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Abstract. As Federated Learning (FL) gains prominence in secure
machine learning applications, achieving trustworthy predictions
without compromising predictive performance becomes paramount.
While Differential Privacy (DP) is extensively used for its effective
privacy protection, yet its application as a lossy protection method
can lower the predictive performance of the machine learning model.
Also, the data being gathered from distributed clients in an FL en-
vironment often leads to class imbalance making traditional accu-
racy measure less reflective of the true performance of prediction
model. In this context, we introduce a fairness-aware FL frame-
work (TrustFed) based on Gaussian differential privacy and Multi-
Objective Optimization (MOO), which effectively protects privacy
while providing fair and accurate predictions. To the best of our
knowledge, this is the first attempt towards achieving Pareto-optimal
trade-offs between balanced accuracy and fairness in a federated en-
vironment while safeguarding the privacy of individual clients. The
framework’s flexible design adeptly accommodates both statistical
parity and equal opportunity fairness notions, ensuring its applica-
bility in various FL scenarios. We demonstrate our framework’s ef-
fectiveness through comprehensive experiments on five real-world
datasets. TrustFed consistently achieves comparable performance
fairness tradeoff to the state-of-the-art (SoTA) baseline models while
preserving the anonymization rights of users in FL applications.

1 Introduction

In the realm of machine learning, Federated Learning (FL) has
emerged as a revolutionary paradigm that enables collaborative
model training [26]. While strides have been made in the domain
of FL, the area of mitigating discrimination in the outcomes of an
FL system is still underexplored. Recently, few methods [29, 15, 12,
19, 41] have been proposed to address the issue of fairness in FL.
However, these fairness aware FL frameworks ignore the key chal-
lenges of FL, particularly the assurance of privacy and the equitable
distribution of model performance [18].

Privacy preservation is a critical issue in FL, especially when con-
sidering the susceptibility of the system to Membership Inference
Attacks (MIA), where an adversary may deduce the presence of in-
dividual data points in the training dataset. Differential Privacy (DP)
stands out as an advanced solution in this regard, outperforming tra-
ditional encryption methods. Unlike encryption, which only secures
data at rest or in transit, DP provides a quantifiable privacy mea-
sure that actively protects the information during the learning pro-
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cess [17]. The integration of DP into FL ensures that the inclusion
or exclusion of any individual data point has minimal impact on the
global model’s output.
Another critical facet of fairness aware FL is the concept of class im-
balance. In a distributed setting, data can be inherently imbalanced,
leading to skewed performance as the global model tends to favor
majority classes [38]. As an illustrative example, consider a dataset
that has 70% positive samples and 30% negative samples. Each sam-
ple (x) has a sensitive attribute S ∈ M,F . Consider an FL model
which always predicts a positive class i.e. f(x) = 1, for such an
FL model, accuracy is 0.70 and discrimination measured in terms
of the difference in probability of being assigned the positive class
(aka statistical parity) is 0 as f always predicts 1 irrespective of
the sensitive attribute. The low discrimination score achieved here
is not at all reflective of the model’s discrimination mitigation ca-
pability. In fact, the true performance of a classifier in such a sce-
nario is revealed through balanced accuracy, which for the classifier
in the above example is 0.5. While the existing methods often re-

port high accuracy, our experiments show that the balanced ac-

curacy achieved by them are often low, rendering the achieved

fairness score pointless.
Given these considerations, it is essential to navigate the trade-off

between the conflicting objectives: privacy budget provided by DP,
fairness, and the equitable performance measured by balanced accu-
racy. In this context, we propose TrustFed, which utilizes DP along
with Multi-Objective Optimization (MOO) to jointly maximize bal-
anced accuracy and minimize discrimination while taking care of the
privacy rights of individuals. Extensive experiments on real world
datasets show that TrustFed achieves the best performance-fairness
trade-off along with privacy guarantees. We also find our method to
be more efficient, achieving convergence in fewer communication
rounds compared to the baseline methods. It also seamlessly adapts
to multiple notions of fairness (e.g., statistical parity and equal op-
portunity) demonstrating its generalizability.

Key Contributions Central to this work, we delineate the follow-
ing contributions:

• While existing methods have focused on optimizing privacy, fair-
ness, and accuracy in a federated setting [11], they overlook a crit-
ical facet of fairness-aware FL, i.e., class imbalance. The primary
contribution of this work lies in the novel formulation of the FL
challenge —simultaneously enhancing fairness and balanced ac-
curacy without breaching privacy rights of individuals.

• Catering to the unique complexities of each client’s non-
Independent and Identically Distributed (non-IID) data distribu-
tion we innovatively adapt Multi-objective Bayesian Optimiza-
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tion (MOBO) to identify Pareto optimal trade-offs between bal-
anced accuracy and fairness through a sophisticated consideration
of both local and global fairness and balanced accuracy.

• The strategic integration of Differential Privacy (DP) noise makes
our framework less susceptible to Membership Inference Attacks
(MIA)[17] further safeguarding the data involved.

• The superiority of our method is demonstrated through rigorous
experiments involving five benchmark datasets and comparison
with several state-of-the-art (SoTA) baseline methods.

For reproducibility, all resources associated with our research, in-
cluding code and data, are available at the provided repository link
1.

2 Preliminaries

We begin by providing a summary of the traditional FL framework
(FedAvg) as per [30], subsequently, we delineate key concepts cen-
tral to TrustFed.

