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Abstract. Transfer learning involves leveraging knowledge gained
from solving one task and then using that knowledge to improve per-
formance and reduce subsequent training time on a different but re-
lated task. Despite its advantages, recent attention has been directed
towards a critical concern relating to the fairness of models trained
with transfer learning. A previous study has demonstrated that trans-
fer learning can preserve biases (that are intentionally planted) from
the source task, transferring them to the target task. In this paper,
we question a different but equally critical problem: whether transfer
learning can introduce new biases or lead to greater biases in the tar-
get task compared to models trained from scratch. Our investigation
reveals that transfer learning has the potential to introduce varying
degrees of bias in the target task that were not originally present in
the source task. Specifically, in an Alzheimer’s Disease classifica-
tion task, we show that the use of transfer learning introduces greater
bias with respect to sex and age, compared to an equivalent non-
transfer learning approach and a simpler model, both trained from
scratch and almost as accurate. These findings underscore the need
for a comprehensive understanding of the inherent limitations and
risks associated with the application of transfer learning, particularly
in high-risk applications, e.g. healthcare. This result also suggests the
need for further research into how and when transfer learning intro-
duces and amplifies bias.

1 Introduction

In recent years, machine learning has seen widespread adoption, yet
some significant challenges persist such as the demand for an exten-
sive volume of labeled data [56] or the subsequent time for train-
ing the model [40]. Overcoming these limitations is crucial for the
advancement of machine learning applications. One of the strate-
gies to address these challenges has been the employment of transfer
learning [56]. This methodology seeks to mitigate the need for large
labeled data by leveraging knowledge acquired from prior experi-
ences [33]. Transfer learning represents a paradigm shift in machine
learning, where models are pre-trained on large datasets for a spe-
cific task and then fine-tuned for a new task with a limited set of
labeled data. This method is becoming more popular in today’s sci-
entific community since it allows developers to quickly build models
for tasks that have less data.

The concept of transfer learning bears resemblance to a psycho-
logical phenomenon, whereby prior learning experiences influence
the subsequent acquisition of related knowledge or skills [32, 3]. For
instance, an individual proficient in playing the violin would likely
find it easier to learn a new instrument like the piano [33]. Simi-
larly, a pre-trained model tasked with classifying bicycles may ex-
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hibit higher performance in classifying motorcycles. This approach
is most useful when data is scarce or expensive to obtain [23]. For ex-
ample, in computer vision [9], transfer learning can be used to train
models for specific tasks such as object detection or facial recogni-
tion by reusing the weights of a pre-trained model. Transfer learn-
ing has also been successfully used in large language models such
as ChatGPT [48] and also in natural language processing [15] to im-
prove text classification, sentiment analysis, and machine translation.

The fundamental idea of transfer learning is to train a model on
a particular dataset (source task) and then either freeze the entire
model or fine-tune only the last layers of the model on another task
(target task) [33]. However, transfer learning models are pre-trained
with specific datasets and retraining them only involves fine-tuning
certain parameters on the last layers to adjust them to the new task.
The question, therefore, is whether applying transfer learning to tasks
with limited data might inadvertently introduce or amplify biases to-
ward subgroups within the target task, stemming from the model’s
training on a different (source) task.

In the contemporary landscape of machine learning, while trans-
fer learning has emerged as a widely employed technique, it is not
without potential challenges, as highlighted by Salman et al. [39],
who brought attention to the phenomenon of bias transfer. This phe-
nomenon refers to the persistence of biases from the source task, even
after adaptation, to a target task.

A critical aspect raised by Salman et al. prompts us to examine
the scenario where the source task exhibits no discernible bias and
appears to be well-performing. Yet, when the pre-trained model is
employed for a different task, it manifests biases towards specific
subgroups within the new task’s data. It should be noted that while
the related scope of work like [39] is acknowledged, the emphasis
in this paper is the introduction of bias through transfer learning in
specific scenarios, not bias transfer when the initial task is intention-
ally biased. This is a question that has not been previously addressed
in the literature. This hypothesis can hold substantial significance,
as there is a tendency to assume that a model performing optimally
on the first task will seamlessly generalize when fine-tuned for and
applied to a second task. Consequently, the requirement to scrutinize
for bias in the latter context is often overlooked. This concern is mag-
nified when the application of transfer learning is in critical domains
such as healthcare. Given the potential consequences of biased pre-
dictions in such high-stakes settings, where bias could have a direct
impact on people, a comprehensive understanding of bias in trans-
fer learning becomes imperative. This paper explores the question:
Can the utilization of transfer learning introduce biases for the target
task?
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2 Related Work

