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Abstract. The Graph Transformer (GT) has shown significant abil-
ity in processing graph-structured data, addressing limitations in
graph neural networks, such as over-smoothing and over-squashing.
However, the implementation of GT in real-world heterogeneous
graphs (HGs) with complex topology continues to present numer-
ous challenges. Firstly, a challenge arises in designing a tokenizer
that is compatible with heterogeneity. Secondly, the complexity of
the transformer hampers the acquisition of high-order neighbor in-
formation in HGs. In this paper, we propose a novel Hop-based
Heterogeneous Graph Transformer (H2Gormer) framework, paving
a promising path for HGs to benefit from the capabilities of Trans-
formers. We propose a Heterogeneous Hop-based Token Generation
module to obtain high-order information in a flexible way. Specif-
ically, to enrich the fine-grained heterogeneous semantics of each
token, we propose a tailored multi-relational encoder to encode the
hop-based neighbors. In this way, the resulting token embeddings are
input to the Hop-based Transformer to obtain node representations,
which are then combined with position embeddings to obtain the fi-
nal encoding. Extensive experiments on four datasets are conducted
to demonstrate the effectiveness of H2Gormer.

1 Introduction

In recent years, there has been a significant surge of interest in graph
neural networks (GNNs) due to their superior performance in han-
dling various graph representation learning tasks. Early GNNs were
initially developed for homogeneous graphs [13, 9], characterized
by a single type of node and edge. However, heterogeneous graphs
(HGs), prevalent and versatile in real-world scenarios and encoun-
tered in fields such as biological networks [15] and citation net-
works [26], offer a more realistic representation of complex relation-
ships with richer semantics.

Recently, numerous Heterogeneous Graph Neural Networks
(HGNNs) have been proposed to cope with challenges posed by het-
erogeneity [27, 8]. These HGNNs primarily build upon Message
Passing Neural Networks (MPNNs), explicitly propagating infor-
mation according to the input heterogeneous graph or pre-designed
meta-paths. Consequently, current HGNNs also inherit various lim-
itations of MPNNs that have already been proven to exist, such as
over-smoothing [28], over-squashing [23], and under-reaching [21].
Taking inspiration from the success of the transformer in Natural
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Language Processing (NLP) [25], the Graph Transformer (GT) has
recently been introduced to address the above issues in homoge-
neous/heterogeneous graphs. Unlike the conventional use of words
as tokens in NLP, GT typically applies nodes or graph substructures
as tokens [34, 7]. Then, a global attention mechanism is employed to
learn potential connections between tokens, even when they are not
connected in the input graph.

The key to extending transformers to HGs lies in how to design
the tokenizer of the transformer. Roughly speaking, current GTs in
HG mainly fall into the following two groups based on the style of
the tokenizer: (a) Utilizing different nodes as tokens involves sam-
pling the surrounding neighbors of the target node and employing
the representations of these neighbors as input tokens [18]. (b) Uti-
lizing high-level information of the target node as tokens. For ex-
ample, SeHGNN [32] aggregates messages according to meta-paths,
using information from different meta-paths as input tokens. Meta-
HGT [16] extracts hypergraphs based on meta-paths and employs the
nodes and edges in the hypergraph as tokens. While promising, they
also face significant challenges that cannot be ignored.

One challenge lies in designing a tokenizer that is compatible with
heterogeneity and can effectively express heterogeneous semantics.
Current heterogeneous graph GT [18] treats nodes as token infor-
mation, employing additional modules to assess the heterogeneous
information between nodes, but overlooks the connection between
node features and heterogeneous information. Considering that to-
kens serve as the fundamental semantic units in the transformer com-
putation process, there is an urgent need to incorporate advanced
semantic information into tokens, e.g., the informative propagation
results of initial features on HG structures.