2.1 Federated Learning Setup

Consider an FL setting with n individual clients (C1, C2, ....Cn) and
a central global server G. Each client possesses its distinct local
dataset Dk, characterized by a feature space X and an outcome space
Y. We address a binary classification task, where Y ∈ {0, 1}. The
dataset Dk of each client Ck contains mk samples, and each sample
is represented as Ikj = {xj , yj}, j ε [1,mk]. The global server G de-
velops a predictive model f(x) = y through the collaborative train-
ing of the local clients (C1, C2, ....Cn). It does this by aggregating
and averaging the updates from each local model, with the weights
being proportional to the size of the client’s dataset. Specifically, the
objective is to determine a set of parameters (ψ) that minimizes the
combined average loss across all clients, as detailed in Equation (1).

min
ψ
f(ψ) = w

n∑
k=1

Lk(ψ) (1)

Once the training is complete, the global model parameters are
shared with the individual clients. FedAvg ensures scalability and
performance, yet its predictions can exhibit demographic biases in
datasets along with privacy risks.
While there exists several notions of fairness, in this paper we con-
sider two, namely (i) statistical parity and (ii) equal opportunity. Note
that our method could also be deployed with other fairness notions.

2.2 Fairness Notions

Discrimination involves biased or unjust treatment of individuals or
groups based on certain traits like race or gender, known as sensitive
attributes. We assume that the datasets used in this work have a single
sensitive attribute S (e.g., “gender"), which is binary: s0 representing
a protected group (like “female") and s1 a non-protected group (like
“male").
Statistical Parity (Stp): Essentially Stp represents the difference in
mean positive outcomes of protected and non-protected group:

Stp = P (f(x) = y+ | S = s1)− P (f(x) = y+ | S = s0). (2)

Stp = 0 denotes a perfectly fair classifier, whereas Stp = 1 or −1
signifies complete unfairness.

1 https://github.com/badarm/TrustFed

Equal Opportunity (Eqop): Eqop focuses on the disparity in true
positive rates between the protected and non-protected groups:

Eqop = P (f(x) = y+ | S = s1, Y = y+)

−P (f(x) = y+ | S = s0, Y = y+).
(3)

Eqop = 0 signifies a perfectly fair classifier, whereas Eqop = 1 or
−1 implies complete unfairness.

2.3 Fairness and Balanced Accuracy for FL

The fairness measures specified in Equations (2) and (3) are directly
applicable to a centralized setting. However, in FL, due to the non-
Independent and Identically Distributed (non-IID) nature of the data
across clients, it becomes crucial to distinguish between client-side
fairness and server-side fairness.
The concept of client-side fairness can be understood through minor
modifications to Equations (2) and (3). For example, Stp for client k
with local dataset Dk can be defined as:

disck = P (f(x) = y+ | S = s1,D = Dk)

−P (f(x) = y+ | S = s0,D = Dk).
(4)

Server-side fairness (discg) takes into account the entire dataset
Dg =

⋃
k∈K Dk. When client data is IID, client-side and server-

side fairness become identical. The server-side Stp for a classifier
f(x) can be specified as:

discg = P (f(x) = y+ | S = s1,D = Dg)

−P (f(x) = y+ | S = s0,D = Dg).
(5)

The primary challenge lies in computing server-side fairness with-
out access to client data stores. Server-side fairness can be computed
through the aggregation of client-side fairness measures [28]. If Stp
is the fairness metric then server-side fairness can be quantified as:

discg =

K∑
k=1

wk disck. (6)

wk denotes the fraction of data points at client k relative to the total
number of data points across all clients i.e., wk = |Dk|∑

j |Dj | . The
server-side balanced accuracy (BAg) is computed as:

BAg =

K∑
k=1

wkBAk, (7)

2.4 Differential Privacy (DP)

Differential Privacy (DP) provides a robust alternative to encryption
for protecting against Membership Inference Attacks (MIA) in FL
environments [17]. By introducing noise into data or gradients be-
fore uploading them to global server, DP conceals individual data
contributions. This not only makes DP effective against personal data
inferences in machine learning models but also ensures privacy dur-
ing data analysis and usage, a gap in protection that encryption alone
doesn’t address [39].
Definition 1 ((ε, δ)-DP): A randomized mechanism A : X → R,
with domain X and range R, satisfies (ε, δ)-DP if, for any two adja-
cent databases Dj , D

′
j ∈ X , and for all measurable sets B ⊆ R, the

probability Pr[A(Dj) ∈ B] is bounded by eεPr[A(D′
j) ∈ B] + δ:

Pr[A(Dj) ∈ B] ≤ eεPr[A(D′
j) ∈ B] + δ. (8)
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To ensure (ε, δ)-DP for numerical data, we utilize the Gaussian
mechanism as defined in [16]. This involves the addition of arti-
ficial Gaussian noise. To guarantee (ε, δ)-DP with a noise distri-
bution n ∼ N (0, σ2), where N represents the Gaussian distribu-
tion, the noise scale σ should satisfy σ ≥ cΔb

ε
, with the constant

c ≥ √
2 ln(1.25/δ). In this formulation, n represents the additive

noise value for data in the dataset, Δb is the sensitivity of the func-
tion b, given by Δb = maxDj ,D

′
j
|b(Dj)−b(D′

j)|, where b is a real-
valued function. The privacy level is determined by the parameter

ε, where a lower ε signifies greater privacy and vice versa.