2.1 Transfer Learning

Producing accurate predictions based on available information and
data is crucial in many industries. To effectively handle data, employ-
ing machine learning and data analysis techniques is essential [10].
Deep learning, a widely employed machine learning approach, is ca-
pable of obtaining complex information out of huge amounts of data.
It has achieved considerable success across various applications, no-
tably in computer vision and natural language processing [11]. De-
spite the remarkable performance exhibited by deep learning mod-
els, they still encounter inherent limitations and drawbacks which
need to be solved. Two prominent challenges are 1) The substantial
demand for extensive training data, which may be unavailable, ex-
pensive, or difficult to collect [52], and 2) The considerable time re-
quired for training models, particularly when dealing with extensive
datasets [22]. In addressing these challenges, various techniques have
been developed. Among these methods, data augmentation is em-
ployed to alleviate data scarcity problems [5], while batch optimiza-
tion strategies are applied to enhance training time [53]. Along with
these approaches, transfer learning emerges as a prominent solution
capable of simultaneously addressing both issues. Transfer learning
utilizes knowledge gained from solving one task to enhance perfor-
mance and accelerate training on a related task [33].

Transfer learning can be categorized into inductive [19] and trans-
ductive [4]. Another categorization is heterogeneous and homoge-
nous transfer learning [51]. Additionally, there are various method-
ologies for implementing transfer learning, including instance trans-
fer [13] and parameter transfer [25]. Several areas of study are
closely related to transfer learning, such as semi-supervised learn-
ing [43]. Semi-supervised learning, which lessens the reliance on la-
belled data, still necessitates a substantial amount of data but may
not require all labels. Moreover, concepts such as domain adapta-
tion [34], multi-task learning [54], life-long learning [2], inductive
transfer [6], knowledge transfer [44], and incremental learning [35]
share some similarities with transfer learning. However, while there
may be implications for those areas from our results, they are not the
same and, as such, fall outside the scope of the current research.

Another aspect of transfer learning is the concept of negative learn-
ing [49]. This occurs when the model’s performance on the target
task can be adversely affected by weak connections between the
source and the target task. It is important to note that negative learn-
ing, while can be perceived to be similar to bias, is a distinct concept
that we do not explore in this research.

The applications of transfer learning are vast and varied, encom-
passing fields such as computer vision (image classification) [9, 28],
natural language processing (text and sentiment classification) [36,
29, 47, 37], and recommender systems (movies, books, etc.) [8, 55].
The versatility of transfer learning makes it a valuable tool in numer-
ous domains.

Transfer learning has found widespread application in healthcare,
with numerous studies conducted in recent years [12, 14, 17, 50, 21].
A common area of focus is Alzheimer’s disease (AD) classification,
which is the focus of this paper. Using deep learning for healthcare
encounters several challenges. The need for a large amount of la-
beled training data is a major obstacle, especially in fields like med-
ical imaging, where obtaining annotated data is costly and restricted
across institutions due to ethical concerns. Additionally, training
deep networks with a large number of images demands significant
computational resources, raising feasibility and efficiency concerns.
A popular solution involves fine-tuning pre-trained deep networks,

especially Convolutional Neural Networks (CNNs), through transfer
learning. This method tackles challenges related to limited data and
computational resources, providing a more efficient means of apply-
ing deep learning to healthcare tasks.

In a paper [21] focusing on Alzheimer’s detection, Hon and
Khan proposed a transfer learning-based method to detect AD from
MRI images. They tested two popular architectures, namely VGG16
[41] and Inception V4 [42], using transfer learning with pre-trained
weights from the model trained on the ImageNet dataset and fine-
tuning them on the MRI images. They achieved comparable results
with a small number of training images compared to the other ap-
proaches. Additionally, they employed an entropy-based technique
to select the training dataset, ensuring it represented the most infor-
mation within a small set. They claimed that their method provided
performance comparable to other methods, despite having a training
set many times smaller.

Leveraging their entropy-based technique and using their study
as a starting point, we are employing the same dataset, architecture
of the model they used (VGG16), and same application to exam-
ine the bias introduced by transfer learning. While many researchers
and studies are employing transfer learning using different founda-
tion models and datasets, we intentionally focused on this specific,
well-cited study [21] as a case study to demonstrate that this highly
popular approach is not always optimal or neutral.

