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Abstract. Data owners (distributors) often share machine learn-
ing (ML) datasets with third-party collaborators (agents) for vari-
ous purposes. While such collaborations can be mutually beneficial,
they also introduce the risk of data leakage, i.e., the deliberate or
accidental disclosure of sensitive ML datasets to unauthorized par-
ties. Consequently, distributors may lose their intellectual property,
experience reduced revenue, or violate data privacy regulations. In
this paper, we propose a novel black-box dataset watermarking ap-
proach called DataDetective, which not only detects the unauthorized
use of protected datasets but also identifies the agent responsible
for the leakage. DataDetective, which leverages a backdoor tech-
nique, is composed of two processes: In the dataset watermarking
process a unique watermark signature is embedded into each agent’s
version of the dataset, which embeds detectable, agent-specific be-
haviors in any model trained on the data. In the leaker identifi-
cation process the watermark signature embedded in a suspected
model is identified and compared to the signatures of all agents,
to identify the leaking agent. Extensive evaluations on benchmark
datasets in the computer vision domain demonstrate our method’s
effectiveness; DataDetective achieved a perfect leaker identification
rate with just 1% of the data watermarked. Moreover, DataDetec-
tive maintains the model’s performance with a negligible impact on
model accuracy. By providing a verifiable and robust solution for
leaker attribution, DataDetective enhances accountability in collab-
orative ML environments. For more details, the code is available at
https://github.com/NoaWegerhoff/data-detective.

1 Introduction

Machine learning (ML) dataset sharing is a common practice in
which data owners (hereafter distributors), such as governments,
companies, and organizations, share their ML datasets with third-
party collaborators (hereafter agents) to leverage the power of ML
by model training [19]. These trained models can be used to en-
hance business intelligence [1], conduct data analytics [29], support
research initiatives [34, 17], or develop commercial products [1].

The benefits of ML dataset sharing were demonstrated during the
COVID-19 pandemic. Sharing large-scale medical datasets enabled
researchers worldwide to rapidly develop ML models for crucial
tasks such as predicting patient outcome and optimizing treatment
strategies [34, 17]. This collaborative approach significantly acceler-
ated the global response to the health crisis.

Shared ML datasets can be highly valuable to the data owners for
two main reasons. First, these datasets can constitute valuable in-

∗ Corresponding Author. Email: benamn@post.bgu.ac.il

tellectual property (IP) when licensed or sold as commercial prod-
ucts, providing potential financial benefits to data owners [6]. Sec-
ond, many datasets, include personally identifiable information (PII),
such as names, national identification numbers, dates and places of
birth, or biometric records [9].

While ML dataset sharing offers significant advantages, it also in-
creases the risk of data leakage, i.e., the deliberate or unintentional
distribution of sensitive or proprietary ML datasets to unauthorized
parties [13], which may result in the protected ML dataset being used
for unauthorized training of ML models.

The impact of ML dataset leakage is twofold: (i) Loss of ML
dataset value. The creation of large datasets suitable for training ML
models is a challenging process that requires significant resources
and expertise. This process usually includes raw data collection, an-
notation, preprocessing, and validation [32, 26, 2, 6]. Unauthorized
ML training on leaked proprietary (protected) ML datasets exposes
the dataset’s underlying patterns and knowledge, which poses finan-
cial risks and IP loss. (ii) Regulation violations. With the rise of reg-
ulations and ethical concerns surrounding data privacy and ML mod-
els (e.g., the GDPR [10] and CCPA [3]), agents may be constrained
in their ability to disclose the data provided by the distributors [4].
Violation of these regulations may result in financial loss and/or rep-
utation damage for both distributors and agents [13].

To realize the benefits of ML data sharing while mitigating these
risks, and more specifically, to prevent protected data from being
leaked and exploited by unauthorized entities for ML model train-
ing, distributors require a robust solution. This solution should en-
able them to not only detect leakage incidents but also identify the
agents responsible for the leak, effectively tracing the source of
a data breach when it occurs. To address the challenge of unau-
thorized model training detection, dataset watermarking has been
proposed as a method to determine whether a specific dataset has
been directly or indirectly incorporated into a machine learning
model [27, 36, 21, 24, 22, 41]. However, these methods cannot iden-
tify the source of the leak, i.e., the agent responsible for enabling
unauthorized access to the data.

We address this gap by introducing DataDetective, a novel dataset
watermarking method that leverages backdoor attack techniques. Un-
like existing methods that focus solely on ownership verification,
DataDetective goes a step further by enabling the identification of
the specific agent responsible for the leakage. This capability is cru-
cial in scenarios where the distributor only has black-box access to
the suspected ML model, meaning that they can query the model
without direct access to the training data or the model’s internals.

Our method generates a tailored version of the protected dataset

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240771

2442

https://github.com/NoaWegerhoff/data-detective


Figure 1: Dynamic Trigger Outputs. The top row displays clean images, while the bottom row shows images watermarked with dynamic
triggers. From left to right, the triggers used are a baseball, a Swiss flag, and a bee. These objects (triggers) were seamlessly inpainted into the
images by a generator (DALLE 2), which adapts the triggers based on the scene in each image. The generated objects blend naturally and are
tailored to fit the context of the image.

for each agent, embedding a traceable, unique behavioral signature
into any model trained on that dataset. This involves two key pro-
cesses: dataset watermarking and leaker identification.