Another challenge is that modeling the high-order neighbors in
heterogeneous GTs often entries prohibitive increases in model com-
plexity. The transformer structure imposes a substantial computa-
tional burden in contrast to traditional GNNs, attributable to its self-
attention mechanism that computes relationships between any two
tokens. In the context of HG scenarios, different hops of neigh-
bors often represent distinct semantic information, extracting het-
erogeneous semantics based on high-order neighbors is indispens-
able for comprehending complex graph structures. However, the
introduction of high-order neighbor information in heterogeneous
GTs often requires additional domain knowledge to design com-
plex meta-path or stacking more message passing layers, which of-
ten increases the model complexity [32]. Therefore, existing meth-
ods possess a limited receptive field and cannot flexibly incorporate
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high-order neighbor information. In this paper, we propose the Hop-
based Heterogeneous Graph Transformer (H2Gormer), which en-
ables HGs to benefit from the understanding and expressive capa-
bilities of transformers. Specifically, we propose a Heterogeneous
Hop-based Token Generation module to consider the various hops
of a node as distinct tokens, enabling the direct utilization of k-hop
neighbor information during the generation of each token. Subse-
quently, we propose a Multi-Relational Encoder with a tailored at-
tention mechanism to aggregate same-hop neighbor information into
a token embedding. This introduces fine-grained heterogeneous se-
mantics into tokens, i.e., the informative multi-relational propagation
results in different levels of hop-based neighbors. To this end, the re-
sulting token embeddings are input to the Hop-based Transformer
to extract the hop-level relationships, which are then combined with
position embeddings to obtain the final representations. In summary,
our key contributions are as follows:

• We investigate how to effectively integrate transformers into
HGNNs to capture richer heterogeneous semantics.

• We propose H2Gormer, a new heterogeneous graph transformer
model that can flexibly exploit high-order neighbor information
and incorporate informative hop-based heterogeneous semantics
into tokens.

• Extensive experiments on four datasets demonstrate that
H2Gormer achieves superior performance compared to state-of-
the-art baselines in node classification.

2 Related Work

Graph Transformer. The transformer has revolutionized graph rep-
resentation learning by treating nodes as tokens in a fully-connected
graph, overcoming limitations (e.g.,over-smoothing, over-squashing,
under-reaching) of traditional GNNs. A noteworthy issue is how to
introduce the graph structure information into transformers. Some
works incorporate Laplacian eigenvectors [7] or the nodes’ random
walk matrices [19] as positional encodings (PE). Others like [31] in-
troduce inductive bias through an auxiliary message passing mech-
anism. Another concern is the computational complexity of extend-
ing transformers to large graphs. Some works modify the calcula-
tion of attention coefficients to reduce computational costs [29, 30],
while others preprocess the graph data before calculating attention
scores [5, 14]; the former adopts a subgraph sampling approach,
and the latter computes attention coefficients only with cluster cen-
ters after graph clustering using KNN. NAGformer [6] designed a
novel tokenizer to alleviate the time complexity problem of GT on
large graphs. These models are primarily designed for homogeneous
graphs and may not perform optimally on HGs. SeHGNN extends
the GT to HGs which uses transformers to capture the relationships
between different hop meta-path representations of nodes. However,
meta-paths cannot be extracted automatically and require manual de-
sign.

Heterogeneous Graph Neural Network. HGNNs aim to leverage
the rich semantic information alongside structure details in HGs to
enhance representation learning, primarily dividing into two cate-
gories: meta-path-based and meta-path-free approaches. Meta-path-
based methods utilize designed or extracted meta-paths to assist the
message passing mechanism. For instance, HAN proposes an atten-
tion mechanism based on various meta-paths to learn semantic infor-
mation [27] and MAGNN enhances HAN by introducing the missing
node content features and intermediate nodes along meta-paths [8].

Meta-path-free HGNN models do not rely on meta-path but cap-
ture heterogeneity through carefully designed modules. RGCN [20]
and e-RGCN [22] extend GCN by introducing relation-based graph
convolution operations to handle different types of edges. To make
multi-relational models more solid (with a theoretical foundation),
EMR-GNN [28] and HALO [1] design a new perspective of opti-
mization objectives and derive a new HGNN architecture. To ad-
dress issues such as over-smoothing and over-squashing in current
HGNNs, HINormer [18] introduces GT to learn the relationships
between target nodes and their surrounding nodes. However, these
models are difficult to utilize high-order neighbor information.

3 Proposed Method

In this section, we present a detailed description of our method,
H2Gormer, with its overall framework illustrated in Figure 1. Firstly,
we categorize the neighbors of target nodes into different collections
based on different hops. We introduce a multi-relational encoder with
a tailored attention mechanism to aggregate neighbors in each collec-
tion and obtain token embeddings. Next, the hop-based transformer
learns the semantic connections between tokens and integrates them
into a node embedding. Concurrently, a graph-based position en-
coder is employed to capture the structural information of the nodes.
Finally, the resulting node representation is fed through a predictor
to predict the node labels. Subsequent sections will provide detailed
explanations of the components mentioned above.