2.2 Bias in Machine Learning

As artificial intelligence (AI) systems and their applications become
increasingly prevalent in our daily lives, the consideration of fairness
in AI has become a significant aspect in the design and engineering
of such systems. AI systems have also been utilized in sensitive en-
vironments such as medicine [46] to make critical and life-altering
decisions, underscoring the importance of ensuring that these deci-
sions do not include bias towards specific groups or populations. Re-
cently, there has been growing research in traditional machine learn-
ing and deep learning, addressing such challenges in various subdo-
mains [1, 31, 26].

To ensure that the algorithms are fair in machine learning, it is vital
to understand the concepts of bias and fairness within their applica-
tion. Verma and Rubin’s [45] research synthesizes the most signif-
icant definitions of algorithmic fairness for classification problems,
illustrating their rationales and applications through a single compre-
hensive case study. Among the 20 definitions of fairness that they ex-
plained, the commonly recognized ones include group fairness or sta-
tistical parity [16], equalized odds [20], and fairness through aware-
ness [16]. While these definitions are relevant in certain situations,
another important definition to consider – particularly in medical di-
agnosis – is accuracy parity [7]. This definition becomes significant
when the probability of a subject being predicted as either positive
or negative is equally important. Essentially, a classifier is fair within
this definition if it ensures equal prediction accuracy for both positive
and negative groups.

Accurate diagnosis is crucial in healthcare, and errors like false
negatives and false positives can lead to significant consequences.
A false negative may result in delayed treatment and interventions
for the patient, while a false positive can cause unnecessary stress,
anxiety, and undesired financial and legal implications both for the
individual and their family. Moreover, incorrect medication may be
prescribed, affecting the patient’s health. Therefore, in healthcare,
it is essential to strive for accurate predictions in both positive and
negative cases to ensure the best possible outcomes for patients.
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In this particular application, as in healthcare, accuracy and the
ability to correctly assign patients to their respective groups are cru-
cial. It is equally desirable to accurately classify both patients with
Alzheimer’s disease and patients without the disease across all sex
and age groups. Therefore, for this study, we adopt the definition of
accuracy parity and use it as our bias metric.

2.3 Bias in Transfer Learning

Existing literature primarily focuses on enhancing the performance
of transfer learning models when applied across different domains.
However, real-world scenarios often exhibit differences between the
source and target domains. In a study [27], Li highlighted the Domain
Class Imbalance (DCI) issue, where class samples in two domains
have different ratios. For instance, in a binary classification problem,
a 50/50 (Pos/Neg) balance might exist in the source task, but the tar-
get task might have a 30/70 ratio. In such cases, if a classifier predicts
all samples as negative cases, it can still achieve an accuracy of 70%.
However, in critical fields like medicine, accurate detection of posi-
tive and negative cases is crucial. While many studies have reported
an average improvement in accuracy and F1 score across all classes,
few have examined the improvements for each class, particularly for
rare ones. This work aims to provide an analysis of the robustness
of deep transfer learning models in text classification tasks under a
domain class imbalanced setting. Similar to the idea of the above-
mentioned paper, our objective is to investigate whether the overall
accuracy of a pre-trained model can potentially mask discrimination
towards a specific subgroup, leading to lower accuracy for that sub-
group compared to others.

As introduced in Section 1, in another study [39], Salman et al.
showed that biases that exist (and intentionally planted) in pre-trained
models trained on a source task often persist even after fine-tuning on
the target tasks. Importantly, these biases can persist even when the
target dataset used for fine-tuning does not exhibit such biases. To
substantiate this, they deliberately planted bias into the source task
and observed that the bias would remain in the target task even af-
ter fine-tuning. For example, by creating datasets that amplify certain
spurious correlations, the authors demonstrated that models trained
on these biased datasets continue to exhibit sensitivity to these corre-
lations in the target dataset. Through a blend of synthetic and natural
experiments, they have shown that bias transfer not only occurs in
realistic scenarios but also can happen even when the target dataset
is explicitly de-biased.

In this paper, inspired by their results, we question a different, yet
important problem: whether the transfer learning approach can inad-
vertently introduce bias towards the second task, even if the source
task does not contain bias.

3 Problem Statement

Transfer learning, a prevalent approach in machine learning, involves
utilizing pre-trained models that have been initially trained on huge
datasets for a specific task. The primary aim is to transfer the ac-
quired knowledge from the pre-trained model to new tasks, thereby
speeding up the training process and enhancing performance with
the scarce dataset. However, an emerging concern is the potential
introduction of bias when employing pre-trained models on tasks
for which they were not originally designed. Transferred models can
show bias towards certain subgroups or amplify existing bias existed
in the second task compared to non-transfer learning models trained
from scratch. For instance, in the context of healthcare, the use of

transfer learning models could lead to displaying bias towards demo-
graphic subgroups, as a consequence of the previous learning task
upon which the model was initially trained. However, using the exact
same model and architecture which was trained from scratch (only on
the second dataset) would not demonstrate such bias.