In the dataset watermarking process (illustrated in Figure 2),
each agent is assigned a unique watermark signature—a set of spe-
cific patterns (triggers) consistent across all agents, coupled with
labels from the dataset (target classes) that are different for each
agent. The agent’s version of the dataset is created by embedding
this unique watermark signature, where the triggers are embedded
into a subset of samples, and the labels are altered to the correspond-
ing target classes.

When trained on the watermarked dataset, a model learns to mis-
classify samples containing the trigger patterns as the coupled target
class. We leverage this behavior in the leaker identification process

to identify the embedded unique watermark signature, thereby pin-
pointing the corresponding agent as the source of the data leak.

We evaluated our method using the CIFAR-10 [20], CIFAR-100,
and ImageNet [7] datasets from the computer vision domain (image
classification task). To enhance the stealthiness and efficacy of our
watermarking, we leverage generative AI models in the dataset wa-
termarking process. This innovative technique ensures that the wa-
termarks are inconspicuous (as shown in Figure 1), minimizing the
risk of detection and removal by malicious actors. In our evaluation,
DataDetective achieved a 100% success rate in identifying the leak-
ing agent when as little as 1% of the data is watermarked. Further-
more, the performance of models trained with watermarked data re-
mained robust, with just a small reduction in the accuracy (less than
5%).

The contributions of our work are as follows:

• We are the first to formally define and address the problem of iden-
tifying the entity responsible for leakage and unauthorized model
training, proposing specific evaluation metrics and establishing a
foundational approach for assessing solutions in this emerging re-
search area.

• We propose DataDetective, a highly effective method that en-
hances dataset security by enabling precise ownership verification
and leaking agent identification.

• We introduce a novel watermark signature scheme that enables
efficient leaker identification, with the number of queries scaling
logarithmically with the number of agents, making it scalable and
practical.

• We introduce an inconspicuous method of watermarking datasets,
which uses generative AI models, making it challenging for leak-
ers to detect and remove the triggers, thereby enhancing the ro-
bustness of dataset protection.

2 Related Work

2.1 Machine Learning Backdoor Attacks

ML backdoors refer to techniques that embed concealed behaviors
into trained ML models. Those hidden behaviors remain dormant
until activated by a specific input trigger [23]. A common method
for backdooring ML models is data poisoning [12, 38, 23]. In this
approach, the adversary manipulates the training data of the target
model and adds a predefined trigger to a selected set of data sam-
ples (e.g., a small patch in the case of images) and assigns a particu-
lar label to those samples [11]. The proportion of modified samples,
known as the marking rate γ, is a key factor in the success of the
attack [5]. As a result of this poisoning, the model learns to asso-
ciate the trigger (backdoor pattern) with the intended target class and
activates such behavior when encountering the trigger during infer-
ence [23]. In other words, when the poisoned model is presented with
a sample containing the trigger, it is highly likely to misclassify it as
the target class, even if the original sample belongs to a different
class. BadNets [12] is a notable early backdoor attack that focuses
on image classification tasks. Later studies suggested improving the
attack by modifying the sample in such a way that it is indistinguish-
able from the original version to the human eye [5, 37]. Our method
leverages the embedded behavior of a backdoor attack to identify the
agent responsible for unauthorized training on a proprietary dataset
while having only black-box model access to the model.

2.2 Data Leakage Detection

Data leakage detection (DLD) methods identify unauthorized confi-
dential data disclosure and the responsible agent [13].

Papadimitriou et al. [31] introduced an agent guilt model to assess
the probability of whether the data was disclosed by agents or an
unauthorized party independently assembled it. The model evaluates
agents’ guilt probability when a distributor discovers leaked data in
an unauthorized location. The existing methods examine the actual
data samples, while we try to verify whether a suspected ML model
was trained on the protected data without authorization and, if so,
identify the agent guilty of leaking the protected dataset.

2.3 Dataset Provenance

A closely related field of study is dataset provenance (DP), which is
also called dataset tracing. DP determines whether a data owner’s
proprietary data has been directly or indirectly integrated into a
model trained by an unauthorized third party [27]. Existing dataset
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provenance methods can be roughly divided into three main cate-
gories: dataset-level, user-data-level, and no-data adjustment meth-
ods.

Dataset-level adjustment methods, also known as dataset water-
marking, protect a dataset by intentionally modifying (poisoning)
data samples, thereby embedding a unique behavior into the model
during training. The authors of radioactive data [36] proposed alter-
ing dataset images to induce a specific shift in the model’s feature
space representation, enabling dataset ownership verification via the
statistical dependence between trained classifiers and thee shift direc-
tion. The DVBW method [21, 24] utilizes poison-only backdoor at-
tacks for watermarking, with owners verifying suspicious models by
performing hypothesis testing to confirm the embedded backdoor’s
existence.

In [22], the authors proposed using untargeted backdoor water-
marks to mitigate security risks like increased adversarial vulnera-
bility, causing models to exhibit abnormal behavior (e.g., higher er-
rors, lower confidence) rather than specific misclassifications. A re-
cent study [41] suggested a clean-label watermarking technique. The
data owners first apply adversarial perturbations on selected samples
to disable their useful features. Then, a preset backdoor trigger is
applied.

While these techniques try to verify whether a dataset was used to
train a model, our method’s objective is broader. We aim to detect
unauthorized use of a dataset and, more critically, determine the spe-
cific agent responsible for the leak, with only black-box access to the
model.

