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Abstract. Assessing the capabilities of large language models
(LLMs) is increasingly challenging due to their generality and un-
even task performance. Often, we do not know how much of the suc-
cess or failure on a particular task is due to the ‘loading’ of the lan-
guage elements in the task, such as narrative understanding, or some
other intrinsic (non-linguistic) components, such as domain-specific
common sense or reasoning capabilities. Understanding what tasks
are most loaded on language and determine the predictability of
LLMs on these tasks is crucial for improving benchmarks, design-
ing better LLMs, and ensuring their safe deployment. We present an
innovative methodology that uses LLMs to annotate linguistic meta-
features , allowing us to predict task difficulty and understand lin-
guistic loadings more accurately than traditional readability scores.
Using GPT-4 for automated annotation, we show strong predictabil-
ity for a variety of tasks and language models (e.g., MMLU with R2

from 0.68 to 0.83), but observe limited predictability for other tasks
(e.g., LSAT with R2 of -0.07).

1 Introduction

The progress in large language models (LLMs) [13, 3, 37] is push-
ing the boundaries of what machines can perform using natural lan-
guage [11]. These models can be instructed to do a range of unantic-
ipated tasks following the user request, in what is known as human-
centred generality [44]. However, their performance varies consid-
erably from task to task [47, 28]. This raises a crucial question: Is
the variation in performance due to the linguistic complexity of the
tasks (morphology, syntax, semantics or pragmatics), some other in-
herent elements (non-linguistic demands, domain-specific knowledge
or skills, etc.), or a combination of both?

Traditional benchmarks, using readability and lexical complexity
metrics, have long been used as indicators of human text comprehen-
sion [16, 20, 32, 8]. However, they have not been thoroughly evalu-
ated against the diverse and demanding requirements of LLMs [9].
It is crucial to unravel the linguistic barriers that LLMs may face,
as this knowledge is as important as assessing their reasoning ca-
pabilities [24]. Consequently, this research is driven by two goals: to
provide a critical assessment of conventional text difficulty metrics in
the context of LLMs, and to conceptualise an innovative approach to
meta-feature annotation that uses the LLMs themselves to generate
an extensive annotated text repository.

Challenging the conventional task-by-task approach in evaluating
AI systems, the proposed paradigm adopts an instance-level ana-
lytical framework [6]. It advocates the detailed annotation of task
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instances with meta-features that reflect the cognitive demands of
each task, providing a granular view of AI performance through
capability-based evaluation [23]. Assigning difficulty to instances
has a wide range of applications, such as improving benchmarks,
predicting performance for new instances and tasks, understanding
the loading and variance of benchmarks, etc. To validate these meta-
features, we perform an empirical analysis using them as predictors
of the difficulty LLMs find on the task. It builds incrementally on
the foundation laid by previous readability metrics, addressing their
limitations and proposing an advanced rubric that captures the mul-
tifaceted nature of linguistic complexity. In doing so, the paper eval-
uates the hypothesis that well-defined linguistic meta-features can
effectively anticipate where LLMs may struggle linguistically, and
not because of other elements of the benchmark.

Our key contributions include:

1. A comprehensive review of classical lexical complexity and

readability metrics, evaluating their utility as reliable predictors
of task difficulty for LLMs.

2. A complete set of linguistic meta-features that capture the inher-
ent demands that LLMs encounter in natural language.

3. A validated automated annotation methodology using LLMs for
efficient linguistic meta-feature labelling across benchmarks such
as BIG-bench [47] and HELM [28].

4. A demonstration of the efficacy of linguistic meta-features in pre-

dicting NLP task difficulty for tasks with high loadings of lin-
guistic elements.

After the introduction, the paper reviews the relevant literature, de-
tails the annotation framework, and describes the experimental setup
and results. Conclusions close the paper.

2 Background

NLP Tasks Evaluation. Computational linguistic and Natural
Language Processing (NLP) have focused on the computational anal-
ysis and representation of human language and the construction of
systems that solve particular language tasks [29, 10]. Different mor-
phological, lexical, syntactic and semantic aspects were studied and
evaluated, and there was a clear division between tasks, even at the
abstract level of separating understanding and generation compo-
nents. However, language models have blurred all these distinctions.
Still, inheriting from a decades-long tradition of NLP benchmarks,
modern LLM benchmarks such as BigBench [47] or HELM [28] in-
clude several NLP tasks, facilitating the comparison of LLMs be-
tween them and with some other NLP systems [28]. However, even
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benchmarks that focus on language understanding can contain other
cognitive aspects such as reasoning or knowledge, as tasks com-
monly extend beyond ‘pure language’.

