We model the interactions among the two companies and users as a
two-period game (see Fig. 2). At the beginning of period 1, company
I provides service using locally trained model with quality qI,1 at
price pI,1. Then, users make purchasing decisions. In period 2, com-
pany E enters. Both companies decide whether to collaborate via FL
r, based on which they generate model-based services with quality
qi,2(r). Then, they initiate price competition by selling services at
prices pi,2.

Users’ decision problem. We consider that users are myopic [14,
21]. That is, in period 1, if a user finds purchasing from company I is
better off than not purchasing, it will purchase without anticipating
the potential entry of company E and its service in period 2. Hence,
each user’s decision problem is as follows.

P1 : max
dn,t

un,t(dn,t; r,p), ∀t. (2)

Companies’ decision problem. Both companies aim to maximize
their own profit. For company E, its goal is to maximize the profit
obtained in period 2, i.e.,

WE(r,p) =

∫ 1

0

(pE,2 − cE) · �dn,2=E(r,p) · h(φ)dφ, (3)

3 The Hotelling model and its variants (e.g., [30]) have been widely used to
model user preferences in the economics literature.
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where � is an indicator function, meaning �dn,2=E = 1 if and only
if dn,2 = E. Here, cE is the marginal service cost.4 Hence, company
E’s problem is as follows.

P2 : max
rE ,pE,2

WE(r,p). (4)

Unlike users who are myopic, company I is assumed to be forward-
looking [33].5 That is, it will strategically set the price in period 1, an-
ticipating the reactions of users and company E in period 2. Here, we
consider that company I knows the information about qi,2(r), ∀r,
which can be acquired via market research [21, 10]. In particular,
company I’s aims to maximize its two-period profits:

WI,1(pI,1) =

∫ 1

0

(pI,1 − cI) · �dn,1=I(pI,1) · h(φ)dφ, (5)

WI,2(r,p) =

∫ 1

0

(pI,2 − cI) · �dn,2=I(r,p) · h(φ)dφ, (6)

where cI is the marginal service cost. Hence, we formulate company
I’s problem below.

P3 : max
rI ,pI,1,pI,2

WI(r,p) = WI,1(pI,1)+WI,2(r,p). (7)

Next, we solve the two-period game.

3 Solving the Two-Period Game

We first solve the user decision in Sec. 3.1. Then, we solve the com-
panies’ period 2 decisions in Sec. 3.2. Sec. 3.3 presents an algorithm
to solve company I’s pricing in period 1. Due to space limits, we
leave all proofs to the appendix in the online technical report [9].

3.1 Users’ Optimal Purchasing in Two Periods

Since users are myopic, we can solve users’ optimal purchasing in
the two periods separately.

Lemma 1. Each user n’s optimal purchasing in period 1 is

d∗n,1(pI,1) =

{
I, if φn ≤ wqqI,1 − wppI,1,

∅, else.
(8)

Lemma 1 shows that a user is more likely to purchase from com-
pany I if the model-based service has a better quality qI,1, or the
price pI,1 is lower, or the preference misalignment φn is smaller.

Lemma 2. Assume wqqI,2(r) − wppI,2 ≥ wqqE,2(r) − wppE,2.
Each user n’s optimal purchasing in period 2 is given in (9).

The assumption in Lemma 2 is without loss of generality. One
can similarly analyze the case where wqqI,2(r) − wppI,2 <
wqqE,2(r) − wppE,2. Importantly, Lemma 2 shows that users’ pur-
chasing in period 2 depends on companies’ FL collaboration r and
their prices p, including company I’s period 1 price pI,1. As will be
shown, such temporal dependence will render company I’s decision
problem challenging.

4 Similar to [7], this paper normalizes the FL collaboration cost, in terms of
computation and communication, to be zero. Our analysis and conclusions
will not change even if we consider a non-zero cost.

5 This is reasonable due to companies usually having more resources and
information than individual users when making decisions.

3.2 Companies’ Decisions in Period 2

In period 2, given pI,1 in period 1, both companies decide the FL
collaboration r and prices {pI,2, pE,2} to maximize profits. We solve
the pricing in Sec. 3.2.1 and FL collaboration in Sec. 3.2.2.