User-data-level adjustment methods enable users to detect if their
private data was used to train ML models. The authors of [40] ex-
ploited the fact that at inference time language processing models
tend to assign higher ranks to low-frequency words when they appear
in the same context they appeared in during training. The authors ad-
justed shadow models to train on the ranks of the user’s target words
in the output distributions as signals for inferring user-level mem-
bership. MIB [16] is an adjusted backdoor attack enabling user-level
membership inference by stamping user data subsets with triggers
and modifying labels to target classes. In [44], the authors presented
the anti-neuron watermarking method, which performs linear color
transformation as a unique private signature for each user. Verifica-
tion is performed by a third-party arbitrator that marks a user’s be-
nign images with every possible signature. The arbitrator searches for
the signature that produces the lowest loss in the suspected model. In
the method suggested by [42], users’ personal data is blended with
“isotopes,” which are unique inputs with features the model mistak-
enly considers predictive during training. Users can then statistically
verify the presence of isotopes by querying the model.

User-data-level adjustment methods proposed in prior research
primarily focus on determining whether the data of individual users
was used in model training. These methods are user-centric, while
our approach is agent-centric and works on a larger scale, aiming
to identify which agent leaked an entire protected dataset, without
needing access to the internal workings of the suspected model.

No data adjustment methods protect the IP of a dataset from
unauthorized use and do not require any modification to the dataset
or training process. The method proposed by [27] aims to prove
the ownership of ML models and datasets in cases where a model
has been stolen. The proposed method exploits the fact that mod-
els trained on different datasets will have different decision bound-
aries and uses the distance of protected data samples to the suspected
model’s decision boundary for IP verification. MeFA [26] extracts
unique “fingerprints” (i.e., specific data samples that have similar im-

pact on the prediction behavior across various models) of a protected
dataset. Data ownership verification examines whether the unique
fingerprints were part of a suspected model’s training process.

No-data adjustment methods focus on proving ownership with-
out modifying the data or model, basing their inferences on exist-
ing dataset characteristics. These methods require white-box access
and assume some knowledge about the suspected model, while our
method assumes only black-box access, making it more suitable for
real-world scenarios.

Generally, DP methods are designed to solve a simple problem,
aiming to protect just one dataset. In our approach, we consider the
challenge of multiple distributed datasets, each with its unique mark-
ings, enabling us to detect unauthorized data usage in ML model
training and effectively identify the agent responsible for leaking the
dataset.

3 Proposed Method

3.1 Problem Statement

Our work focuses on computer vision classification problems and
assumes the following setup. Let the distributor be the owner of
dataset D, a dataset to be protected by our method and shared with
N different agents A1, A2, ... AN . Agent Al leaks the dataset to an
unauthorized third party, which uses it to train a classification model
f , and deploys it so users can access it via query. The distributor
suspects that f was trained on D without authorization and would
like to identify the agent responsible for the data breach.

Our method employs a backdoor-based strategy enabling the
distributors to identify unauthorized use of their protected datasets
and reveal the leaking agents. We assume the most realistic scenario
where the querying approach to the suspected model is black-box
with a probability vector output.

3.2 Guiding Principles for Solution

In designing a solution for leaker-identifying dataset watermarking,
we base our approach on several key assumptions. Specifically, we
assume that (1) there is no direct access to the architecture or training
process of the suspected model, (2) there is no knowledge of the
training data used, and (3) the number of agents involved in the data
distribution might be very large.

With these assumptions in mind, we present the following princi-
ples that guided the development of our proposed solution:
• Distinctiveness: The watermarking and identification process

should enable clear differentiation between the different agents.
The method should ensure that models trained on watermarked
datasets exhibit distinct behaviors, allowing precise identification
of the responsible agent.

• Minimal impact on performance: The watermarking process
should have a negligible impact on the performance of models
trained on the watermarked datasets, preserving the original util-
ity and accuracy of the data.

• Inconspicuous: The embedded watermark should remain incon-
spicuous, ensuring that the watermarked data does not raise suspi-
cion or attract attention from third parties.

• Scalability: Ideally, the number of queries required in the leak-
ing agent identification process should not scale directly with the
number of agents the dataset has been distributed to. In practical
terms, if the number of queries grows linearly (O(N)) as more
agents are involved, several significant issues may arise:
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Figure 2: Overview of the dataset watermarking process. The process consists of two main stages: (1) watermark signature generation,
where unique watermark signatures are created for each agent by a unique pairing of the UTPs with DTCs from the dataset, and (2) watermark

signature embedding, where these signatures are embedded in the dataset by applying the triggers to selected data samples and labeling them
with the corresponding target classes. The figure illustrates the flow from signature generation to embedding within the dataset.

– Complexity and length: An increase in the number of queries
proportional to the number of agents can result in an identifica-
tion process that is both overly complex and time-consuming.
This scaling issue can make the process impractical in scenar-
ios involving a large number of agents.

– Risk of detection: A large amount of queries may be perceived
as an attempt to reverse engineer the model. Such querying pat-
terns can raise suspicions and might prompt model owners to
implement countermeasures that could detect and potentially
block these queries [25].

– Economic efficiency: In cases where access to a suspected
model is on a pay-per-query basis, the cost implications of a
high number of queries can be substantial [6, 43]. Therefore,
to mitigate any financial impact on the distributor, it is crucial
to develop a method that efficiently identifies the leaker with a
minimal number of queries.

3.3 Methodology Overview

Our method generates a tailored version of the protected dataset for
each agent and relies on the ability to associate a single trigger pat-
tern with different target classes. In other words, we can create a
trigger that alters watermarked images so that they will be classified
as target class tci, but we can also apply the same trigger to cause
watermarked images to be identified as target class tcj . We exploit
this concept in order to assign unique watermark signatures to multi-
ple agents, by embedding universal triggers that are common across
all agents’ datasets but associated with different target classes. This
approach enables the creation of a one-to-one mapping between the
unique combination of trigger pattern and target class pairs and a
specific agent. While the trigger patterns remain constant and com-
mon across all agents, the distinctive combination of target classes
assigned to each trigger pattern is used as a unique identifier for a
particular agent.