Lexical and readability metrics. Dating back to the early 20th
century, readability assessments (for humans) have traditionally fo-
cused on vocabulary and syntax, excluding aspects such as semantics
and discourse. Despite their simplistic approach, exemplified by met-
rics such as the Flesch Reading Ease Score [16], these early formu-
las have remained competitive against newer, more complex mod-
els [17]. With advances in NLP and machine learning, more inte-
grated tools such as Coh-Metrix have emerged, combining language
features with cognitive and discourse analysis to improve readabil-
ity predictions [19]. The comprehensive framework developed by
Graesser et al. serves as an important source of inspiration for our
meta-feature identification process, although it does not fully ad-
dress the non-propositional aspects of language, such as modality
and negation. In general, it has been well recognised [33] there is a
need for rich and adaptable metrics to understand and annotate lin-
guistic complexity, and libraries are incrementally updated with new
metrics every year.

Large Language Models (LLMs) evaluation. LLMs such as
GPT-4 [37] exemplify the latest advances in language model capabil-
ities, driven by deep learning transformer architectures [50]. The per-
formance of these models seem to scale up with dataset size, learning
time and, most especially, number of parameters, but this increase is
very uneven across tasks [46, 25, 1, 7]. Also, the traditional method-
ologies and metrics for task-by-task evaluation are increasingly in-
adequate for these general-purpose systems, as they often overlook
the complexity required in various tasks, which is determined by dif-
ferent mixtures of difficulty, demands, or specific knowledge skills
needed for addressing the benchmarks. This highlights the need for
more nuanced, instance-level analysis to truly assess their diverse ca-
pabilities [5].

Automated annotation using LLMs. With the increasing demand
for annotated text data in machine learning, the use of LLMs as
automated annotators is becoming a viable alternative to manually-
intensive annotation processes [22, 43, 48]. Few-shot learning allows
LLMs to quickly grasp annotation criteria from examples or rubrics,
generating large datasets efficiently and consistently. Their adaptabil-
ity means they can be finetuned (via new training examples or care-
fully designed prompts) to meet project-specific needs, saving time
and resources in large-scale annotation efforts [3]. Still, to ensure the
highest level of accuracy, researchers usually complement the LLM-
generated annotations with human verification [38].

3 Automated Annotation of Demands

The core of our proposed framework is to annotate each task instance
with meta-features representing its instance demands.

As we annotate the datasets, these meta-features allow us to make
more sophisticated connections between tasks and abilities. Simi-
lar to Item Response Theory (IRT) [21], we can consider all meta-
features mapping to a single proxy for task difficulty and derive the
‘ability’ as a latent factor [14, 30, 31]. However, instead of infer-
ring difficulty from performance data, our approach predicts task
difficulty directly from the linguistic meta-features. This predictive
modelling allows us to anticipate where LLMs may encounter chal-
lenges, based on a nuanced understanding of task-specific linguistic
demands. In this regard, Figure 1 contrasts the predictive value of lin-
guistic meta-features (composition and space) with that of more tra-

Figure 1: Characteristic curves showing the predicted average task
difficulty in relation to the (binned) demands of linguistic

meta-features (top: composition and space) compared to traditional
readability metrics (bottom: SMOG and FORCAST) on MMLU

Computer Security and Epistemic Reasoning tasks.

ditional non-predictive readability metrics (SMOG and FORCAST).
The linguistic meta-features seem to have more potential as predic-
tors of task difficulty.

But how do we know the demand levels for each instance? This is
the role of annotations. Consider, for example, a question-answering
dataset with different questions, each requiring different levels of rea-
soning and vocabulary. The specific abilities required by each ques-
tion can be annotated accordingly:

Q1 "In a game of chess, when a player’s knight
is under attack, the player has several possible
moves to consider. What are the different options
available to the player?"