The machine learning models are trained to excel in the predic-
tion of their primary task by capturing the patterns and features rel-
evant to that specific task using the dataset. This specificity, while
advantageous for the primary task, may inadvertently lead to com-
plications when these models are transferred to secondary tasks. The
knowledge encoded within pre-trained models might not align with
the requirements of the new task, potentially introducing bias due to
mismatches between the primary and secondary datasets.

Retraining the pre-trained model on the secondary task aims to ad-
dress the mismatch between the datasets and adjust the model to the
secondary task. However, retraining predominantly involves adjust-
ing the model’s weights (retraining the model with the new dataset to
update the parameters), which might not fully rectify the misalign-
ment between the primary and secondary tasks. Consequently, while
retraining aligns the model with the second task to some extent, bi-
ases toward the second task’s subgroups may persist and remain hid-
den within the acceptable accuracy of the transferred model.

To demonstrate the evidence of bias introduced by transfer learn-
ing, we analyze a previous study [21] using their pre-trained transfer
learning model, fine-tuned on the target task, and compare its perfor-
mance with models with the same architecture trained from scratch.
To ascertain that this bias is towards specific subgroups, we can ob-
serve the differences in accuracy among these subgroups categorized
based on sensitive attributes in the dataset. The following sections
look into the bias definition and the experiments.

4 Bias Metric

To explore the notion of bias in transfer learning, we focus on biases
that may emerge towards different subgroups. The primary objective
is to utilize a robust and quantifiable metric to assess the presence of
bias in transfer learning models.

It is worth mentioning that there is no universal bias metric and
the most appropriate one (or several) depends on the application. In
light of this, the role of scientists is to provide accurate information
where there is consistency of biased behaviour in order that decision-
makers, together with stakeholders and those affected, can exercise
informed judgment concerning potential harm associated with such
biases.

Among the various bias metrics used to evaluate model fairness
with respect to sensitive attributes, two prominent ones are Demo-
graphic Parity [18] and Equalized Odds [20]. Demographic Parity
seeks to ensure that all subgroups receive a proportionate share of
positive outcomes, while Equalized Odds aim to provide each sub-
group with positive outcomes at equal rates.

In the context of our experiments, we have chosen to focus on the
metric known as Accuracy Parity [45, 18]. This choice aligns with
our specific research objectives. While metrics like true positives,
true negatives, false positives, and false negatives are undeniably im-
portant, our primary concern lies in preventing the model from be-
coming excessively biased towards one subgroup at the expense of
another, thus leading to a situation where one group experiences a
disproportionately low accuracy rate, even if the overall accuracy ap-
pears satisfactory. In this scenario, while the overall accuracy may
seem acceptable, it masks the accuracies of individual subgroups,
causing hidden bias in the results.
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In the context of transfer learning in our healthcare application,
bias emerges as the model’s differences in accuracy among the sub-
groups, result in disparities in performance. To quantify this bias in
our investigation, we employ a straightforward definition based on
the absolute difference between the highest and lowest accuracy lev-
els observed among subgroups. This approach allows us to highlight
meaningful differences while providing an interpretable metric.

Our definition of bias encapsulates the disparity between the high-
est accuracy achieved among subgroups and the lowest accuracy
within those subgroups. While a simplistic assumption suggests that
the maximum bias would be 100%, occurring when one subgroup
achieves 100% accuracy and the other 0%, this scenario is improb-
able unless the model intentionally contradicts its learned patterns.
A more reasonable minimum accuracy arises when the model fails
to learn for one subgroup, resulting in a 50/50 prediction guess and
50% accuracy in a binary situation. This quantification of bias spans
from 0, denoting the absence of bias aligning with our central ob-
jective, to 50 as the upper limit. However, this is also implausible
as achieving 100% accuracy for one subgroup means learning every-
thing and achieving 50% for another implies that the model may not
be learning anything useful for the other subgroup within the same
dataset. If the model fully masters one subgroup and simultaneously
learns nothing for another, it suggests a lack of any common knowl-
edge between the concepts relevant to these subgroups. In practical
terms, this means the model is treating these subgroups as disjoint
tasks, which is typically not the case in a real-world dataset. Further
exploration of this topic will be deferred for future work due to its
complexity, necessitating additional time for in-depth study.