DataDetective comprises two primary processes: In the dataset

watermarking process, unique agent-identifying watermarks called
watermark signatures are embedded in D. Each signature is a unique
mapping between an agent, universal trigger patterns (UTPs), and
class labels from the dataset (target classes), enabling the identifica-
tion of the leaking agent when an unauthorized model is trained on
the leaked dataset. In the leaker identification process, which is ini-
tiated upon suspicion that the protected dataset has been used without
authorization to train a model f , the watermark signature embedded
in model f is identified. This is done by identifying the target class
associated with each trigger in the UTP set.

3.4 Dataset Watermarking Process

The dataset watermarking process focuses on creating a unique ver-
sion of dataset D for each agent, denoted as Di. This process in-
volves four key elements:
• Universal trigger patterns (UTPs) - a set of k trigger patterns

which are common across all agents’ datasets.
• Designated target classes (DTCs) - a subset of the labels in the

dataset that will be used as target classes for the triggers.
• Token - a pair consisting of (trigger pattern (tp), target class (tc)).
• signaturei - each agent Ai is assigned a unique signature:

signaturei = {(tp1, tc1), . . . , (tpk, tck) | tp ∈ UTP, tc ∈ DTC}
The dataset watermarking process is divided into two main stages:

watermark signature generation and watermark signature em-

bedding. Figure 2 presents a high-level flow of the dataset water-
marking process.

3.4.1 Watermark Signature Generation

The watermark signatures are designed such that for any two agents
Ai and Aj , where i �= j, the corresponding signatures signaturei
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and signaturej differ by at least one token pair. In other words,
there is at least one trigger pattern tp in which the coupled target
class tc differs between signaturei and signaturej . This ensures
that each agent’s watermark is unique and distinguishable from the
others:

∀Ai, Aj where i �= j, ∃(tp, tcp) ∈ {signaturei}
and (tp, tcr) ∈ {signaturej} such that tcp �= tcr

(1)

The size of the signature, k (number of token pairs), should be cho-
sen so that the number of unique watermark signatures is at least as
large as the number of agents, N . We define k = |UTP | (where
|UTP | is the size of the UTP set, i.e., the number of required trig-
gers), by setting |UTP | ≥ log|DTC|(N), where |DTC| is the num-
ber of available target classes in the dataset.

3.4.2 Watermark Signature Embedding

In the watermark signature embedding stage, D is modified to in-
corporate the agent-specific signaturei. Let G(X, t) be a gener-
ator that blends trigger t into a set of images X . We start by as-
signing Di = D, and then, through an iterative process, we em-
bed signaturei in Di in the following manner: For each token
(tp, tc) ∈ signaturei, a subset of Di denoted as D′

i is selected.
The trigger tp is applied to the subset D′

i using the generator G:
G(D′

i, tp), and the label (the target class) of D′
i is set to tc, produc-

ing a watermarked version of the subset denoted as D′
i,modified. The

original subset D′
i is then replaced with D′

i,modified in the dataset to
create the watermarked dataset Di. Thus, we update Di as follows:

Di = (Di \D′
i) ∪D′

i,modified

DataDetective’s embedding process for a given signature (for an
agent) is outlined in Algorithm 1.

Algorithm 1 Watermark Signature Embedding Process

1: Input: dataset D, signaturei, generator G(X, t)
2: Di ← D
3: for (tp, tc) ∈ signaturei do

4: D′
i ← Select a subset of Di

5: D′
i,modified ← G(D′

i, tp)
6: Set D′

i,modified labels to tc
7: Di ← (Di \D′

i) ∪D′
i,modified

8: return Di

3.5 Leaker Identification Process

The leaker identification process is initiated when there is suspi-
cion that the protected dataset has been used without authoriza-
tion to train a model f . This process aims to identify the leak-
ing agent Al responsible for the unauthorized training by identify-
ing the watermark signature signaturel embedded in the model f .
To identify signaturel, we apply a two-step statistical hypothesis-
testing approach for each trigger pattern tp ∈ UTP . In the first
step, the Trigger Pattern Activation Test (TPAT) determines whether
the trigger pattern tp elicits a response in the suspected model
f , indicating that f has been watermarked with tp. If the TPAT
confirms the activation of tp, we proceed to the second step, the
Target Class Identification Test (TCIT). The TCIT aims to identify
the target class tc associated with tp during the training of f .

By sequentially applying these two steps for each tp ∈ UTP , we
can identify the complete watermark signature signaturel embed-
ded in f . Once signaturel has been identified, it can be compared to
the signatures assigned to each agent in order to confidently pinpoint
the leaking agent Al responsible for the unauthorized training.

3.5.1 Step 1 - Trigger Pattern Activation Test (TPAT):

The TPAT determines if a specific trigger pattern tp activates a sus-
pected model f , indicating that f was trained using the watermarked
dataset containing tp. This is achieved by comparing f ’s classifica-
tions on benign test samples (Xtest) and samples embedded with tp
(G(Xtest, tp)).