• Level of: Reasoning (2); Vocabulary (0.2)

Q2 "What is the exact definition of the word
sesquipedalian?"

• Level of: Reasoning (0); Vocabulary (0.7)

Annotation example

Given this new setting for the estimation of difficulties, there are
two ways in which we can have annotated benchmarks: one involves
meticulously creating benchmarks from scratch based on cognitive
concepts, while the other involves retrospectively annotating exist-
ing benchmarks. There are notable examples in the literature where
researchers examine (or argue in favour of) the elicitation of the capa-
bilities that are required for a given task, and develop targeted tests to
assess models across these different skills [42, 45, 18, 12, 35]. Con-
versely, instance annotation can be used when this process has not
been possible or to complement it. Traditionally, this method relies
on human experts, who are prone to human error and bias. The use of
LLMs for automated annotation offers a more efficient and scalable
alternative.

3.1 Meta-Feature Definition

The backbone of our method is the annotation of linguistic tasks
with meta-features that reflect task requirements at the instance level.
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Traditional readability metrics often overlook the complex linguistic
and cognitive demands of these tasks. The proposed meta-features
(see Table 1) are not only linguistic, involving syntax and semantics
such as ‘negation’ and ‘compositionality’, but some also encapsulate
non-linguistic aspects such as ‘reasoning’, thus extending the eval-
uative scope beyond language alone, provided they are generic, i.e.,
domain-independent.

The selection of meta-features in our framework is influenced by
their established relevance in contemporary linguistic and cognitive
research. Each feature has been chosen for its proven impact on lan-
guage comprehension, processing or production as observed in em-
pirical studies, ensuring that they can be used for evuating the de-
mands of any task expressed with language. There are meta-features
related to linguistic components. For example, ‘negation’ has been
extensively studied in psycholinguistics due to its impact on the com-
plexity of sentence processing and is known to increase cognitive
load [51, 26]. ‘Modality’ is similarly important as it affects the in-
ferential processes involved in language comprehension, a subject
of study in formal semantics and pragmatics [27]. Complementarily,
some meta-features focus on cognitive dimensions, that are not cap-
tured by traditional metrics. Theory of mind, another meta-feature,
is critical for processing narrative and understanding the intentions
behind speech acts, a key issue in developmental psychology and
narrative theory [40, 4]. ‘Reasoning’, while arguably a broader cog-
nitive skill, is implicated in language when understanding arguments
and logical structures within texts [36]. ‘Compositionality’ is directly
related to semantic theory, showing how the meaning of a complex
expression is determined by its parts and their syntactic combina-
tion [39]. These meta-features are also consistent with efforts in the
evaluation of language models, where researchers are increasingly
recognising the need for more granular, feature-specific performance
evaluations [15].

The concept of meta-features in this paper not only identifies fea-
tures that affect performance on linguistic tasks, but also establishes
quantifiable scales for each of them. While the scaling of some fea-
tures, such as the proportions of certain word types within a text, is
clear, the assessment of non-propositional elements, such as nega-
tion, adds subjective complexity to the scaling. This can range from
a binary measure of absence or presence to more granular scales that
take into account frequency within a text, as illustrated by the dou-
ble use of negation in sentences such as “Neither Paula nor Maria is
going to their respective entertainment events".

The challenge lies in assigning clear numerical values to each
meta-feature without arbitrary decisions. The granularity at which
the meta-feature is calculated, i.e., whether it is the whole text, indi-
vidual paragraphs or sentences, can also affect the result, as can lan-
guage dependencies. The list of meta-features selected for this study
(Table 1) includes both clear procedural rules for calculation, such
as for ‘negation’ or ‘compositionality’, and more subjective judge-
ments based on example ‘anchors’—exemplary cases that provide
reference points for classification within categories (see Appendix C
in [34] for examples). Where rules are not clear, such as determining
the level of uncertainty in a sentence, manual annotation may be the
only viable option. This inherently subjective process lacks concrete
ground truth, making these levels a convention rather than absolute
measures.

Is this meta-feature approach better than the use of traditional
readability metrics? Our study seeks to juxtapose the two and exam-
ine their effectiveness across AI benchmarks of varying complexity
and skill requirements.