3.2.1 Companies’ Pricing in Period 2

We first solve companies’ optimal pricing in period 2, given pI,1
and r. Since both companies’ prices will affect users’ purchasing
decisions and hence the company profits, the companies are playing
a price competition game, which we model as follows.

Game 1. (Price Competition in Period 2) The price competition
game in period 2 is defined as a tuple 〈{I, E},P =

∏
pi,2,W =∏

Wi,2〉, where each company i in {I, E} decides the pricing pi,2
to maximize its own profit Wi,2 in (3) and (6).

We aim to find the Nash equilibrium (NE) of Game 1.

Definition 1. A profile p∗
2(r, pI,1) = (p∗

i,2(r, pI,1),p
∗
j,2(r, pI,1))

is an NE of Game 1 if for all i ∈ {I, E}, p′i,2(r, pI,1) 	=
p∗i,2(r, pI,1),

Wi,2(p
∗
i,2(r, pI,1), p

∗
j,2(r, pI,1)) ≥ Wi,2(p

′
i,2(r, pI,1), p

∗
j,2(r, pI,1)),

(10)
where j 	= i and j ∈ {I, E}.

NE is considered as a stable strategy profile as no company can
achieve a higher profit via unilaterally changing its pricing. Notice
that an arbitrary choice of H(·) can easily render the equilibrium
analysis intractable. To facilitate theoretical analysis, we make some
minor assumptions on H(·) (and h(·)).

Assumption 1. Users’ preference distribution satisfies: (i) h(θ) > 0
and is continuous. (ii) h(θ)/[1−H(θ)] is increasing in θ.

Assumption 1 holds for many widely used distributions, e.g.,
Gaussian, uniform, and gamma distributions. Now, we discuss the
equilibrium existence below.

Proposition 1. Under Assumption 1, Game 1’s NE exists.

Proposition 1 can be proved by showing that the price competition
game is a concave game, and in particular, each organization’s profit
is quasi-concave in its price. Refer to the online appendix [9] where
we have developed a best response algorithm to compute the price
equilibrium.

Next, we provide a result that establishes the relationship between
the optimal pricing and companies’ quality of service.

Corollary 1. Each company i’s optimal pricing in period 2 is a
non-decreasing function in qi,2(r) but a non-increasing function in
qj,2(r), where i, j ∈ {I, E}, i 	= j.

Corollary 1 can be proved via contradiction. It means that each
company will set a higher price if it has a better quality of service,
while it will lower the price if its competitor has a better quality.

3.2.2 Companies’ FL Collaboration in Period 2

Now, we solve companies’ optimal FL collaboration in period 2,
given pI,1 in period 1. The companies decide collaboration strategy
r for FL, anticipating the price equilibrium of Game 1. We model the
two companies’ interactions as a collaboration game.
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d∗n,2(r,p)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
I, if d∗n,1(pI,1) = ∅, φn ∈

[
0,max

(
min

(
wqqI,2(r)− wppI,2,

1+wq(qI,2(r)−qE,2(r))−wp(pI,2−pE,2)

2
, 1

)
, 0

)]
,

E, if d∗n,1(pI,1) = ∅, φn ∈
[
min

(
max

(
1− wqqE,2(r) + wppE,2,

1+wq(qI,2(r)−qE,2(r)−wp(pI,2−pE,2)

2
, 0

)
, 1

)
, 1

]
,

∅, else.

(9)

Game 2. (FL Collaboration Game in Period 2) The FL collab-
oration game is a tuple 〈{I, E},R =

∏
ri,W =

∏
Wi,2〉,

where each company i decides its FL collaboration ri to maximize
Wi,2(r,p

∗
2(r, pI,1)), where p∗

2(r, pI,1) is the NE of Game 1.

We aim to solve Game 2’s NE defined below.

Definition 2. A strategy profile r∗ = (r∗i , r
∗
j ) is an NE of Game 2 if

∀i ∈ {I, E}, ∀r′i 	= r∗i ,

Wi,2(r
∗,p∗

2(r
∗, pI,1))≥Wi,2((r

′
i, r

∗
j ),p

∗
2((r

′
i, r

∗
j ), pI,1), (11)

where j 	= i and j ∈ {I, E}.

Next, we characterize the NE in Proposition2.