In practical terms, the assessment of statistical fairness metrics,
as delineated by Verma and Rubin [45], establishes a threshold for
bias evaluation. A bias magnitude below 3% is categorized as mi-
nor, while a deviation exceeding 6% is deemed a major difference.
Consequently, any bias surpassing the 3% threshold is considered
noteworthy. A comprehensive examination of the bias threshold is
outside the scope of this paper and will be deferred to future work.

Accuracy Parity is defined as follows [18]:

P (C = Y |A = a) = P (C = Y |A = b) (1)

Therefore, the bias metric can be defined as:

Bias = |P (C = Y |A = a)− P (C = Y |A = b)| (2)

In the context of bias definition, a and b represent distinct sub-
groups, and the outcome variable is denoted by Y .

This measure is a defined bias metric aimed at finding the dif-
ference in accuracy across subgroups to avoid fluctuating accuracy
and uncover hidden disparities within a seemingly high overall ac-
curacy score. This metric is commonly used in many studies, such
as a study by Kärkkäinen and Joo [24] to discover biases within face
datasets. The definition provided above typically applies to situations
involving binary distinctions, such as sex subgroups. However, when
dealing with multiple subgroups, we can describe it as the difference
in accuracy between the subgroup with the highest accuracy and the
subgroup with the lowest accuracy:

Bias = maxsa −minsa (3)

Where maxsa and minsa are the maximum and minimum sub-
group accuracies, respectively.

Throughout our experiments, we applied the proposed bias cal-
culation method to measure the bias across our dataset. The re-
sults showcase the effectiveness of this methodology in detecting

and quantifying bias, providing insights into the model’s subgroup-
specific performance.

5 Methodology

Transfer learning is widely applied across various domains, with
healthcare being no exception. Specifically, it has earned significant
attention in the realm of Alzheimer’s disease classification, an impor-
tant and life-impacting area of healthcare. As an example, Hon and
Khan [21], in their study, demonstrated that transfer learning can en-
hance accuracy and efficiency in Alzheimer’s disease classification
while requiring less time training. Our experiments are built directly
upon their experiments, with the same transfer learning approach,
model architecture and dataset. This is to ensure comparability and
validity compared to an existing approach.

Our study focuses on assessing the presence of bias in this high-
stakes application. To conduct our investigation, we utilize the pre-
processed OASIS dataset, which was originally introduced in the
Journal of Cognitive Neuroscience [30].

This dataset comprises 3D scan images of patients’ brains. Hon
and Khan [21] employed an entropy-based sorting mechanism to se-
lect the most informative images from the axial plane of each 3D
scan across 200 patients and introduced the preprocessed dataset in
their paper. This selection process resulted in a total of 6,400 training
images. Among these, 3,200 were associated with Alzheimer’s dis-
ease (AD), while the remaining 3,200 represented non-Alzheimer’s
cases. This dataset forms the basis of our investigation into the poten-
tial introduction of bias in transfer learning for Alzheimer’s disease
classification.

In this study, our primary objective is to assess the potential intro-
duction of bias through the utilization of transfer learning. To achieve
this, we employed three distinct models and conducted a comparative
analysis of the degree of bias present in each. The first model denoted
as VGG16, underwent initial training on the ImageNet dataset [38],
followed by fine-tuning on the target dataset. The second model, also
VGG16, possessing an identical architecture to the previous model,
was trained entirely from scratch on the brain images dataset, thereby
allowing for an authentic examination of bias in both transferred and
non-transferred models. The third model, designed with a simpler
architecture akin to VGG16 but featuring fewer layers and parame-
ters, was considered to address the potential challenge of VGG16’s
size being impractical for a relatively small dataset like OASIS when
trained from scratch. Consequently, a logical approach involved de-
ploying a more straightforward model and subsequently comparing
its results with the two aforementioned models.

Predictions were obtained from all three models, and bias was
quantitatively assessed using the defined metric, as outlined in equa-
tion 3. This comprehensive approach enables a thorough examination
of bias across different model architectures, revealing the impact of
transfer learning on bias introduction.

Figure 1: Sample Brain Images from the Target Task Dataset [30, 21]
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In light of the dataset characteristics, we identified two pertinent
sensitive attributes—age and sex—to systematically investigate the
fairness of our model with respect to these demographic factors. The
dataset was split twice to facilitate a nuanced exploration of potential
biases. Firstly, the sex attribute prompted the creation of two distinct
subgroups: one comprising female individuals and the other, male in-
dividuals. Secondly, to capture the age-related biases, the dataset was
divided into 13 subgroups based on age, each encompassing a 5-year
range. The rationale behind choosing a 5-year range was a pragmatic
balance; a single year per subgroup would yield an unwieldy num-
ber of subgroups, while a 10-year range would result in overly broad
groupings.