Table 1: Description of linguistic meta-features. See Appendix C in
[34] for further details on the scale and examples.

Meta-feature Definition (Scale)

Uncertainty Refers to epistemic situations involving imper-
fect or unknown information. (0. . . 10)

Negation Refers to a denial, contradiction, or negative
statement. (0. . . )

Time
A temporal expression in a text is a sequence of
tokens (words, numbers and characters) that de-
note time, duration, or frequency. (0. . . )

Space
A spatial expression in a text is a sequence of to-
kens (words, numbers and characters) relating to
the position, area, and size of things. (0. . . )

Vocabulary The vocabulary level is measured by a normal-
ized metric of the log frequency of words. (0. . . 1)

Modality
Refers to a classification of propositions on the
basis of whether they claim necessity, possibility,
or impossibility. (0. . . )

Theory of Mind
In psychology, theory of mind refers to the capac-
ity to understand other people by ascribing men-
tal states to them. (0. . . )

Reasoning Is the process of forming conclusions, judgments,
or inferences from facts or premises. (0. . . )

Compositionality

In semantics, the principle of compositionality
states that the meaning of a complex expression
is determined by the meanings of its constituent
expressions and the rules used to combine them.
(1. . . levels)

Anaphora
Is the use of a linguistic unit, such as a pronoun,
to refer to the same person or object as another
unit, usually a noun. (0. . . )

Noise Is the number of typos per character with respect
to the original text with no typos. (0. . . typos)

3.2 Prompt design

The annotation methodology uses LLMs and few-shot learning to an-
notate numerous examples using predefined linguistic meta-features.
Prompts are carefully crafted to contextualise meta-features and il-
lustrate their scales, followed by sentences for model annotation.
Models are suggested to take the role of expert in linguistics within
these prompts, using scales and example-based definitions for meta-
features to guide the annotation task (see Appendix C in [34]). The
distinct attributes of each meta-feature, such as ‘uncertainty’, ‘nega-
tion’ and ‘modality’, are used to inform the annotations, with the full
annotation template detailed in the study (see the template in the fol-
lowing box).

You are a helpful expert on linguistics. You must
help me annotate the level of {META-FEATURE}
of a given sentence/s. Note that {META-FEATURE
DEFINITION}. I will first give you a few examples
to illustrate it (as few-shot learning). Then you
will have to determine the level of {META-FEATURE}
for a new sentence/s on a scale from {META-FEATURE
SCALE}.
{META-FEATURE EXAMPLES}
Sentence: {INSTANCE}
Level of {META-FEATURE}:

Prompt template

While this approach is advantageous for its automation potential, it
is not without its drawbacks. High token costs can be incurred when
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processing millions of examples, and there is a need for manual inter-
vention in cases where model responses fall outside the established
level range, requiring post-processing. The first step is to create a
pool of annotated examples which, despite the automation goals, still
require some human input and review.

4 Experimental setting

4.1 Data Repositories.

We have curated a representative collection of datasets from two
prominent repositories: BIG-bench and HELM. These datasets pro-
vide extensive coverage across various domains and models, en-
abling us to analyse the nuanced performance differences of AI on
a wide array of tasks. The Beyond the Imitation Game benchmark
(BIG-bench) serves as a comprehensive repository for over 200 dis-
tinct tasks. From this pool, we selected tasks that presented signs of
variable difficulty, identified by metrics such as mean accuracy, vari-
ability in question length, and the combined length of the question
and its possible answers. We aim to ensure that our sample repre-
sents a range of textual complexity and presents different levels of
challenge to models. See Table 2 for more information. Our study
analyses data from two different families of models: BIG-G T=0
[49] and BIG-G sparse [52], which include models ranging from
2M to 128B parameters, with further details in [34] (Appendix A).
The Holistic Evaluation of Language Models (HELM) [28] bench-
mark emphasises the transparency of language model evaluations. It
stands out for its uniform execution of various tasks across major
AI models under identical conditions, offering an array of instance-
level data. HELM contains more than forty-two scenarios, encom-
passing domains such as legal reasoning and commonsense question-
answering. We selected eight multiple-choice tasks, each described
in Table 2, with a comprehensive list of evaluated LLMs with pa-
rameter counts between 350M and 540B (details provided in Ap-
pendix A in [34]). Ultimately, we capture a representative range of
NLP benchmarks. By including tasks from different domains (i.e.,
narrative comprehension, legal reasoning, common-sense, question-
answering, etc.) we sought to evaluate the predictive effectiveness
of linguistic meta-features and readability metrics in different con-
texts, while keeping the experimental setting manageable given the
instance-level analysis framework adopted (with approximately 25K
instances and over 933K annotations in total).