In fairness-aware FL, the addition of DP to local learner parame-
ters and local metrics (BAk, disck) before sharing them to global
server intensifies the difficulty in achieving an optimal trade-off be-
tween balanced accuracy and fairness. We effectively address these
issues by incorporating Multi-Objective Optimization (MOO) with
Bayesian Optimization (BO). While MOO aims to simultaneously
optimize for balanced accuracy and fairness, BO further sharpens this
approach by probabilistically exploring the extensive solution space,
thereby expediting the attainment of Pareto optimal trade-offs.

2.5 Multi-Objective Optimization (MOO)

In Multi-Objective Optimization (MOO), the aim is to optimize
a vector-valued objective function θ(u) : Md → R

N , denoted
as θ(u) = {θ(1)(u), ..., θ(N)(u)}, within a bounded input space
U ⊂ R

d. The functions θ(j) are complex, requiring intensive compu-
tation for evaluation as black-box functions. MOO seeks to identify
Pareto optimal solutions, characterized by trade-offs between objec-
tives, aiming to maximize all objectives simultaneously.

A solution θ(u) is considered to dominate another solution θ(u′),
indicated as θ(u) 	 θ(u′), if θ(n)(u) ≥ θ(n)(u′) for all n =
1, ..., N , and there exists at least one n such that θ(n)(u) > θ(n)(u′).
The Pareto frontier, which represents optimal trade-offs, is comprised
of solutions P∗ = {θ(u) s.t. � u′ ∈ U : θ(u′) > θ(u)} and cor-
responding inputs U = {u ∈ U s.t. θ(u) ∈ P∗}. While the Pareto
frontiers include an infinite number of points, the objective is to iden-
tify a finite, approximate frontier.

2.6 Bayesian Optimization (BO)

Bayesian optimization (BO), as delineated by [25], is a powerful
technique for optimizing computationally intensive black-box func-
tions. It utilizes a probabilistic surrogate model, commonly a Gaus-
sian Process (GP) [33], along with observed data D = {(ui, yi) |
i = 1, ...,m}, to create a posterior distribution P(f | D) over the
actual function values f . An acquisition function α : U → R,
grounded in the GP surrogate model, assesses the utility of a set of
prospective input candidates U = {ui | i = 1, ..., q} for evaluation
on the actual function f . This approach of employing a surrogate-
based acquisition function is computationally efficient than direct
evaluations of the true function f .

3 TrustFed: Trustworthy Federated MOO
framework

3.1 Conceptual Overview

Each client hosts a local data store, a DP noise addition mechanism,
a discrimination detection module, and a fairness constrained opti-
mization module. The server hosts a Noisy MOO module which is

tasked with maximizing two potentially conflicting objectives: fair-
ness and high balanced accuracy.

In each communication round, every client trains its local learner
and tries to mitigate discrimination through fairness constrained op-
timization using the learning rate (lr) and fairness constraint regu-
larization parameter (ζ). ζ controls the trade-off between the local
predictive loss function and the fairness loss (for more detail see
Section 3.2). It ensures that the local classifier adheres to certain
fairness criteria (e.g., statistical parity, equal opportunity) while min-
imizing its loss. After n epochs, ε-DP noise is added in the local
learner weights, local balanced accuracy (BAk), and local discrimi-
nation score (disck). The privacy level is determined by the param-
eter ε, where a lower ε signifies greater privacy and vice versa. This
additional step ensures that each client’s data privacy is preserved,
mitigating the risk of sensitive information being inferred during the
aggregation process on the server side. At the end of each communi-
cation round, every client shares noisy parameters (learner weights,
BAk, disck), and corresponding lr, ζ with the global server. Global
server aggregates and averages noisy local learner weights and com-
putes both global balanced accuracy (BAg) and global discrimina-
tion score (discg) based on noisy BAk and noisy disck aggregated
from all the clients. The server then applies Noisy MOO for fine-
tuning ζ and lr, to ensure Pareto optimal trade-offs between balanced
accuracy and discrimination score. We fine-tune lr and ζ at the global
server to ensure that their optimized values are effective across dif-
ferent local data distributions and fairness constraints. Essentially,
through globally optimized lr and ζ we want to ensure Pareto opti-
mal trade-offs between fairness and performance across all clients.
The updated global learner weights alongside newly optimized lr′

and ζ′ are then shared with clients for use in the subsequent commu-
nication round. Detailed explanations follow in later sections.

3.2 Client Side: Fairness Constrained Optimization

In TrustFed we employ fairness-constrained optimization [2] at each
client to achieve client-side fairness (as detailed in section 2).
Each client has its own dataset (Dk) with inherent demographic bi-
ases. The goal is to train a predictive model adhering to specific fair-
ness constraints. The optimization problem at each client side for a
local classifier f parameterized by ψ can be formulated as follows:

minimize
ψ

J(ψ) + ζ ∗ F (ψ) s.t. g(ψ) ≤ e. (9)

Here, J(ψ) is the local loss function, F (ψ) is the fairness penalty,
ζ is a regularization parameter (optimized by Noisy MOO at the
server), g(ψ) is the chosen fairness metric, and e is the fairness bud-
get. For each fairness notion (g(ψ)), we can derive a set of linear
constraints:

Qη(f) ≤ e, (10)

where Q is a matrix R
|Z|×|V| and e is a vector R|Z| that represents

the fairness budget allocated for each value of the sensitive attribute
(e.g. male and female), and η(f) denotes a vector consisting of con-
ditional moments, given by:

ηv(f) = E[hv(X,S, Y, f(X))|ϕv ] for v ∈ V. (11)