These considerations bear particular significance, particularly in
the context of healthcare applications, where ensuring model fair-
ness is paramount. It is imperative to ascertain that the model ex-
hibits unbiased behavior across diverse demographic categories, as
discrepancies in performance may manifest even when the overall
accuracy appears high. This approach allows for the identification of
potential biases that might be obscured by an aggregated assessment,
resulted in any disparities linked to sex or age, critical considerations
in healthcare equity.

6 Experiments

In this study, we aim to assess the extent of bias introduced by a trans-
ferred model across two key demographic attributes: age and sex.
The investigation focuses on determining whether the transferred
model imparts new biases towards specific groups within these de-
mographic categories. To facilitate a comprehensive analysis, three
distinct models are employed for each sensitive attribute, each shar-
ing architectural similarities.

6.1 Attributes

6.1.1 Sex

The dataset under consideration comprises 200 subjects (individu-
als), evenly divided into two cohorts: 100 with Alzheimer’s disease
and 100 without. Each subject has 32 images of their brain resulting
in 6400 images in total. In this section, we split the entire dataset
based on sex, aiming to discern differences in model accuracy be-
tween male and female subgroups. Despite potential imbalances in
the distribution of these two subgroups, we maintain consistency in
the evaluation process across all three models, thereby comparing
their performance under the same conditions.

By adopting this approach, we deliberately overlook the impact of
data imbalances on bias, allowing for a focused analysis of the mod-
els’ impact on accuracies in each sex category. This decision ensures
a rigorous examination of the models’ performance, enabling us to
evaluate biases introduced by the models only, rather than confound-
ing effects arising from subgroup imbalances. In this study, our focus
is yet not on mitigating bias or providing strategies for bias reduction
in transfer learning. Instead, we aim to compare the bias levels in
two distinct approaches (transfer learning vs. non-transfer learning)
solely based on the chosen model for experimentation. The goal is
to understand whether opting for the transfer learning approach can
influence the bias observed in the predicted results.

To obtain the sex subgroups, we read individuals’ data from a CSV
file that came with the brain images dataset, and which categorized
them as either male or female based on their sex. Subsequently, we
assess the average accuracy of each model within each sex subgroup,

allowing us to measure bias by comparing the accuracy discrepancies
between the male and female groups.

6.1.2 Age

In parallel with the sex subgroup analysis, the dataset, including in-
dividuals with the age range of 18 to 96, has been further split based
on age, dividing it into 13 subgroups with a range of 5 years for each
subject. It is worth mentioning that the initial seven subgroups were
excluded from the experiments due to either the absence of data or
the presence of only one subject, categorizing them as outliers. This
exclusion was deemed necessary to maintain the robustness and reli-
ability of the subsequent analyses.

Similar to the approach taken with sex subgroups, any distribu-
tional differences within the age subgroups are disregarded, as these
variations are consistent across the evaluations of all three models.
By adopting a uniform methodology, the study aims to ensure that
comparisons between models remain unaffected by potential imbal-
ances in subgroup distributions. This approach allows for a focused
examination of the models’ performances within distinct age cate-
gories, free from the confounding effects of outlier subgroups or dis-
tributional disparities.

Similarly, for the age attribute, we sort subjects’ brain images into
relevant subgroups after reading their data. We then calculate the av-
erage accuracy within each age group and find the difference be-
tween the minimum and maximum accuracy across all subgroups as
the bias. This process provides a comprehensive understanding of the
model’s performance across different age brackets, enabling a thor-
ough assessment of potential biases.

6.2 Models

6.2.1 Transfer Learning Approach: Pre-trained VGG16

In our experiment, following Hon and Khan’s [21] work, we employ
the VGG16 model, a widely used choice for transfer learning. De-
veloped by Oxford’s Visual Geometry Group, this 16-layer neural
network serves as our starting point. Following their methodology
in [21], we initialize the model with weights from the Keras library
which uploads the weights of the VGG16 model pre-trained on the
ImageNet dataset. Re-implementing the referenced work, we fine-
tune the last three layers of VGG16 using our brain dataset, consti-
tuting the second task in our study.