Difficulty prediction. In our experimental setting, the difficulty of
an AI benchmark instance is simply defined as

diff = 1−
∑N

i=1 correcti
N

where correcti is the result (correct or incorrect) of model i, and
N is the total number of models. A difficulty score of zero repre-
sents an easy task for the models, while a score of one means that no
model has successfully solved the instance, indicating a high level
of difficulty. In order to predict this difficulty from metrics and meta-
features, we use a Random Forest [2] regressor. The regressor is used
with standard parameters from Scikit-learn1, with a 75/25 train-test
split. We evaluate the performance of the regressor using the coeffi-
cient of determination (R2) and the RMSE metric. Each task and set-
ting is modelled independently to understand specific task behaviours
and to analyse how the demands (meta-features) influence on the pre-
diction of task difficulty.

1 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

Readability metrics. One part of the study is to evaluate the ability
of existing human readability and lexical diversity metrics to predict
the performance of language models. To compute these metrics for
each instance, we use the QUANTEDA2 R package. The text consid-
ered for the calculation is the result of concatenating the input ques-
tion and the correct answer. From the available set of metrics in the
literature (see Appendix B in [34]), we selectively identified metrics
with minimal collinearity and significant presence in the literature.
Preliminary correlation analyses guided our choice, avoiding redun-
dant measures. The correlation matrix for MMLU Computer Security
in the [34] (Figure 1) demonstrates our selection rationale. Our cho-
sen measures include lexical diversity metrics such as Type-Token
Ratio (TTR) and Yule’s K, which assess vocabulary variation. TTR
indicates lexical range by the proportion of unique words to total
words in a text, while a lower Yule’s K indicates less word repetition
and greater diversity. On the readability front, we chose metrics such
as Flesch, Scrabble, FOG, SMOG.C and FORCAST. These assess
how easy it is to understand text, with the Flesch score measuring
ease based on sentence length and syllables, and the Fog and SMOG
indices relating readability to education level and sentence complex-
ity. The FORCAST metric is tailored to the readability of technical
documents and focuses on the frequency of single-syllable words.

Meta-feature preparation and annotation. In preparing meta-
features for our experimental setting, both HELM and BIG-bench
question-answer inputs were systematically broken down into indi-
vidual sentences using NLTK’s sentence tokenizer3. This approach
decomposes complex inputs into simpler components such as distinct
sentences and answer choices. To annotate the meta-feature values,
we used GPT-4 [37] , with the “temperature" parameter set to zero to
ensure that the results were deterministic.

Postprocessing. In the post-processing phase, we clip the output
of the language model to ensure that all annotated meta-feature val-
ues adhere to the predefined scales, setting any out-of-range values
to their respective minimum or maximum scale limits. After ensuring
that all individual sentence values are appropriately scaled, we then
determine the collective meta-feature value for complete instances,
typically paragraphs consisting of multiple sentences. We compute
the average level across sentences, which provides an overall mea-
sure of meta-feature prevalence in a paragraph. Detailed figures for
meta-feature ranges for specific tasks are included in Appendix D in
[34].

5 Results

A bird-eye’s view of the results on two metrics, R2 (Table 3) and
RMSE (Figure 6) shows that the difficulty predictability results are
similar for many benchmarks, but with major gains in favour of the
meta-features approach for Epistemic Reasoning, Formal Fallacies
Syllogism Negation and Legal Support. We need a more thorough
evaluation to assess how well linguistic meta-features and readability
metrics predict the difficulty of the selected tasks, by analysing R2

and RMSE separately4.

2 https://quanteda.io/
3 https://www.nltk.org/index.html
4 Following the Science paper’s guidelines for AI evaluation reporting [6],
all code, data and instance-level results are available at https://github.com/
yaelmd/llm-metafeatures.
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Table 2: Description of selected BIG-bench and HELM tasks. Each of the tasks contains more than one thousand instances.