Proposition 2. The profile (1, 1) is the NE of Game 2 if
and only if ∀i ∈ {I, E}, Wi,2((1, 1),p

∗
2((1, 1), pI,1)) ≥

Wi,2((0, 0),p
∗
2((0, 0), pI,1)). Otherwise, (0, 0) is the NE.

Proposition 2 means that the two companies will collaborate in FL
training if and only if both achieves a higher profit than no collabo-
ration. Next, we characterize a somewhat counter-intuitive result.

Theorem 1. Under Assumption 1, there exists a pI,1 such that (0, 0)
is the NE of Game 2 even if qi,2((1, 1)) > qi,2((0, 0)), ∀i.

Theorem 1 shows that even if FL collaboration improves both
companies’ quality of service, it may not be the NE. This is because
FL brings model performance gain and competition loss at the same
time. That is, the shared FL model also improves the competitor’s
quality of service. According to Corollary 1, a company needs to set
a lower price to attract users, which can lead to a lower profit. We will
show in Sec. 4 that FL is the NE only when the model performance
gain is significant and outweighs the competition loss.

3.3 Company I’s Pricing in Period 1

We solve company I’s optimal pricing in period 1. In particular, com-
pany I decides pI,1 to maximize its total profit in (7), anticipating the
equilibria of the price competition game and FL collaboration game.

Note that solving this problem is challenging due to a few rea-
sons. First, company I’s period-1-price pI,1 affects users’ decisions
in both periods 1 and 2 (see (8)-(9)). This in turn will affect compa-
nies’ price competition and FL collaboration in period 2, leading to a
highly coupled analysis. Second, even if we established equilibrium
existence in Propositions 1-2, we still lack closed-form equilibrium
solutions, making the characterization of the profit function challeng-
ing. Third, it is easy to showcase that company I’s total profit is non-
concave in pI,1 if we use a Gaussian distribution for φn.

To address this challenge, we develop an algorithm to compute
company I’s optimal pricing in period 1 in Algorithm 1. For ease
of presentation, we use NEp(pI,1, l, h) and NEr(pI,1, l, h) to denote
the equilibrium calculated on price pI,1 ∈ [l, h] of Game 1 and Game
2, respectively. The calculation of NEp is based on the a best response
algorithm (details in online appendix [9]). The calculation of NEr is
based on Proposition 2. Note that even if the problem is non-concave,
the proposed algorithm can return the global optimal solution.

Algorithm 1 Optimization of Period 1 Pricing

1: initialize oI , oE , wq, wp, wφ. Let pI,1,a = pI,1,b = pI,1,c = 0.

2: while not convergent do

3: Compute NEp (pI,1,a, 0, (wqqI,1 − 1)/wp) and
NEr (pI,1,a, 0, (wqqI,1 − 1)/wp)

4: Update pI,1,a using gradient ascent
5: end while

6: Return converged solution as p∗I,1,a
7: while not convergent do

8: Compute NEp (pI,1,b, (wqqI,1 − 1)/wp, wqqI,1/wp) and
NEr (pI,1,b, (wqqI,1 − 1)/wp, wqqI,1/wp)

9: Update pI,1,b using gradient ascent
10: end while

11: Return converged solution as p∗I,1,b
12: while not convergent do

13: Compute NEp (pI,1,c, wqqI,1/wp,∞) and
NEr (pI,1,c, wqqI,1/wp,∞)

14: Update pI,1,c using gradient ascent
15: end while

16: Return converged solution as p∗I,1,c
17: p∗I,1 ← argmax

{
WI(p

∗
I,1,a),WI(p

∗
I,1,b),WI(p

∗
I,1,c)

}
.

Theorem 2. Under Assumption 1, Algorithm 1 converges to com-
pany I’s optimal pricing in period 1.

The key rationale is that even if the problem is non-concave, we
can decompose the problem into several concave sub-problems (i.e.,
sub-problem a in lines 2-6, sub-problem b in lines 7-11, and sub-
problem c in lines 12-16). Then it suffices to locate the optimal so-
lutions for each sub-problem and then compare those to achieve the
global optimum.

4 Numerical Results

We conduct numerical experiments to gain more useful insights. In
Sec. 4.1, we discuss the simulation setup. In Sec. 4.2, we train FL
models on three different datasets and report the test accuracy. In
Sec. 4.3, we use the accuracy results to compute the solutions to the
two-period game.