The final three layers are configured as follows. Firstly, a sequen-
tial model is created, featuring a flattened layer designed for one-
dimensional input. Subsequently, a dense layer with 256 units and
ReLU activation is added, followed by a dropout layer with a 0.5
dropout rate. Another dense layer, equipped with a single unit and
sigmoid activation for binary classification, is then incorporated. The
model is compiled utilizing the RMSprop optimizer, and the binary
cross-entropy loss. The experiment is conducted for 150 epochs, em-
ploying a batch size of 40 and utilizing validation data for evaluation.
Results were obtained using 5-fold cross-validation, with an 80-20
split between training and testing. To assess performance compre-
hensively, the model undergoes 10 runs, with the final accuracy and
validation accuracy recorded and stored for further analysis.

Throughout these runs, we record subgroup accuracy based on
sensitive attributes. We then calculate accuracy differences between
these subgroups, and the mean of these differences among the 10
runs serves as the bias metric. This straightforward approach ensures
a thorough evaluation of the model’s performance, highlighting po-
tential biases within our brain dataset.

P. Salmani and P.R. Lewis / Transfer Learning Can Introduce Bias2430



6.2.2 Training From Scratch: VGG16

To ensure a fair comparison between the results concerning bias in-
troduced in transfer learning and those from the non-transfer learning
approaches, as is the purpose of our study, we employ the VGG16
architecture as an identical architecture to the previous model. How-
ever, unlike the transferred model that utilized pre-trained weights
from ImageNet, the VGG16 model in this experiment is trained from
scratch while keeping other parameters the same as the previous
model. The model weights are randomly initialized from a normal
distribution, maintaining other parameters consistent with the pre-
trained VGG16. The experimental setup includes 10 runs, each has
150 epochs with a batch size of 40, ensuring a direct and fair com-
parison between the two models.

6.2.3 Training From Scratch: Baseline

Our baseline model, inspired by the Keras library tutorial, is a sim-
plified Deep Convolutional Neural Network (CNN) with 8 layers,
trained from scratch on the brain image dataset. Due to its simplicity
and fewer parameters, this model requires additional epochs to effec-
tively learn features. By allocating just twice the training time, it can
attain a reasonable level of accuracy. Therefore, in 10 training runs,
each 300 epochs with a batch size of 40, we compare the results of
this simpler model with the other two models.

The model is constructed sequentially, featuring three convolu-
tional layers (32, 32, and 64 filters) with ReLU activation and (2, 2)
max pooling. Post-convolution, a flattening layer transforms the 3D
data into a 1D vector. A dense layer with 64 units and ReLU activa-
tion are added, accompanied by a dropout layer (rate: 0.5) to prevent
overfitting. The output layer, designed for binary classification, com-
prises a single unit with sigmoid activation. The model is compiled
with SGD optimizer (learning rate: 0.005) and binary cross-entropy
loss, standard for binary classification.

Despite setting a random seed for each model to ensure re-
producibility, utilizing CUDA introduces a challenge. When oper-
ations are executed on a GPU, some outputs may become non-
deterministic. This unpredictability arises from the parallel nature of
GPU operations, where the order of execution is not always guaran-
teed.

7 Results

Table 1 highlights a substantial degree of bias in the transfer learn-
ing model compared to the models trained from scratch. Despite the
bias for sex attributes being relatively small, it remains about 3 times
higher compared to the other two models. Notably, the bias associ-
ated with the age attribute is 4-5 times more pronounced than ob-
served in the other models, underscoring a discernible bias toward
this attribute—a level of bias which is deemed noteworthy in [45].

Bias and overall accuracy are correlated; higher accuracy inher-
ently tightens the lower bound of bias, whereas lower accuracy ex-
pands the upper bound of bias, as per mathematical principles. No-
tably, the non-transfer learning VGG16 model that was trained from
scratch and the baseline model achieve nearly identical accuracy to
the pre-trained model but exhibit significantly less bias, showing the
fact that the transfer learning approach is introducing some new level
of bias in this application.

In this specific application, we find that using transfer learning
can achieve satisfactory results in 100 epochs. Alternatively, training
the same model from scratch also yields good results, taking only

an additional 50 epochs, making it 150 epochs. The choice between
the two approaches lies between time and bias trade-off. Training
the last three layers of the VGG16 model using the transfer learn-
ing approach is approximately 7-8 times faster than training all 16 or
even 8 layers from scratch. However, the VGG16 model trained en-
tirely from scratch and the baseline model, our non-transfer learning
models, exhibit 3-4 times less bias compared to its transfer learning
counterpart. Therefore, the trade-off in this scenario lies between the
time invested and the level of bias in the model.