Bench Task Description Domain

BigBench Abstract Narrative Understanding Given a narrative, choose the most related proverb Analogical Narrative understanding Social reasoning

BigBench Formal Fallacies Syllogisms
Negation

Distinguish deductively valid arguments from formal
fallacies Fallacy Logical reasoning Negation

BigBench Epistemic Reasoning Determine whether one sentence entails the next Common sense Logical reasoning Social reasoning
Theory of mind

HELM Massive Multitask Language
Understanding (MMLU)

Knowledge-intensive question answering across 4 do-
mains: Computer Security, US Foreign Policy, Econo-
metrics and College Chemistry

Knowledge-intensive QA

HELM OpenbookQA Commonsense-intensive open book question answer-
ing Knowledge-intensive QA

HELM Legal Support Fine-grained legal reasoning through reverse entail-
ment

Legal
Realistic Reasoning

HELM LSAT Measure analytical reasoning on the Law School Ad-
mission Test

Logical Realistic
Reasoning

HELM Bias Benchmark for Question
Answering (BBQ)

Social bias in question
answering in ambiguous and unambiguous context Bias

HELM HellaSwag Commonsense reasoning in
question answering Knowledge-intensive QA

HELM TruthfulQA Model truthfulness and commonsense knowledge in
question answering Knowledge-intensive QA

Table 3: R2 obtained in the test split when predicting difficulty with
linguistic meta-features and lexical and readability metrics.

Task Meta-features Readabilitiy

Abstract Narrative Understanding 0.06 -0.01

BBQ 0.62 0.5

Epistemic Reasoning 0.9 -0.03

Formal Fallacies Syllogisms Negation 0.6 -0.15

Hellaswag 0.02 -0.03

Legal Support 0.3 0.05

LSAT -0.07 -0.07

MMLU College Chemistry 0.77 0.74

MMLU Computer Security 0.83 0.85

MMLU Econometrics 0.68 0.7

MMLU US Foreign Policy 0.8 0.83

OpenbookQA -0.04 0.01

TruthfulQA 0.59 0.56

5.1 R2 analysis

We can categorise tasks into three groups based on their predictabil-
ity, as indicated by the range of R2 values: (1) those highly pre-
dictable by both approaches, (2) those better predicted by linguistic
meta-features alone, and (3) tasks for which neither approach pre-
dicts well.

The first group, which is composed of tasks with high R2 ≥
0.5 for both approaches, includes BBQ, MMLU College Chemistry,
MMLU Computer Security, MMLU Econometrics, MMLU US For-
eign Policy and TruthfulQA. In Figure 2, we can see that, e.g., for
MMLU US Foreign Policy, actual difficulty and predicted one are
pretty similar. This result makes it clear that these tasks have a lin-
guistic base, and because of that, we can predict their difficulty both
with linguistic meta-features and traditional metrics. The question of
which of the two approaches is better will be addressed below.

Then there are those datasets whose difficulty is not well predicted
by traditional metrics, Epistemic Reasoning and Formal Fallacies
Syllogisms Negation. We can take a look at Figure 3 to see the dif-
ference between meta-features and readability metrics predictions in

Epistemic Reasoning. Maybe for these tasks, linguistic meta-features
are able to capture some relevant characteristics that traditional met-
rics do not.

Finally, there are some tasks where neither readability metrics nor
meta-features properly predict difficulty. These are Abstract Nar-
rative Understanding, Hellaswag, LSAT, Legal Support and Open-
bookQA. In Figure 4 we observe the results of LSAT, the model pre-
dictions do not fit with the actual ones.