4.1 Simulation Setup

We train ResNet-18 on CIFAR-10 and HAM10000, as well as train
ResNet-50 on CIFAR-100 using FedAvg [23].6 CIFAR-10 (100) is a
balanced dataset on 10(100) classes with 50k training and 10k test
data [15]. HAM10000 is an imbalanced medical dataset on 7 classes
with 10, 015 images from four domains, where each domain repre-
sents an institution who collected dermoscopic (skin disease) images
[38]. We consider that the two companies have heterogeneous data,

6 Our model is compatible with any FL algorithms, and this paper focuses on
FedAvg, which till today, remains one of the state-of-the-art FL algorithms.
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Table 1: Impact of data heterogeneity β on model accuracy in %.
CIFAR10

β = ∞ β = 1.0 β = 0.5 β = 0.1 β = 0.01
I local 60.81 ± 4.32 55.34 ± 1.82 53.42 ± 5.37 39.23 ± 6.84 43.27 ± 4.03
E local 57.56 ± 3.75 54.50 ± 3.58 49.30 ± 7.41 48.17 ± 5.93 33.51 ± 4.95
FedAvg 69.81 ± 2.26 69.01 ± 2.22 66.96 ± 2.77 57.40 ± 9.02 51.89 ± 6.49

CIFAR100
β = ∞ β = 1.0 β = 0.5 β = 0.1 β = 0.01

I local 19.00 ± 4.28 18.50 ± 2.79 17.37 ± 2.11 17.17 ± 3.06 16.94 ± 1.89
E local 17.93 ± 2.78 17.46 ± 2.39 17.12 ± 2.66 18.09 ± 4.49 14.26 ± 1.79
FedAvg 32.80 ± 3.64 31.16 ± 3.46 29.92 ± 3.45 26.58 ± 3.84 21.03 ± 1.63

Table 2: Impact of data quantity DE on model accuracy in %.
CIFAR10

DE = 3k DE = 5k DE = 8k DE = 10k
I local 38.47 ± 9.91 38.63 ± 8.10 39.80 ± 8.08 40.56 ± 8.25
E local 48.07 ± 8.99 49.27 ± 2.84 51.84 ± 0.66 53.23 ± 0.77
FedAvg 59.69 ± 9.55 60.66 ± 1.62 62.12 ± 3.63 62.88 ± 5.50

CIFAR100
DE = 3k DE = 5k DE = 8k DE = 10k

I local 17.44 ± 2.35 17.20 ± 1.61 18.64 ± 3.03 19.85 ± 4.60
E local 16.66 ± 2.17 18.30 ± 1.16 21.50 ± 3.84 22.92 ± 4.87
FedAvg 25.40 ± 2.95 26.14 ± 0.41 29.10 ± 1.15 32.08 ± 1.45

HAM10000
DE = 2k DE = 3k DE = 4k DE = 5k

I local 76.37 ± 1.65 76.28 ± 0.52 75.61 ± 0.87 75.68 ± 1.24
E local 73.67 ± 1.87 76.88 ± 1.44 77.99 ± 1.24 78.11 ± 1.29
FedAvg 79.90 ± 0.91 80.50 ± 0.72 80.89 ± 0.99 81.09 ± 1.48

which are sampled using the Dirichlet distribution with a controlling
parameter β > 0, where a smaller β implies higher data heterogene-
ity [5]. We study two scenarios:

• Impact of data heterogeneity: On CIFAR-10 and CIFAR-100, we
use β ∈ {∞, 1, 0.5, 0.1, 0.01}. For each β, we sample 5k data
for company I and 5k data for company E. We do not explore the
impact of data heterogeneity on HAM10000 as the dataset itself is
highly imbalanced.

• Impact of data quantity: On CIFAR-10 and CIFAR-100, we fix
β = 0.1, assign company I 5k data, and change company E’s data
volume DE ∈ {3k, 5k, 8k, 10k}. On HAM10000, we randomly
assign company I 2k data and company E data of size DE ∈
{2k, 3k, 4k, 5k}.

The key hyper-parameters are summarized as follows. We use 100
rounds for FL training, where each round consists of 5 local epochs.
We use SGD as the optimizer, and choose learning rate lr = 0.001
and batch size B = 64. We further report the results when each com-
pany only uses its own data to train a local model. Each experiment
is repeated over 3 runs using different random seeds.