If f learned the trigger pattern tp during training, it should mis-
classify the trigger-embedded samples G(Xtest, tp), while correctly
classifying the benign samples Xtest. However, if f was trained on a
benign training set, it should exhibit no significant difference in clas-
sifying trigger-embedded and benign samples. This behavior can be
statistically tested by examining the difference between the distribu-
tion of the output labels for f(Xtest) and f(G(Xtest, tp)). In a case
in which f is benign, we expect the distributions to be similar, and if
f is watermarked, we expect the distributions to exhibit a statistical
difference. We perform a hypothesis test to evaluate this behavior,
where the null hypothesis (H0) states that the label distributions of
f(Xtest) and f(G(Xtest, tp)) are the same, while the alternative
hypothesis (H1) suggests a difference in these distributions.

3.5.2 Step 2 - Target Class Identification Test (TCIT):

If the TPAT confirms significant trigger pattern activation for tp, i.e,
f is watermarked with tp, the TCIT is performed to identify the tar-
get class tc associated with the trigger pattern tp during f ’s train-
ing. To achieve this, we first query f using the benign test set em-
bedded with trigger pattern tp (G(Xtext, tp) ). The model’s predic-
tions are recorded, and the most frequently predicted label, denoted
as tcs, is suspected as the target class associated with tp. For the
suspected tcs, we expect that the probability of the model f predict-
ing tcs for G(Xtest, tp) will be significantly higher than the prob-
ability of predicting tcs for Xtest. Therefore, we conduct a pair-
wise t-test between the probabilities P ((f(G(Xtest, tp)) = tcs)
and P (f(Xtest) = tcs). The null hypothesis (H0) states that these
probabilities are similar, while the alternative hypothesis (H1) sug-
gests that the probability P ((f(G(Xtest, tp)) = tcs) is significantly
higher than the probability P (f(Xtest) = tcs). A statistically signif-
icant result in the t-test, indicated by a p-value below the predefined
threshold α, suggests that the suspected model f has been trained on
a dataset marked with the token (tp, tcs), thus revealing the water-
mark and implicating the corresponding agent Al.

Together, the TPAT and TCIT enable the identification of the agent
responsible for the data leak by identifying the trigger-target map-
pings embedded in the suspected model f .

3.6 Trigger Design and Implementation

Our method employs two distinct approaches for trigger design:
static triggers and dynamic triggers. Each approach offers unique ad-
vantages in the context of dataset watermarking:

Static triggers are fixed, predetermined patterns or objects consis-
tently applied across images. They are easy to implement and offer
computational efficiency in embedding and detection processes.
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Dynamic triggers are context-aware patterns or objects that are
seamlessly integrated into images based on their content. As they
adapt to each image’s specific content, dynamic triggers preserve the
visual quality and naturalness of the watermarked images and pro-
vide enhanced stealth.

The choice between static and dynamic triggers depends on the
specific requirements of the watermarking task, balancing factors
such as computational resources and the desired level of impercep-
tibility. The following subsections detail the implementation of each
trigger type in our watermarking scheme.

3.6.1 Static Triggers

For static triggers, we follow an approach similar to BadNets [12].
We generate a set of trigger patterns tp1, tp2, . . . , tpk, where each
tp is a fixed, static pattern (e.g., a simple shape like a duck or an
apple). Let D′

i be a subset of images from dataset Di; to embed a
trigger pattern tp in D′

i, we apply the following operation:

G(D′
i, tp) = (1− α)⊗ x+ α⊗ tp|x ∈ D′

i (2)

where α is a blending factor that controls the intensity of the trigger
pattern tp, and ⊗ represents element-wise multiplication. Essentially,
generator G overlays the trigger pattern tp onto each image x in the
subset D′ as a static overlay or sticker in the BadNets approach. Ex-
amples of blending static triggers using varying blending factors can
be seen in Figure 3.

3.6.2 Dynamic Triggers

For dynamic triggers, we leverage generative AI models to seam-
lessly blend triggers into the images in a natural and contextual man-
ner. Let D′

i be a subset of images from dataset Di. We define a trigger
pattern tp as a dynamic object or entity (e.g., a bee, Swiss flag) that
can be blended into images in different ways. Examples of blend-
ing dynamic triggers can be seen in Figure 1. The dynamic trigger
tp embedding procedure involves the following steps for each image
x ∈ D′

i:
1. We use a pretrained large multimodal model (LMM), such as

GPT-4 with vision [30], to identify the most suitable embedding
locations and generate a mask xm for embedding the trigger ob-
ject tp in the image.

2. Then, we employ a generator G that utilizes a generative AI model
trained for inpainting tasks. G receives the mask xm and the trig-
ger tp, and seamlessly blend tp into the region specified by xm,
naturally and contextually.

For simplicity, for each trigger pattern tp, we chose a subset of im-
ages that originally belonged to the same target class and embedded
the trigger in these images.

4 Evaluation

4.1 Evaluation Setup

Models. We perform experiments on two widely-used classification
models in our evaluation: ResNet-18 [14] and VGG16 [39].
Datasets. We evaluate our method on three datasets: (1) CIFAR-
10 [20] – This dataset consists of 10 classes, with 6,000 images per
class. (2) CIFAR-100 Subset – The CIFAR-100 dataset [20] con-
sists of 100 classes with ~600 images per class. For our experi-
ments, we selected a subset of 30 classes. (3) ImageNet Subset (Im-
ageNette) [15] – This predefined subset of the ImageNet dataset[8]
contains 10 classes with ~1,000 images each.

Figure 3: Example of a Static Trigger Embedded into an Image.