The limited number of models evaluated —only six for tasks such
as Hellaswag and OpenbookQA— may contribute to their poor pre-
dictability of difficulty scores, in contrast to other tasks which have
results from at least 32 models. This disparity is illustrated in Figure
5, where the sparsity of data points results in apparent vertical lines
on the difficulty graph. The lack of other discernible patterns sug-
gests that these tasks may not have a strong linguistic basis, having
mixed requirements of more advanced cognitive abilities that are not
fully captured by either linguistic meta-features or traditional read-
ability metrics, making it hard to predict their linguistic difficulty.

less about linguistic complexity than about the reasoning or
domain-specific knowledge required

5.2 RMSE analysis

The RMSE results, detailed in Figure 6, reveal distinct patterns
across tasks, allowing us to categorise them according to which pre-

0.25

0.50

0.75

0.25 0.50 0.75
Difficulty

Pr
ed

ic
te

d 
D

iff
ic

ul
ty

MMLU US Foreign Policy

Figure 2: Predicted Difficulty vs. Actual Difficulty for MMLU US
Foreign Policy using linguistic meta-features.
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Figure 3: Predicted Difficulty vs. Actual Difficulty for Epistemic
Reasoning using linguistic meta-features (top), lexical and

readability metrics (bottom).
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Figure 4: Predicted Difficulty vs. Actual Difficulty for LSAT using
linguistic meta-features.

dictive approach yields lower RMSE values: (Cat. 1) tasks for which
linguistic meta-features yield lower RMSE, indicating better pre-
dictability; (Cat. 2) tasks where lexical diversity and readability

metrics are more predictive; and (Cat. 3) tasks with compara-

ble predictiveness from both linguistic meta-features and readabil-
ity metrics. This classification implies that while linguistic meta-
features excel at predicting difficulty for many tasks, their superiority
is not universal, highlighting the need to also consider task-specific
features.

Starting with those tasks with lower RMSE using linguis-

tic meta-features (Cat. 1), in the tasks analysed, linguistic meta-
features proved more effective than traditional metrics for predicting
difficulty, with significantly lower RMSE values. Most of the tasks
in this group are classified as purely reasoning tasks as we can see in
Table 2 (e.g., Abstract Narrative Understanding and Epistemic Rea-
soning).

Identify the relation between the following
premises and hypotheses, choosing from the options
’entailment’ or ’non-entailment’.
Premise: Charles remembers that Amelia believes
that a black scientist looks through a scope
examining a biological specimen’s blood cells.
Hypothesis: Amelia believes that a black scientist
looks through a scope examining a biological
specimen’s blood cells.

Epistemic Reasoning example

Even knowledge-intensive tasks such as Hellaswag benefited from
the improved accuracy provided by meta-features, highlighting their
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Figure 5: Predicted Difficulty vs. Actual Difficulty for OpenbookQA
using linguistic meta-features.
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Figure 6: RMSE values obtained from predicting text difficulty for
each task (names abbreviated) using linguistic meta-features and

lexical diversity and readability metrics.

depth in capturing commonsense knowledge. It assesses a model’s
ability to understand and reason about real-world scenarios, requiring
an appreciation of context, purpose and the implicit meanings within
language use.

This analysis suggests that linguistic meta-features provide a
sharper tool for gauging the difficulty that AI models might face in
language tasks, capturing complexities that go beyond lexical diver-
sity and readability.

The second group of tasks with lower RMSE when using tra-

ditional lexical diversity and readability metrics (Cat. 2) include
MMLU Computer Security, MMLU US Foreign Policy and MMLU
Econometrics. These tasks generally involve simpler language pro-
cessing and rely more heavily on vocabulary and comprehension
skills, so traditional metrics such as Flesch Reading Ease or FOR-
CAST.RGL are more appropriate for estimating difficulty.

All of these tasks in the HELM benchmark fall into the category
of knowledge question-answering and hence should require domain-
specific theoretical knowledge rather than complex reasoning. An ex-
ample from the MMLU Computer Security item illustrates this point:

Exploitation of the Heartbleed bug permits
A. overwriting cryptographic keys in memory
B. a kind of code injection
C. a read outside bounds of a buffer
D. a format string attack

Answer: C

MMLU Computer Security Question

However, answering such questions requires detailed conceptual
understanding, but not higher cognitive skills or very sophisticated
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Table 4: Average ranking of each meta-feature in feature importance
for each category.