3.1 Notations

Consider a HG G = (V, E ,R) where V is the set of nodes and E
is the set of edges. Each edge (vi, vj) ∈ E has the relation type
r(i, j) ∈ R; each node v has its type φ(v) and node features
xv ∈ R

d0 , where r is relation mapping function and φ is node type
mapping function. We use Tv = {φ(v) : v ∈ V} denote the set of
node types and R = {r(i, j) : (vi, vj) ∈ E} denote the set of rela-
tion types. If |Tv| = |R| = 1, the graph is homogeneous; otherwise,
it is heterogeneous.

3.2 Heterogeneous Hop-based Token Generation

To empower Heterogeneous Graphs (HGs) with the expressive capa-
bilities of transformers, a fundamental task is to design a tokenizer
that is compatible with heterogeneity and capable of capturing het-
erogeneous semantics. Therefore, we introduce the Heterogeneous
Hop-based Token Generation module to extract high-order heteroge-
neous neighbors and encode the rich semantics they contribute into
tokens.

Hop-based Neighbors Generation. Considering a target node u, we
categorize its neighbor set V into multiple collections based on the
length of the shortest path from v ∈ V to u, measured by d(u, v):

Sk(u) = {v ∈ V : d(u, v) = k}, (1)

where Sk(u) represents the set of nodes for which the shortest path
to u is k, and k ∈ {0, 1, ..., N}. Specially, we define S0(u) = {u}
which denotes the node itself.

Node Feature Projection. As features corresponding to different
types of nodes reside in distinct feature spaces within Heterogeneous
Graphs (HGs), we initially project node features of different types
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Figure 1. The overall framework of H2Gormer.

into a shared feature space before proceeding with subsequent ag-
gregation. In practice, we employ a simple linear layer for feature
projection:

hu = Wφ(u)xu + bφ(u), (2)

where Wφ(u) ∈ R
d×d0 is a learnable matrix associated with the

type of node u and bφ(u) is an optional bias. In this case, nodes of
different types can be manipulated in the same feature space.

Token Embedding Generation. After acquiring the hop-based
neighborhood structure and initial node features, we aggregate infor-
mation from the same-hop neighbors of node u to obtain a hop-level
representation. This process leads to obtaining token embeddings
that encapsulate nuanced hop information at a fine-grained level:

zku =
∑

v∈Sk(u)

f(hu,hv), (3)

where zku represents k-th hop representation of node u, i.e., the token
of the subsequent transformer structure. f(·) serves as the aggregate
function. We approach the aggregation of nodes within each hop of
the collection independently, allowing each node the flexibility to di-
rectly utilize information from its high-order neighbors. In practice,
we propose a multi-relational encoder with heterogeneous informa-
tion as the aggregate function f(·), which will be introduced in the
following subsection.

Multi-relational Encoder. While we have proposed the independent
encoding of fine-grained information for each hop, it is crucial to
note that within the k-th hop neighbor set Sk, multiple relations exist
between each pair of nodes. Therefore, when aggregating neighbors
at the same hop, the design of the aggregation function in Eq. (3),
incorporating heterogeneous multiple relations, becomes crucial for
enhancing the model’s capacity to capture richer relation-level het-
erogeneity.

To accomplish this, we propose extending the attention mecha-
nism by incorporating heterogeneous information about the relations
between nodes. This involves calculating the attention coefficients
between node u and v as follows:

Attn(hu,hv) = a�σ((WQĥu +WK ĥv) +Wer(u,v)),

αuv =
exp(Attn(hu,hv))∑

v′∈Sk(u)
exp(Attn(hu,hv′))

,
(4)

where WQ,WK ,W are learnable weight matrix, a is a learnable
vector and er(u,v) is learnable edge embedding related to node types.
ĥ represents the features extracted from h through a feature extractor
gm; in this instance, we set gm to be a Graph-based encoder [17]. σ
is a non-linear activation function which is ReLU as default.

In this case, we aggregate the neighbors of node u at the same hop
based on the attention coefficients to update its representation:

zku = σ(
∑

v∈Sk(u)

αuvWV ĥv), (5)

where WV denotes learnable weight matrix. Furthermore, we imple-
ment a multi-head attention mechanism by assigning distinct weight
parameters to different heads, aiming to stabilize the learning process
and enhance the model’s capacity. This implies that Eq. (3) with the
function f(·) becomes:

zku =

Nh∑

h=1

Wh
Oσ(

∑

v∈Sk(u)

αh
uvW

h
V ĥv), (6)

where Wh
O,W

h
V is learnable weight matrix for each head h and

Nh is the number of head. To prevent the model from having an ex-
cessive number of learnable parameters, which could elevate model
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complexity and the risk of overfitting, we employ a shared multi-
relational encoder f(·) to aggregate information from different hop
neighbor sets.