Here V = S ∪ {X\S}, hv : X × S × {0, 1} × {0, 1} → [0, 1]
captures how the prediction f(X) varies for different subsets of the
data (defined by v and conditioned on ϕv), while considering the true
labels Y , input data X , and sensitive attributes S. ϕv conditions the
data based on a specific criterion; for instance, in the loan approval
use case ϕ might be "the applicant is female". Now we define con-
straints for the fairness notion statistical parity (Stp).
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Algorithm 1 TrustFed server side algorithm
Require: Optimization rounds (no), Communication rounds (nc), Initial learning

rate (lr), Initial fairness constraint regularization parameter (ζ).
Ensure: Optimized parameters (ψl+1

g , lr′, ζ′) w.r.t. discg and BAg

1: ψ1
g = init()

2: global_model.initialize(ψl
g, lr

′)
3: for round = 1 to nc do

4: ψl+1
g =

{
ψl

k +DPN(ε)
}N

k=1

5: discg, BAg =
{
noisy_client_metrics(k, ψl+1

g )
}N

k=1

6: y = {−discg, BAg} � initial objectives
7: U = {lr, ζ} � initial inputs
8: GP.initialize(U, y)
9: for i = 1 to no do

10: αqEHV I .init(GP,U, y)
11: Unew[lri, ζi] = SAA_optimize(αqNEHV I)

12: ynew =
{
noisy_client_metrics(k, ψl+1

g , lri, ζi)
}N

k=1

13: U = U ∪ Unew , y = y ∪ ynew

14: GP.update(U, y)
15: end for
16: lr′ = lrno and ζ′ = ζno

17: send_global_updates(ψl+1
g , lr′, ζ′)

18: end for

Constraint for Statistical Parity: Assuming a binary sensitive at-
tribute and a binary classification task, Stp can be expressed as a set
of two equality constraints of the form:

E[f(X)|S = si] = E(f(X)), si ∈ {s0, s1} (12)

Let hv(X,S, Y, f(X)) = f(X) for all v, ϕS = {S = si},
and ϕ{X\S} = {True} the equality constraints mentioned above
can be represented as ηS(f) = η{X\S}(f). Each equality con-
straint can be formulated as a pair of positive (Δ+ := ηS(f) −
η{X\S}(f) ≤ 0) and negative (Δ− := −ηS(f) + η{X\S}(f) ≤
0) inequality constraints. Stp can be expressed as Equation (10),
where Z = |S| × number of inequality constraints. The el-
ements of Q are initialized to form a set of linear constraints:

Q(s,Δ+),s′ =
{

1 if s′ = s
−1 otherwise , Q(s,Δ−),s′ =

{
−1 if s′ = s
1 otherwise

While computing the fairness loss, we emphasize more on larger er-
rors by taking the L2-norm [21] of the constraint as follows:

F (ψ) = ζ ∗ ||(ReLU(Qη(f)))− e||2. (13)

3.3 Server Side: Multiobjective Noisy Bayesian
Optimization

Server-side fine-tunes the constraint parameter (ζ) and learning
rate (lr) through MOO based on Differentiable Noisy Expected q-
Hypervolume Improvement (qNEHV I) [13] approach that is exact
upto the Monte Carlo (MC) integration error [34]. This approach out-
performs SoTA MOO methods at a fraction of their wall time. Algo-
rithm 1 details this module of TrustFed.
The algorithm initiates with the Kaiming Uniform initialization [23]
of global model parameters (Algorithm 1: lines 1 to 2). In every com-
munication round, the algorithm computes the new global model
parameters ψl+1

g , global discrimination score (discg: see Equation
(6)), and global balanced accuracy (BAg: see Equation (7)) through
aggregation and averaging of local models’ noisy parameters ψlk +
DPN(ε), noisy local discrimination scores (disck+DPN(ε)), and
noisy local balanced accuracy values (BAk + DPN(ε)) from all
the clients (Algorithm 1: lines 3 to 5). Next, we initialize a list of
GP surrogate models with initial objectives (−discg , BAg) and in-
puts (lr, ζ) (Algorithm 1: lines 6 to 8). We aim to maximize BAg
and minimize discg . However, the Multi-objective Bayesian Opti-
mization (MOBO) method employed here aims at maximizing the

conflicting objectives. To fit into this maximization framework, we
consider the negative of the discrimination score as our objective.
After initializing two GP models for the two objectives, we uti-
lize Noisy MOBO to find Pareto optimal trade-offs between BAg
and discg . MOBO initiates with the initialization of the acquisi-
tion function (αqNEHV I ) using the surrogate models (GP), initial
inputs, and objectives (Algorithm 1: lines 9 to 10). After comput-
ing the acquisition function, we optimize it using the Sample Av-
erage Approximation (SAA) method [7] to compute new candidate
inputs (Unew) (Algorithm 1: line 11). This optimization leverages
auto-differentiation to calculate the precise gradient of the MC es-
timator of qNEHV I , ensuring faster convergence rates. The new
inputs (Unew = lri, ζi) are sent to all the clients and new objec-
tives (ynew) are computed through aggregation and averaging of
(BAk + DPN(ε)) and (disck + DPN(ε)) from all clients (Al-
gorithm 1: line 12). The surrogate GP models are updated to include
the new objectives and inputs and the next Noisy MOBO round starts
(Algorithm 1: lines 13 to 14). At the end of Noisy MOBO rounds, the
global updates including the global model parameters, learning rate
(lr’) and ζ′ are sent to all the clients for the next communication
round (Algorithm 1: lines 17 to 18).
Having detailed the server-side algorithm, rest of this section eluci-
dates the underlying mathematical framework that guides the trade-
offs between balanced accuracy and fairness in our optimization
strategy. We demonstrate how the acquisition function (αqNEHV I )
is defined for MOBO and how it can be computed efficiently.
The Pareto front represents the set of optimal trade-offs between the
two objectives (BA, disc): each point on the Pareto front signifies
a unique balance between the balanced accuracy and fairness. Some
points may have high fairness but lower balanced accuracy, and oth-
ers may have high balanced accuracy but lower fairness.
Hypervolume (HV) is a metric that quantifies the coverage of the
"fairness-balanced accuracy" space by the Pareto front with the aim
to maximize this coverage. HV is calculated by measuring the vol-
ume of the region in our dual-objective space—balanced accuracy
and fairness—that is dominated by the Pareto front (P∗), with the
reference point r = (BAmin,−discmax) as the lower bound:

HV (P∗, r) = λN (∪|P∗|
j=1 [r, yj ]). (14)

HV is the N-dimensional Lebesgue measure λN (·) [8] of the region
dominated by the Pareto front. [r, yj ] is the hyper rectangle bounded
by vertices yj and r, while yj is the jth solution in the Pareto set.
Hypervolume Improvement (HV I) is the difference in HV before
and after a new set of candidate solutions (Y : {y1, ..., yq}) is con-
sidered as shown in Equation (15). For our case the new set of can-
didate solutions corresponds to potential solutions offering varying
trade-offs between BA and (−disc). HV I indicates the enhanced
trade-off between fairness and balanced accuracy that the new set of
solutions provides.

HV I(Y,P∗, r) = HV (P∗ ∪ Y, r)−HV (P∗, r) (15)

The non-rectangular shape of the region P∗ ∪ Y necessitates its di-
vision into hyper-rectangles to calculate HV I .
Expected Hypervolume Improvement (EHV I) is the acquisition
function for MOBO specifically tailored for our multiple objectives:
balanced accuracy and fairness. EHV I guides solutions selection,
offering potential trade-offs between BA and −disc. It is quanti-
fied as the expectation of HV I computed using posterior distribution
(θ(U) = P(f |D)) from surrogate models (GP):

αqEHV I(U) = E[HV I(θ(U))] =

∫ +∞

−∞
HV I(θ(U))dθ, (16)
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For our case, U := {lr, ζ} where lr is the learning rate and ζ is
the regularization parameter of fairness constraints as discussed in
section 3.2 and q denotes the number of candidate points considered.
The integral sign in the Equation (16) denotes the expectation op-
eration, computing the average HV I over all possible outcomes of
θ(U). The limit of the integral depends on the range of the two ob-
jectives i.e., [0, 1] for BA and [−1, 1] for −disc.
Equation (17) depicts the formulation for computation of acquisi-
tion function of qEHV I through MC sampling, where znw,Ui,r

:=
min[tw,minu′∈Uj

θr(u
′)], Ui ⊂ U , W is the number of hyper-

rectangles, and M is the number of MC samples (the number of sam-
ples drawn from θr(U)).

αMqEHV I(U) =
1

M

M∑
r=1

HV I(θr(U))

=
1

M

M∑
r=1

W∑
w=1

q∑
i=1

∑
Ui∈Ui

(−1)i+1
N∏
n=1

[z
(n)
r,Ui,r

− lw(n)]+
(17)

Noisy Expected Hypervolume Improvement (NEHV I): EHV I
is a Bayes optimal algorithm for one-step maximization of hyper-
volume in MOO. EHV I operates under the assumption that the
observations are noise-free. However, in our case, we cater for the
privacy rights of individual clients by adding DP noise in the lo-
cal observations (balanced accuracy, fairness) and local learner pa-
rameters before sharing them with the global server. In this con-
text, we employ NEHV I which serves as the acquisition func-
tion for MOBO specifically tailored for our multiple objectives: bal-
anced accuracy, fairness, and privacy. NEHV I is a novel one step
Bayes optimal criterion for hypervolume maximization. This crite-
rion iteratively computes the expectation over the posterior distribu-
tion (P )(θ(Um)|Om), which represents the function values at pre-
viously evaluated points Um, given the noisy observations Om =
{ur, yr, (∑ r)}mr=1. The acquisition function based on NEHV I
can be defined as:

αNEHV I(U) =

∫
αEHV I(U |P∗

m)P(θ|Om)dθ (18)

The integral in the above equation can be estimated us-
ing MC integration. Let the samples from the posterior rep-
resented as θ̃r ∼ P(θ|Om)for r = 1, ...,M and the
Pareto frontier over previously evaluated points be P∗

r ={
θ̃r(u)|u ε Um, θ̃r(u) 	 θ̃r(u

′) ∀ u′ε Um
}

then the acquisition
function for a batch of q points can be computed as:

αqNEHV I(U) ≈ 1

M

M∑
r=1

αqEHV I(u|P∗
r ) (19)

3.4 Convergence and Complexity Results

In this section, we elucidate the convergence guarantees of TrustFed
for both client side and server side. Additionally, we detail the com-
putation and communication costs associated with TrustFed.

Client side convergence: Each client updates its classifier, param-
eterized by ψ, in each iteration t by performing fairness-constrained
optimization as per Equation 9. Assuming convexity of J(ψ) and
F (ψ), compactness of ψ’s feasible set, and a suitable learning rate
lr(t), ψ(t) converges to a fair classifier ψ∗ that minimizes J(ψ)
within the constraint F (ψ) ≤ c.