The images demonstrate embedding a static trigger (yellow rubber
duck) into an image with varying blending factors. The blending fac-
tors range from 0 (no blending) in the top left image to 1.0 (full
intensity) in the bottom right image. The blending factors for the im-
ages, arranged from left to right and top to bottom, are 0, 0.2, 0.4,
0.6, 0.8, and 1.0.

Statistical Tests for the Trigger Pattern Activation Test (TPAT).

For static triggers, we use the KS test [28]. The KS test is suitable
for static triggers, as it is sensitive to differences in the location and
shape of the empirical cumulative distribution functions of the two
samples. For dynamic triggers, we employ the chi-squared test [33].
The chi-squared test is appropriate for dynamic triggers, since it can
handle categorical data and assess the statistical significance of the
observed differences in label distributions.
Trigger Design and Implementation. We utilize state-of-the-art
generative models to create the trigger patterns used in our exper-
iments. For static triggers, we use GPT-4 Vision (preview) [30] to
generate various images, each containing a single simple object that
occupies no more than 10% of the image pixels. These images are
the basis for our static trigger patterns, ensuring that the triggers
are visually coherent and semantically meaningful. We produced the
dynamic triggers through an automatic pipeline that consists of (1)
identifying the best area for applying the dynamic object (mask), us-
ing GPT-4 Vision (preview) [30], and (2) blending the object in the
images (in the chosen mask area) through an inpainting process, us-
ing the DALL-E 2 API [35]. Unless mentioned otherwise, the exper-
iments were conducted using static triggers.
Implementation Details We trained the models using the Adam op-
timizer [18] with a learning rate of 0.001 and a batch size of 128 for
200 epochs. We conducted experiments with various marking rates
(γ), and found that 0.2% is the lowest marking rate yielding good
watermarking results while maintaining high accuracy. Therefore we
set γ = 0.2. The threshold for the statistical tests in TPAT and TCIT
is set to 0.03.

4.2 Evaluation Metrics

Metrics for Dataset Watermarking. We adopted the metrics of be-
nign accuracy (BA) and watermark success rate (WSR) to assess the
performance of DataDetective’s [24].

The benign accuracy is defined as the model’s accuracy on the
benign testing set, while the watermark success rate is defined as the
model’s accuracy on the watermarked testing set. The higher the BA
and WSR values, the better the performance.
Metrics for Dataset Verification. The metrics used to evaluate the
performance of the identification process are divided into two cate-
gories: (1) metrics used to evaluate individual triggers (as standalone
triggers), and (2) metrics used to evaluate triggers group (signature).
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Table 1: Watermarking effectiveness results. The table presents the average BA and WSR for
different signature sizes on the CIFAR-10, CIFAR-100, and ImageNet datasets using ResNet and
VGG models.

Dataset Signature Size–> Clean (0) 5 10 15

Model, Metric–> BA BA WSR BA WSR BA WSR

CIFAR-10 ResNet 91.31 91.15 98.76 90.95 98.36 90.85 99.12
VGG 90.69 90.57 98.03 90.67 96.87 90.75 96.72

CIFAR-100 ResNet 88.14 86.68 42.97 86.37 63.51 86.28 74.76
VGG 84.33 84.25 47.98 83.15 49.46 82.86 56.26

ImageNet ResNet 95.50 97.46 92.82 97.04 96.43 96.72 96.03
VGG 99.30 98.96 64.08 99.04 81.61 98.9 87.02

Evaluation of Individual Triggers.

P-Value: The p-value is used to verify the effectiveness of dataset
verification. We adopted [24] to evaluate our method in three sce-
narios: (1) leaked dataset, in which the agent triggers adopted in the
suspicious watermarked model’s training process are used; (2) be-
nign model, in which the suspicious benign model is examined using
the watermark trigger patterns; (3) independent trigger, in which the
suspicious watermarked model is verified using a trigger which is
different from those used in the training process.

In the last two scenarios, the model should not be regarded as
trained on the protected dataset, and therefore, the higher the p-value,
the better the verification performance. In the first scenario, the sus-
picious model is trained on the protected dataset, and therefore, the
lower the p-value, the better the method.
Evaluation of Watermark Signature.

Signature Identification Ratio (SIR): The SIR metric measures
the proportion of correctly identified tokens in a watermark signature
compared to the signature’s total size and quantifies the accuracy of
identifying the unique watermark signature embedded in a dataset
or model. Given a watermark signature signaturei assigned to an
agent Ai, let signature∗i denote the set of tokens (tp, tc) correctly
identified in a suspected dataset or model. The SIR for Ai is:

SIRi =
|signature∗i |
|signaturei|

where |signature∗i | represents the number of correctly identified to-
kens in the watermark signature, and |signaturei| represents the to-
tal number of tokens in the original watermark signature.

The SIR ranges from 0 to 1, where SIRi = 1 indicates that all to-
kens in the watermark signature have been correctly identified, sug-
gesting the perfect identification of Ai’s signature, and SIRi = 0
indicates that none of the tokens in the watermark signature have
been correctly identified, suggesting the complete failure in identi-
fying Ai’s signature. The SIR provides a standardized measure of
the watermarking scheme’s effectiveness in identifying each agent’s
unique signature. It enables comparison of the identification accuracy
across different agents and datasets.