Figure 2 shows the accuracy scores across the age-based sub-
groups, with an obvious bias between the first two subgroups in the
pre-trained model, as indicated by both the mean and standard de-
viation values. Notably, this bias is negligible in the case of the two
other models. To validate the significance of these observations, a
thorough analysis of the results is conducted by examining the corre-
sponding P-values using the T-test approach. It is worth mentioning
that all the assumptions of the T-test are satisfied. These assump-
tions including the independence of results (satisfied by the nature of
experiment as there are different training runs) and the normal dis-
tribution of the results (verified using the Shapiro-Wilk test) are all
satisfied, and therefore, we are able to use this test to measure the
significance of our results.

For this analysis, the null hypothesis posits that the observed vari-
ations in minimum and maximum accuracy, along with the bias
across, are merely products of the randomness of the model train-
ing. Employing a T-test on the obtained results yields a P-value of
0.00090 < 0.05. The rejection of the null hypothesis implies that
the differences in accuracy and the observed bias are not attributable
to randomness, confirming the significance of our findings.

8 Discussion

This paper examines bias levels in a transfer learning approach, em-
phasizing the potential for the introduction of bias to a target task,
even when the source task and its dataset lack such bias. Motivated
by the prevailing assumption that transfer learning has minimal draw-
backs, we highlight the associated high risks. It is important to high-
light that this research indicates the potential risks that implementing
transfer learning can have.

This contribution of this study is therefore to show that the intro-
duction of bias can occur simply by using transfer learning. How-
ever, the full scope of this phenomenon remains uncertain. We yet
need to determine the extent of its impact on other applications and
the broader ubiquity of this phenomenon. We propose practitioners
assess the bias introduced by transfer learning using an application-
specific bias definition and determine its significance in consultation
with those affected, based on the potential form of the harm. This as-
sessment empowers practitioners to decide whether to opt for trans-
fer learning or pursue model training from scratch. The recommen-
dation gains particular significance in critical domains like health-
care and justice decision-making, where biases can yield profound
consequences. Therefore, practitioners should conscientiously weigh
biases aligned with the application’s requirements before adopting
transfer learning.

9 Conclusion

In conclusion, our study challenges the common belief that trans-
fer learning is uniformly advantageous in data-limited scenarios.
Instead, we reveal a notable bias through our experiments toward
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Bias Analysis

Model Validation
Accuracy (%)

Sex Bias (%) Age Bias (%)

Transfer
Learning VGG16

92.30±0.17 0.9517 ± 0.277 5.2524 ± 1.981

VGG16 Trained
From Scratch

91.73±0.09 0.3409±0.102 0.990±0.167

Baseline 91.81±1.7 0.3995±0.346 1.354±0.837

Table 1: The table indicates that the model exhibiting the highest degree of bias among the three is the one employing transfer learning. Despite
non-transfer learning VGG16 having the same architecture as the transfer learning model, the bias for the model trained from scratch is three
to five times lower. Similarly, the baseline model shows approximately three times less bias in both sex and age compared to the pre-trained
transfer learning model.

Figure 2: As demonstrated in the figure, a substantial accuracy gap exists between the first two subgroups, categorized by age, in the transfer
learning approach. On the contrary, the accuracies of the subgroups for the other two non-transfer learning models remain consistent and nearly
identical. This leads us to the conclusion that the subgroup with lower accuracy is masked within the transfer learning approach’s overall high
accuracy.

the second task when using transfer learning compared to non-
transfer learning approaches. Our experiments show that a pre-
trained VGG16 model transferred from a different task displays accu-
racy disparity across subgroups of data in the second task, with this
bias being at least three times greater than models entirely trained
from scratch as the non-transfer learning approach. Ultimately, the
impact of this bias depends on the specific application of transfer
learning. Practitioners should recognize the potential harm and in-
form end-users of existing biases, underscoring the need for careful
consideration in the deployment of transfer learning models.

10 Future Work

In future research, it would be beneficial to explore other applica-
tions of transfer learning, to ascertain if the biases it can generate
occur elsewhere. Furthermore, evaluating alternative notions of bias
may provide insight into the performance of different methodolo-
gies in light of these varying bias definitions. Exploring other base
models that serve as foundations for transfer learning would also be
valuable. Such an exploration could help us understand whether em-
ploying different model types with transfer learning can also lead to
bias towards the second task. Additionally, a thorough examination
of the correlation between overall accuracy, subgroup distributions,
and the accuracy parity metric observed in each model could lead to
the establishment of a concrete correlation formula.
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