Serve side convergence: Assume that U is a compact set and f
(sample) has a Multi-Output Gaussian Process prior with continu-
ously differentiable mean and covariance functions. If the base sam-
ples {εi}Mi=1 are IID, drawn from a multivariate normal distribution
M(0, IqN ), and if u∗ ∈ argmax

u∈U
α̂MqNEHV I(u) then:

1. αqNEHV I(ûM∗ ) → α∗
qEHV I a.s. → The estimated acquisition

function αqEHV I converges almost surely (a.s.) to the true acquisi-
tion function α∗

qNEHV I as M → ∞.
2. dist(ûM∗ ,U∗) → 0 a.s. → The distance between the set of max-
imizers of the estimated acquisition function Û∗ and the set of true
maximizers U∗ goes to zero as M → ∞. The proof of the above
convergence result can be found in [13].

Computation Cost The time complexity for local dataset pro-
cessing through each client’s model is T1 = O(C). On the server
side, computing the volume of 2q − 1 (q represents the number of
candidate points) hyper-rectangles for each of K hyperrectangles
and M MC samples leads to T2 = O(MNK(2q − 1)) on a
single-threaded machine. Specifically for N = 2, K = |P| + 1.
MOBO also includes evaluation of local clients to find new solutions
corresponding to the candidates lr and ζ. Assuming each client takes
equal time to train and share local updates, the total time complexity
is T = T1 + C × T2∼ O(CMK(2q − 1)).

Communication Cost MOBO converges in a fraction of the wall
time of traditional optimization algorithms [13], enabling TrustFed
to reach optimal performance in under 15 communication rounds, as
shown in Figure 1. However, competing baselines fail to reach this
even after 50 rounds.

4 Experimental Setup

Benchmark Datasets We evaluate TrustFed with five real-world
datasets: (1) Bank [3], (2) Default [3], (3) Adult [3], (4) Law [40],
and (5) ACS [14]. These are considered benchmarks in the fair-
ness domain 2 and are widely used for evaluation. This selection
also aligns with the datasets used by all reported baselines, ensur-
ing a fair comparison in evaluating TrustFed. To further demonstrate
TrustFed’s scalability and real-world applicability, we employ the
ACS dataset, with over 1.3 million instances from 50 US states.
The datasets vary in their number of attributes, number of instances,
sensitive attribute and class imbalance ratio. Specifically, the positive
to negative class ratios for Adult, Bank, Default, Law, and ACS are
1 : 3.0, 1 : 15.11, 1 : 7.87, 1 : 3.52, 1 : 3.50, and 1 : 1.70 respec-
tively. To mimic FL setup, each dataset is distributed among a spec-
ified set of clients - (i) randomly or (ii) based on specific attributes
(age for Bank, Default, Adult; income for Law) to mirror more realis-
tic scenarios Missing the slit of ACS. Note that the baseline methods
also use some of these datasets but ignore class imbalance and report
accuracy as the measure of performance. We report the evaluation
metrics based on the average of 5 random shuffles of each dataset
that passes through model.

Baselines To demonstrate the superiority of our method, we have
compared our results with seven most recent SoTA baselines. We
employ FedAvg (along with privacy protection [1]), FF-SMOTE (de-
biases prediction locally using Fair-SMOTE), Agnostic-Fair, FCFL,
FairTrade, FairFed, and FedFB to compare the performance of

2 The requirement for sensitive attribute information limits the choice of
datasets
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Dataset FedAvg(2016) FF-SMOTE(2021) Agnostic-Fair(2021) FCFL(2021) FedFB(2021) FairFed(2023) FairTrade(2024) TrustFed
Acc BA Stp Acc BA Stp Acc BA Stp Acc BA Stp Acc BA Stp Acc BA Stp Acc BA Stp Acc BA Stp

Bank 0.26 0.56 -0.003 0.88 0.51 -0.0006 0.87 0.53 0.064 0.89 0.56 -0.003 0.89 0.57 0.0006 0.89 0.57 0.030 0.88 0.78 0.020 0.74 0.79 -0.002
Law 0.90 0.55 0.007 0.90 0.62 0.051 0.93 0.50 0.001 0.91 0.62 -0.029 0.91 0.58 0.004 0.91 0.59 0.021 0.88 0.68 -0.008 0.85 0.76 0.0005
Default 0.47 0.61 0.043 0.80 0.63 0.043 0.79 0.52 0.006 0.80 0.57 0.089 0.80 0.59 0.009 0.79 0.58 0.026 0.77 0.69 -0.0101 0.55 0.65 0.005
Adult 0.23 0.50 0 0.82 0.68 0.070 0.77 0.58 0.067 0.80 0.62 -0.093 0.76 0.50 0.0005 0.76 0.50 0.0008 0.77 0.75 0.0012 0.612 0.72 0.022

Table 1. Acc, BA, and Stp achieved by TrustFed(ε = 3), FedAvg(ε = 3) and other competitors(without privacy guarantee) across all datasets with data
distributed randomly among 3 clients. Most competitors yield a BA close to 0.5 (akin to a random classifier) and Stp nearing 0, TrustFed achieves the best
trade-off between BA and Stp.