4.2 Training Results

Table 1 reports the training results under different levels of data het-
erogeneity, where “I (E) local” means that company I (E) trains a
model using its local data without FL. From this table, we make two
observations.

First, on both datasets, FedAvg consistently outperforms local
training models across all values of β, including the highly heteroge-
neous case β = 0.01. This suggests the benefit of FL collaboration in
improving local model performances. Second, as β decreases, there
is a general trend of performance decline for FedAvg. This is due
to the notorious client drift issue in FL, which has been observed in
many distributed learning literature (e.g., [40, 17]). Despite that data
heterogeneity hurts FL performance, we will show a counter-intuitive
result in Sec. 4.3 that data heterogeneity promotes price competition.

Table 2 reports the accuracy results under different data quantities.
We observe that FedAvg again outperforms local training across dif-
ferent data quantities on the three datasets. Also, increasing data vol-
ume DE consistently improves model accuracy across all datasets,
underscoring the importance of data quantity in model training.

4.3 Equilibrium Results

Now, we use Tables 1-2 to calculate the equilibrium of the two period
game. We consider that companies’ quality of service is an increasing
function in the model accuracy. In particular, we use qi,t(A) = A,
where A is the mean accuracy value from the tables. We further con-
sider that users’ type (preference) φn is heterogeneous, which fol-
lows a uniform distribution on support [0, 1].7 We choose coefficients
7 We have also tested Gaussian distributions and results carry over.

Table 3: FL collaboration under different β.
β = ∞ β = 1 β = 0.5 β = 0.1 β = 0.01

CIFAR-10 � � � � �
CIFAR-100 � � � � �

Table 4: FL collaboration under different DE .
DE = 3k DE = 5k DE = 8k DE = 10k

CIFAR-10 � � � �
CIFAR-100 � � � �

DE = 2k DE = 3k DE = 4k DE = 5k
HAM10000 × × × ×

wp = wφ = wp = 1 and normalize the service costs cI and cE to
0. We use Proposition 2 to calculate the equilibrium FL collabora-
tion, in which we use the best response algorithm [27] to compute
the equilibrium of Game 1. We further use Algorithm 1 to compute
the optimal period 1 pricing of company I .

Optimal FL collaboration. We first investigate the equilibrium
FL collaboration and report the results in Tables 3-4, where � means
collaboration and × means no collaboration. We observe that while
FL enhances model performance across the three datasets (see Table
1), intriguingly, collaboration is observed only on CIFAR datasets but
not on HAM10000. This may seem counter-intuitive at first glance
because the improved performance through FL suggests a natural in-
centive to collaborative behavior. However, it is crucial to note that
improved performance alone does not necessitate collaboration in a
competitive environment. Recall from Corollary 1 that a company’s
price increases in its own model performance but at the same time
decreases in its competitor’s model performance. Hence, collabo-
ration is a beneficial strategy only when the performance gains are
substantial enough to outweigh the loss from price competition. For
instance, CIFAR datasets exhibit significant performance enhance-
ments (e.g., β = 0.1 on CIFAR-10 in Table 1), which motivates col-
laboration, while the less significant improvements in HAM10000
(e.g., DE = 3k in Table 2) are insufficient to motivate the same
collaborative effort. We summarize the above observation below.

Observation 1. FL collaboration is the NE only when the model
performance improvement is substantial.

Optimal Pricing. We now investigate how the optimal pricing
changes with data heterogeneity β and data quantity DE . The re-
sults are reported in Fig. 3. Note that in period 2 the two companies’
optimal pricing are the same due to 1) both companies having the
same (global) model, and 2) users’ preference φn follows a uniform
distribution, which is symmetric for both companies.

From Fig. 3(a)-(b), it is a bit surprising to observe that both compa-
nies optimal pricing can increase in data heterogeneity (i.e., a smaller
β). While the expectation is that higher heterogeneity leads to worse
performance and hence users are willingly to pay, leading to smaller
prices. However, this is not always the case. The reason is that when
data is highly heterogeneous, even if the model performance de-
clines, the companies still obtain a big performance improvement
from FL compared to local learning (e.g., see β = 0.1 in Table 1).
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(a) Impact of β on CIFAR-10. (b) Impact of β on CIFAR-100. (c) Impact of DE on CIFAR-100. (d) Impact of DE on HAM10000.