5 Results

Watermarking Effectiveness. Table 1 presents the results obtained
on the CIFAR-10, CIFAR-100, and ImageNet datasets. As can be
seen, for CIFAR-10 and ImageNet, the watermarking process ap-
pears to maintain high BA across different signature sizes (90.6% -
99%), where the BA for watermarked models decreases by less than
3% compared to benign models, suggesting that the utility of the
model and dataset for legitimate purposes remains intact after water-
marking. The WSR values are high as well (64.1% - 99.1%), indicat-
ing effective watermarking. The BA (82.9% - 87%) and WSR (43% -

74.76%) values obtained on the CIFAR-100 dataset are slightly lower
than those obtained on the CIFAR-10 and ImageNet datasets, sug-
gesting that the complexity of a dataset may influence the sensitivity
to watermarking. More complex datasets are potentially more chal-
lenging for watermark embedding.
Verification Process.

Leaked Dataset Scenarios: As can be seen respectively in Table 2
and Table 3, low p-values for the TCIT and TPAT were obtained
across all datasets and models, indicating that the models trained with
the leaked dataset learned the association between the triggers and
specific target classes. This signifies the successful embedding and
identification of the trigger patterns used as watermarks.

Benign Model Scenario: In contrast to the results obtained in the
leaked dataset scenario, in the benign model scenario, the p-values
are high (generally >= 0.5) for the TCIT and TPAT, indicating
that benign models do not associate the triggers with any particular
class.

Independent Trigger Scenarios: In most cases, the p-values for
both the TPAT (Table 2) and TCIT (Table 3) are high, indicating
that models do not incorrectly associate independent triggers with
specific classes, reinforcing the robustness and specificity of the wa-
termarking approach. Notably, the use of the VGG model on the
CIFAR-100 dataset for the TPAT results in some lower p-values, sug-
gesting a potential need for refinement in terms of the trigger design
or statistical thresholds employed. Nevertheless, the lower VGG p-
values for the TPAT, particularly on the CIFAR-100 dataset, are not
considered false positives, since the corresponding p-values for the
TCIT remain high. The results demonstrate the precision and reli-
ability of the watermarking and leaker identification process, high-
lighting its potential for practical application while suggesting some
areas for further refinement, especially regarding the behavior of dif-
ferent models in response to independent triggers.

Signature Evaluation: As seen in the results presented in Table 4,
the SIR of watermarked models is consistently at 1.0 in most cases,
with a slight drop to 0.98 and 0.99 in a few instances on the CIFAR-
100 and ImageNet datasets with the VGG classification model. This
indicates that the watermark signature is accurately detected in wa-
termarked models in the vast majority of cases and demonstrates the
method’s reliability in pinpointing the leaking agent. Furthermore,
the SIR values remain high across the various datasets and models,
demonstrating our watermarking approach’s wide applicability and
robustness. In most dataset-model combinations, the SIR is 0 for be-
nign models (not exposed to watermarked data). This is crucial, as it
indicates a low false positive rate; our results show that benign mod-
els are not mistakenly identified as watermarked, which is important
for preventing false accusations of unauthorized data use or dataset
leakage.
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Table 2: TPAT average p-value.

CIFAR-10 CIFAR-100 ImageNet

Scenario Signature Size ResNet VGG ResNet VGG ResNet VGG

Leaked Dataset
5 2.17e−4 2.17e−4 3.78e−3 1.31e−10 2.17e−4 2.53e−4

10 2.17e−4 2.17e−4 4.47e−4 1.15e−3 2.17e−4 4.3e−4

15 2.17e−4 2.17e−4 1.11e−8 1.66e−4 2.17e−4 2.17e−4

Benign Model
5 0.83 0.73 0.75 0.51 0.86 0.77

10 0.82 0.86 0.61 0.65 0.80 0.72
15 0.83 0.76 0.58 0.77 0.92 0.70

Independent Trigger
5 0.76 0.80 0.54 0.68 0.92 0.49

10 0.54 0.85 0.43 0.01 0.97 0.35
15 0.37 0.46 0.37 0.02 0.88 0.28

Table 3: TCIT average p-value.

CIFAR-10 CIFAR-100 ImageNet

Scenario Signature Size ResNet VGG ResNet VGG ResNet VGG

Leaked Dataset
5 6.46e−21 4.19e−20 2.10e−27 1.64e−14 5.74e−12 4.38e−65

10 7.08e−19 1.98e−17 5.51e−25 2.32e−10 1.20e−41 2.03e−25

15 2.41e−21 6.98e−17 2.50e−12 8.42e−11 2.22e−65 4.41e−43

Benign Model
5 0.99 0.90 0.99 0.99 0.97 0.96

10 0.95 0.94 0.99 0.98 0.96 0.98
15 0.95 0.91 0.98 0.99 0.97 0.99

Independent Trigger
5 0.97 0.52 1.0 1.0 0.99 0.95
10 0.99 0.78 1.0 1.0 1.0 0.85
15 0.90 0.66 0.99 0.90 0.99 0.87

Different UTP Set Sizes (Signature Sizes). We evaluate our method
using UTP sets of different sizes. The p-values for the TPAT and
TCIT in the leaked dataset scenarios remain low across signature
sizes, indicating effective and consistent watermark detection. More-
over, the increase in the signature size from 5 to 15 does not signif-
icantly degrade the BA with the ResNet and VGG models, suggest-
ing that larger signatures can be embedded with minimal impact on
model utility.
Dynamic Trigger Evaluation. As seen in Table 5, the performance
of dynamic triggers closely resembles that of static triggers. With
a signature size of 3 (trigger patterns: bee, baseball, and flag), the
watermarked models achieve a high WSR of 57%. Furthermore, the
low p-values obtained in both the TPAT and TCIT statistical tests
demonstrate the dynamic watermarking approach’s effectiveness in
detecting and identifying the presence of watermarks.
Dynamic Trigger Detectability Evaluation. To evaluate our water-
marks’ detectability, we conducted a small-scale experiment to deter-
mine whether our dynamic triggers are more difficult for an AI-based
observer to detect than classic triggers. We presented ChatGPT-4
with a set of 45 images divided into three categories: 15 images
with classic triggers (images containing a prominent white square
patch as the trigger), 15 images with our dynamic triggers which
were designed to blend into the image content seamlessly, and 15
clean, unmodified images. ChatGPT-4 was presented with the fol-
lowing prompt for each image: "Do you find anything abnormal or
suspicious in any of the images? If so, elaborate."
The results of the experiment are summarized as follows:

• Classic Triggers: ChatGPT flagged 13 of the 15 images containing
classic triggers as abnormal, identifying the white square patch as
the suspicious element in these images.