Figure 1. Comparison between BA and Stp values achieved by TrustFed
(ε = 3), FCFL, and FairFed for Bank dataset with random and attribute
based distribution of data among 3 clients over different communication
rounds. Notably, TrustFed reaches high BA in under 10 rounds with low
Stp, whereas competitors only achieve near-randomBA (∼ 50%) invalidat-
ing the significance of their low Stp.

Split FedAvg FF-SMOTE FCFL FedFB FairFed TrustFed
BA Eqop BA Eqop BA Eqop BA Eqop BA Eqop BA Eqop

R3C 0.49 0.0062 0.68 -0.050 0.57 -0.102 0.50 0.666 0.50 0.666 0.74 -0.002
Attr3C 0.50 0 0.60 -0.130 0.51 0.025 0.50 0 0.49 0.00003 0.71 0.013

Table 2. Equal Opportunity (Eqop) and BA achieved by TrustFed for
Adult dataset with R3C and Attr3C data splits.
TrustFed. For further details, see section 6. Note that we limit our-
selves to comparing only with FL specific methods. While there ex-
ists several solutions for a centralized setup, we deem comparison
with such methods to be inappropriate.

5 Experimental Evaluation and Discussion

We evaluate TrustFed using both Independent Identically Distributed
(IID) setting (i.e., randomly distributing data across clients) and non-
IID data distributions (i.e., distributing data across clients based on a
specific attribute), reflecting the diverse data scenarios encountered
in FL. This dual approach allows us to explore the efficacy of our
framework under varied data homogeneity scenarios. It is important
to note, however, that within the realm of FL, non-IID data distri-
butions present a more realistic scenario. However, to ensure a fair
comparison with baseline models that predominantly use IID data,
we also include it in our analysis. This approach allows for a com-
prehensive evaluation, demonstrating our framework’s adaptability
and effectiveness across different data distributions and highlighting
its advantages over existing methods.

5.1 IID Data distribution

In this setting, the dataset is randomly distributed across the clients
which emulates an IID setting. We compare TrustFed with seven
baseline methods across five datasets. For fair comparison, we follow
the experimental setup proposed in [19]. The number of clients is set
at 3. We consider statistical parity (Stp) as the fairness metric. The
results in Table 1 show that TrustFed reports the best trade-off be-
tween balanced accuracy (BA) and Stp along with privacy guarantee
compared to the baselines. While some baselines may offer slightly
better Accuracy (Acc) on some datasets, they often lag in BA which
is crucial for skewed datasets. Notably, fairness-aware SoTA FL

Figure 2. Data Distribution of ACS Income dataset per state

FedFB FairFed TrustFed
Acc BA Stp Acc BA Stp Acc BA Stp

0.630 0.500 0.0001 0.624 0.500 0 0.590 0.668 0.0006
Table 3. Acc, BA, and Stp achieved by TrustFed(ε = 3), FedFB, and
FairFed across ACS dataset. The competitors yield a BA close to 0.5 (akin to
a random classifier) and Stp nearing 0, TrustFed achieves the best trade-off
between BA and Stp.

methods (without privacy guarantees), Agnostic-Fair, FCFL, FedFB,
and FairFed show high Acc with the corresponding BA values ∼ 0.5
and Stp scores close to 0. Such low BA values categorize these FL
models as random classifiers, rendering their low Stp scores insignif-
icant. In contrast, TrustFed achieves significantly lower Stp with re-
markably higher BA for all datasets along with privacy budget of
ε = 3. Figure 1 shows a comparison between BA and Stp values
achieved by TrustFed, FCFL, and FairFed across Bank dataset over
50 communication rounds. The figure demonstrates TrustFed’s abil-
ity to achieve fairness without compromising the model’s BA.

Generlizability: Table 2 shows TrustFed’s BA and Equal Oppor-
tunity (Eqop) results for Adult dataset with random data distribution
among 3 clients. The table shows that TrustFed consistently main-
tains high BA values while achieving low Eqop scores. This sug-
gests that TrustFed is agnostic with respect to the chosen fairness
metric.

5.2 Non-IID Data Distribution

To simulate the Non-IID scenario, datasets are distributed among
clients based on specific attributes (‘age’ for Bank, Default, Adult;
‘income level’ for Law). Table 2 shows that TrustFed shows com-
parable performance to the SoTA baselines even under non-IID data
scenarios (Attr3C) for Adult dataset. Figure 1 shows that even for
non-IID data (Attr3C), TrustFed achieves and maintains the optimal
trade-off between BA and StP for across Bank dataset. Similar trend
can be observed for other datasets.
Additionally, for non-IID data scenario we utilize the American
Community Survey (ACS) Dataset [14] which naturally exhibits a
non-IID setup as demonstrated in Figure 2, which presents the de-
mographic distribution of ACS data among 50 US states. Data corre-
sponding to each state is considered a client. Table 3 presents the BA
and Stp achieved by our model and competing baselines. The supe-
rior performance achieved by TrustFed underscores the effectiveness
of our approach in handling real-world data complexities.
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Figure 3. Privacy-Utility trade-off across ACS dataset.

Dataset Eval. Metric ε =∞ ε = 0.1 ε = 2 ε = 3 ε = 4

Law BA 0.771 0.598 0.763 0.767 0.769
Eqop -0.0327 -0.0228 0.0089 -0.0213 -0.0217

ACS BA 0.713 0.571 0.657 0.673 0.675
Eqop 0.00006 0.0069 -0.0013 -0.0013 -0.0005

Table 4. BA andEqop achieved by TrustFed for Law dataset with random
data distribution among 3 clients and for ACS dataset (50 clients). BA in-
creases as we increase the privacy budget (ε) with the best trade-off observed
at ε = 3. ε =∞ implies that no Differential Privacy (DP) noise is added.