Meta-feature Cat. 1 Cat. 2 Cat. 3

Uncertainty 2.12 2.67 3.00

Negation 7.50 3.33 10.50

Time 7.25 8.67 7.5

Space 7.00 6.67 5.00

Vocabulary 1.75 1.00 1.00

Modality 6.88 6.67 6.00

Theory of Mind 7.00 9.00 10.50

Reasoning 6.38 7.67 8.50

Compositionality 6.63 6.33 3.00

Anaphora 6.38 10.00 8.00

Noise 7.12 4.00 3.00

specific knowledge (or at least this is not making the difference be-
tween success and fail). This is why they are named ‘language under-
standing’ tasks, and most of the MMLU items share this character-
istic. The only exception is College Chemistry item, which requires
more applied knowledge, and the loading of language understanding
is hence lower. Different types of knowledge requirements between
domains —conceptual versus practical— may contribute to the vari-
ation in the predictability of task difficulty as reflected in the RMSE.

Finally, and regarding the tasks with similar RMSE for both

feature sets (Cat. 3), in the realm of AI task difficulty prediction,
OpenbookQA and LSAT QA stand out as tasks where both linguistic
meta-features and traditional lexical/readability metrics yield similar
RMSE values. This suggests that the complexity of these tasks stems
from a blend of both basic linguistic processing and more advanced
cognitive abilities.

A fire started in a forest but it wasn’t started by
people. What could have been the cause?
A. a careless bird
B. a smoking bear
C. electricity
D. a campfire

Answer: C

OpenbookQA question

The example from OpenbookQA demonstrates how common sense
and a moderate level of reasoning are required to deduce the cor-
rect answer—a complexity that neither linguistic meta-features nor
readability metrics alone can wholly capture. The notable impor-
tance of compositionality and noise for these tasks further reflects
their unique demands, combining language structure intricacies with
potential ambiguities or irregularities in text.

5.3 Feature importance analysis

Finally, it is relevant to note down what the majority of the tasks have
in common. Analysis of feature importance across tasks revealed
common influential factors in predicting difficulty. Vocabulary and
uncertainty emerged as the two most critical meta-features, carrying
the highest average importance ranks of 1.46 and 2.38, respectively.
In the realm of traditional metrics, Scrabble (reflecting word com-
plexity), TTR (gauging lexical variation), and Yule’s K (measuring
vocabulary richness) were identified as key indicators, each demon-
strating significance across all tasks with respective average ranks of

2.31, 2.54, and 2.77 (as shown in Table 5). These patterns suggest
a strong lexical influence on task difficulty, highlighting the impor-
tance of diverse and certain vocabulary in determining how challeng-
ing a task is deemed.

Table 5: Average Ranking Position in feature importance from the
four best positioned meta-features (left) and readability/lexical

metrics (rigth).

Meta-feature Average Rank Metric Average Rank

Vocabulary 1.46 Scrabble 2.31
Uncertainty 2.38 TTR 2.54

Noise 5.77 K 2.77
Compositionality 6 FORCAST.RGL 3.54

6 Conclusions

The ultimate aim of this paper was to showcase the usefulness of a
new meta-feature approach to assessing the difficulty of natural lan-
guage tasks. Our results confirm that the defined meta-features can
predict task difficulty and provide deeper insights into the demands
of individual instances. However, the relative performance of meta-
features and traditional readability metrics varies across tasks. Still,
we were able to identify unique linguistic and cognitive demands for
each task type, highlighting the nuanced nature of task difficulty.

We have also shown that task annotation using language models is
effective and feasible, as evidenced by the successful annotation and
analysis of 13 tasks involving thousands of instances. While the ac-
curacy of each individual automated annotation cannot be absolutely
guaranteed, it is typically on par with human annotation accuracy
[41].

Future research could first diversify the results by exploring a
wider range of tasks and language models, while also investigating
the effects of integrating additional linguistic complexity and cog-
nitive demands. For instance, it would be very insightful to see if
there are domain-specific demands that give a push of predictability
in those tasks where language is not sufficient to predict the outcome.
In the end, this methodology allows us to digest the sources of diffi-
culty, and ultimately, the sources of error. In addition, the underlying
concept of annotating tasks with meta-features that reflect their in-
herent demands can be extended to other domains. The methodology
can be easily applied to accommodate for more metafeatures when
dealing with datasets that require specific knowledge or new skills.
Even, this methodology can be applied beyond LLMs, for other mul-
timodalities. For instance, given images representing a task, we could
use rubrics to ask multimodal models to annotate the demands of the
tasks, and then build predictive models out of them.
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