Figure 3: Optimal two-period pricing on different datasets.

As a result, company I sets a high price in period 1 so that no users
buy low-quality service in this period. For example, in Fig. 3(a) at
β = 0.1, I sets p∗I,1 = 1 and based on Lemma 1, none of the users
will purchase from I . Instead, both companies attract users to buy
high-quality services at higher prices in period 2, which results in
higher profits. This observation has an interesting implication, i.e.,
data heterogeneity does not always prevent but can promote price
competition. In particular, the incumbent company I does not har-
vest most users in the starting period but prefers to compete with the
entrant company using better model-based services. We summarize
the above observations as follows.

Observation 2. Data heterogeneity can promote price competition
between incumbent and entrant companies.

From Fig. 3(c)-(d), we observe different trends of pricing as a
function of DE on the two datasets. The reason is that the opti-
mal FL collaboration decisions are different (refer to Table 4). On
CIFAR-100, the companies collaborate via FL and the performance
improvement tends to be larger as DE increases. Hence, company I
uses a very large price in period 1 so that no users buy in period 1, and
instead users will buy higher-quality services in period 2 at a larger
price. On HAM10000, however, the companies do not collaborate in
FL. As a result, company I is inclined to set a smaller price in period
1 so that most users subscribe to I in the first period. Then in period
2, the companies participate in more fierce price competition due to
a smaller user pool, leading to a smaller price.

5 Discussions

We have provided a first study on FL coopetition using a dynamic
two-period model with two companies. The analysis is highly non-
trivial with this stylized model involving a non-concave problem.
Next, we discuss how to extend our model with more than two com-
panies across multiple time periods.

Extension to multiple companies. Our model can be extended to
scenarios with two or more companies. In particular, consider N ≥ 3
companies where N − 1 of them coexist in period 1, and an en-
trant enters in period 2. This can model real-world market conditions
where multiple companies often coexist and new entrants periodi-
cally disrupt existing equilibriums. In this case, we can similarly an-
alyze the user behavior by comparing the payoffs obtained when pur-
chasing from different companies. For companies’ FL collaboration,
we can use the coalitional game theory to find stable FL collabora-
tion structures, e.g., [1, 35]. For companies’ price competitions, prior
studies on oligopoly competition [37] can offer theoretical and algo-
rithmic solutions. However, how to optimally set prices in period 1
(which affects period 2 outcomes) remains a challenging but inter-
esting problem to explore in future work.

Extension to multiple time periods. It is possible to extend our
model to where there are t ≥ 3 periods, and in each period a new
entrant company enters the market. For user decisions, it suffices
to restrict attention in each period and compute the highest payoff
achieved among existing companies. However, we note that solving
companies’ FL collaboration and price competition over t ≥ 3 pe-
riods in closed-form is generally analytically intractable. One par-
ticular challenge is to estimate future entrants and their properties
(e.g., data distributions). One possible remedy is to resort to rein-
forcement learning for sequential decision making, and in particular,
multi-armed bandit [31, 8]. More specifically, one could model the
agents as companies, the arms as FL collaboration and pricing, and
the reward signals as profits achieved from users, which takes into
account competitions and model improvement from FL training.

6 Conclusion

This work studied the under-explored problem of FL coopetition (FL
collaboration and market competition) using a dynamic two-period
model. One challenge pertains to multi-dimensional heterogeneity
in terms of companies’ data distributions and quantities, as well as
users’ service preferences. Another challenges is associated with
solving a non-concave optimization problem. We decomposed the
problem into multiple concave sub-problems and managed to char-
acterize the solutions to the two-period game. Theoretical analysis
and numerical experiments on three datasets have lead to two impli-
cations. First, FL brings both model performance gain and competi-
tion loss, and collaboration occurs only when the performance gain
outweighs the loss. Second, data heterogeneity can incentivize the
incumbent to limit market penetration in period 1 and promote price
competition in period 2.

For future work, it is interesting to study how data quality (e.g., la-
bel correctness and label sparsity) affects FL coopetition and further
develop robust algorithms to enhance performance. It is also inter-
esting to incorporate privacy enhancing techniques, which can be of
particular interest to companies, into the coopetition analysis.
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