5.3 Ablation Study

Sensitivity: To gain a deeper understanding of our proposed
method, we also perform a set of sensitivity experiments: varying
the number of clients and varying the number of communication
rounds. The performance of TrustFed remains consistent with vary-
ing number of clients, which proves its adaptability regardless of the
client count. Figure 1 presents the BA and Stp values achieved by
TrustFed over 50 communication rounds across Bank dataset. We
can observe that TrustFed achieves an optimal trade-off between
BA and Stp within the initial 10 rounds and maintains it, which
highlights TrustFed’s efficiency in achieving and sustaining optimal
trade-offs between BA and Stp while protecting the privacy rights
of clients.

Effect of Varying ε: ε represents the degree of privacy guaranteed
by the DP mechanism. A smaller value of ε indicates stronger pri-
vacy, as it reveals less information about individuals. Table 4 presents
the values of BA and Eqop achieved by TrustFed for all datasets for
various values of the privacy budget (ε). It can be observed that the
BA values decrease with a reduction in the privacy budget and in-
crease when the budget is raised. The optimal trade-off is noted at
ε = 3; hence, this value is selected for presenting the remainder of
the results. We further investigate this effect by increasing ε beyond
4. Figure 3 presents the trade-off between privacy and utility (BA)
for ACS dataset, where ε = ∞ indicates no noise. As ε increases
(moving right along the x-axis), there is a general trend of increasing
BA (upward movement on the y-axis). This suggests that reducing
the privacy constraints (i.e., increasing ε) leads to improvements in
the model’s utility. The best trade-off can be observed around ε = 3.

6 Related Work

Fairness-aware Learning: In the field of machine learning, sig-
nificant interest has developed in methods for identifying and ad-
dressing bias. A comprehensive overview of these techniques is
provided in [31]. Broadly, these approaches are categorized into
pre-processing, in-processing, and post-processing. Pre-processing
methods aim to modify the training dataset to remove bias prior to
model training. This approach includes methods developed by [9]
and [24]. Additionally, Fair-SMOTE [10], represents a SMOTE
based SoTA technique that addresses discrimination. In-processing
methods involve modifications to the classification model itself to
achieve fair outcomes. These modifications might include changes
to the optimization objectives, as seen in [32], or adaptive reweight-
ing strategies as proposed by [4]. Post-processing methods focus on

adjusting the output of classifiers to mitigate bias. Notable method-
ologies in this category have been proposed by [27] and [22].

Note that all the above methods are primarily designed for cen-
tralized machine learning systems and may not directly extend to
distributed settings like FL.
Fairness-aware Federated Learning: Recent efforts in FL have
focused on developing methods to reduce bias. One such method,
Agnostic-Fair [15], is a fairness-aware FL framework that removes
discrimination through the reweighting of training data. Similarly,
[20] and [42] have proposed methods to locally solve optimization
problem with fairness constraints. However, these methods are not
agnostic in terms of the employed fairness notion. Also they require
sharing of local sensitive features with the global server. FedFB [41]
offers a framework where clients independently correct bias in their
predictions by utilizing Fair-Batch [35]. In another approach, FairFed
[19], the authors introduce a weight aggregation technique in FL that
considers discrimination. This method lets each client’s degree of
fairness determine its contribution to the combined global parame-
ters, promoting greater overall fairness. Additionally, FCFL, intro-
duced by [12], is a gradient-based method that aims to evenly dis-
tribute Pareto utility, which encompasses both accuracy and fairness,
among all clients. FairTrade [6] is another fairness aware federated
framework. However, it is unable to handle MIA. FAC-Fed is another
fairness-aware FL framework in which the authors present an adapta-
tion of the Synthetic Oversampling Technique (SMOTE) to mitigate
discrimination in streaming environments [5].

These approaches neglect either one or both of the fundamental
issues in fairness-aware FL: privacy leakage and class imbalance.
Differential Privacy and Federated Learning: In the realm of
secure machine learning, FL and Differential Privacy (DP) have
emerged as crucial areas of research and application. A Bayesian
DP based method has been proposed by [36] to cater for the privacy
rights of individuals in an FL system. [39] proposed an ε-DP based
privacy preserving federated framework and proved that a trade-off
exists between privacy budget and the rate of convergence of the
learning framework. Another privacy enhancing FL framework based
on local DP has been presented by [37]. For further insights into DP
based privacy preserving methods in FL systems please consult [17].

Notably, these methods overlook the crucial issue of fairness and
the challenge of class imbalance, which are vital for ensuring equi-
table and unbiased outcomes in FL models.

7 Conclusion

We proposed a novel Federated learning (FL) framework, TrustFed,
aimed at achieving Pareto-optimal trade-offs between balanced accu-
racy and fairness while maintaining privacy rights of individuals in
FL applications. Our methodology, employing Multi-Objective Op-
timization (MOO), presents a major leap forward from traditional
SoTA FL frameworks that primarily focus on accuracy without ef-
fectively guaranteeing privacy protection. The efficacy of TrsutFed is
further demonstrated through experiments across several benchmark
datasets and fair FL methods, with TrustFed consistently achieving
better fairness-balanced accuracy trade-off along with effective pri-
vacy guarantees. It is agnostic to the fairness metric and effectively
generalizes to diverse client data distributions and varying numbers
of clients. It also generalizes efficiently to real world complexities.
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