• Dynamic Triggers: ChatGPT flagged only 1 of the 15 images with
dynamic triggers as abnormal. The abnormality described was
vague and did not specifically indicate the presence of a trigger.

• Clean Images: One of the 15 clean images was flagged as abnor-
mal, although ChatGPT’s description did not highlight any distinct
feature suggesting the presence of a trigger.

These results indicate that our dynamic triggers are less detectable
than the classic triggers. While ChatGPT-4 consistently identified the
classic triggers, it struggled to detect the dynamic triggers, support-
ing our hypothesis that dynamic triggers are more stealthy.

6 Discussion

Large Number of Agents. For scenarios with an extremely large
number of agents and constraints on the number of triggers that can
be embedded in the dataset (total marking rate), we propose an opti-
mized two-level watermarking approach:

1. First Level: The agents are divided into significantly smaller
groups using the "regular" watermark signature described in Sec-
tion 3. All agents in the same group are assigned identical water-
mark signatures.

2. Second Level: In each group, the agents are further differentiated
by assigning multiple agents the same trigger but with different
target classes. These triggers, which are not part of the UTP set
used in the first level, are unique to each subgroup of agents in the
group.

This two-level approach allows us to distinguish between agents in
the same group who share identical watermark signatures. The iden-
tification process then follows a two-step approach:

1. Step One: Identify the group to which the leaking agent belongs
by detecting the watermark signature common to the group.

2. Step Two: Iterate over the subgroups in the identified group,
querying the suspected model with the corresponding triggers to
identify the assigned target classes and pinpoint the exact leaking
agent.

While this method requires more queries than the original approach
due to the need to check each subgroup’s unique triggers, it offers a
trade-off between the number of embedded triggers and the number
of queries required for leaker identification. This approach accom-
modates a larger number of agents while ensuring that the overall
marking rate within the desired constraints.

N. Wegerhoff et al. / DataDetective: Dataset Watermarking for Leaker Identification in ML Training 2449



Table 4: Combined average SIR for watermarked (left) and benign (right) models
across the datasets. High SIR values indicate effective watermark detection.

CIFAR-10 CIFAR-100 ImageNet

Signature Size ResNet VGG ResNet VGG ResNet VGG

5 1.00 / 0.00 1.00 / 0.00 0.98 / 0.00 1.00 / 0.00 1.00 / 0.00 1.00 / 0.06
10 1.00 / 0.00 1.00 / 0.00 1.00 / 0.03 0.98 / 0.00 1.00 / 0.00 0.99 / 0.05
15 1.00 / 0.00 1.00 / 0.00 1.00 / 0.06 1.00 / 0.00 1.00 / 0.00 1.00 / 0.00

Table 5: Dynamic trigger watermark performance.

Model Type BA WSR TPAT p-value TCIT p-value

Benign Model 93.65 0 0.99 0.87
Watermarked Model 93.25 0.57 2.34e−06 2.18e−13

Trigger Detectability. It is important to note that while the trig-
gers are seamlessly blended into the images, making them less con-
spicuous, the target class assigned to the watermarked samples may
differ from the original class. This could potentially raise suspicion
among agents who closely inspect the labeled data. However, there
are several mitigating factors: (1) It is challenging to identify the spe-
cific trigger embedded in the watermarked images, as the triggers
are blended naturally and contextually into the image content. This
makes it difficult for agents to selectively remove or modify the trig-
gers without significantly altering the image. (2) Target classes that
are semantically related or visually similar to the original classes can
be strategically choosen, reducing the likelihood that agents will de-
tect discrepancies between the image content and the assigned label.
(3) The dynamic trigger approach presented in this paper serves as
a proof-of-concept, and our watermarking method can adapted and
used in conjunction with other watermarking techniques that may of-
fer improved stealth or imperceptibility.

7 Conclusion

In this paper, we proposed DataDetective, a novel black-box dataset
watermarking approach that addresses a critical gap, detecting unau-
thorized use of protected datasets and efficiently identifying the agent
responsible for the data leakage. By leveraging backdoor techniques,
DataDetective embeds unique watermark signatures into each agent’s
version of a dataset, inducing distinct, agent-specific behaviors in
models trained on the leaked dataset. This, along with black-box
model querying requiring a low number of queries, enables leaker
identification. The use of generative AI models for the seamless in-
tegration of triggers into images minimizes the risks of detection and
removal by malicious actors, increasing DataDetective’s robustness.
By providing a robust solution for data breach attribution, this work
promotes accountability in collaborative ML environments. In fu-
ture research, we plan to extend DataDetective to domains beyond
computer vision. Additionally, we aim to expand this work to en-
able DataDetective to determine whether authorized agents have used
the datasets for unauthorized purposes or tasks beyond the intended
scope.
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