In summary, through the introduction of attention mechanisms
within different hops, incorporating edge information during the ag-
gregation of same-hop neighbors, we achieve improved hop-level to-
ken representations by integrating the relation-enhanced HG infor-
mation.

Explain the Multi-relational Encoder from Optimization Objec-

tive. To offer a more in-depth mathematical explanation of the un-
derlying optimization objective of our designed multi-relational en-
coder, i.e., clarifying the information captured in the learned token
embeddings from the optimization point of view, we represent the
proposed multi-relational encoder as a graph denoising process with
a defined optimization objective. Notably, the literature [33] defines
the graph energy function as:

‖Z−H‖2F + λ
∑

u,v∈E
‖zu − zv‖22, (7)

where λ is a parameter, the first term is called the feature fitting term,
while the second term, referred to as the graph smoothness term, aims
to encourage similarity in representations of connected nodes. For a
target node u, considering the nodes in k-hop neighbor sets Sk(u),
where k ∈ {1, 2, ...,K}.

Lemma 1. Following the computation of attention coefficients αuv

for node pairs, the aggregation process defined in Eq.(5) can be seen
as an equivalent to a gradient descent procedure optimizing the fol-
lowing energy function:

‖zku − hu‖2F + λ
∑

u,v∈Sk(u)

αuv‖zku − zkv‖22. (8)

Proof: For given the attention score αu,v , we denote the energy
function as �(z). Here, we consider the gradient descent process from
layer l − 1 to l. The gradient of �(zu) w.r.t. zu is

∇ = 2(zl−1
u − hu) + 2λ

∑
αu,v(z

l−1
u − zl−1

v ). (9)

When the step size of gradient descent is τ , the calculation process
of zlu is as follows:

zlu = zl−1
u − τ∇ (10)

= zl−1
u − 2τ(zl−1

u − hu)− 2τλ
∑

αu,v(z
l−1
u − zl−1

v )(11)

= (1− 2τ − 2τλ)zl−1
u + 2τhu + 2τλ

∑
αu,vz

l−1
v . (12)

Our gradient descent step is only one step, which means zl−1 = h.
Afterword, our calculation is:

zlu = (1− 2τλ)hu + 2λ
∑

αu,vhv. (13)

When we set τ = 1
2λ

and λ = 0.5, we get the calculation formula
for the multi-relational encoder considering one hop zku:

zku =
∑

v∈Sk(u)

αuvhv. (14)

Non-linear activation functions can be introduced empirically. In this
way, the multi-relational encoder can be viewed as the gradient de-
scent process of an energy function.

When k approaches the diameter of the graph, the energy function

becomes:

K∑

k=1

‖zku − hu‖2F + λ
∑

u,v

αuv‖zu − zv‖22, (15)

which can be seen as a graph smoothness criteria process for dense
graphs. Therefore, our multi-relational encoder can be viewed as a
node representation updating process based on a graph optimization
objective.

3.3 Hop-based Transformer

There is a consensus that treating nodes as tokens in large HGs sig-
nificantly increases computational complexity. This is attributed to
the necessity of token augmentation to introduce additional induc-
tive bias. In our proposed Hop-based Transformer, we shorten the to-
ken sequence corresponding to each node by considering each hop of
neighbors as a token. This approach enables nodes to integrate with
high-order neighbor information without requiring excessive layer
stacking.

Inspired by [6], We specifically consider the combination of a
node’s heterogeneous hop-based token embeddings as a sequence:

Zu = [z0u; z
1
u; z

2
u; ...; z

K
u ], (16)

where Zu ∈ R
(K+1)×d incorporates the K-hop information of node

u. Then, we feed Zu into a standard transformer module with a multi-
head self-attention (MSA) layer and a feed-forward neural network
(FFN). Formally, the MSA involves projecting the input Zu into a
query (Q), key (K), and value (V) through three distinct linear trans-
formations, each with different parameter matrices. Then, we apply
the scaled dot-product attention mechanism:

MSA(Zu) = softmax(
QKT

√
d′

)V, (17)

where
√
d′ is the scaling factor and the softmax is applied row-wise.

After this, the output of the MSA is fed into the FFN layer, each
followed by a residual connection [10] and a normalization layer [2]
(LN), denoted as:

Z̃u = MSA(LN(Zu)) + Zu (18)

Ẑu = FFN(LN(Z̃u)) + Z̃u. (19)

After L layers we get Ẑ(L)
u , then we use a readout function to aggre-

gate information from different hops to one embedding:

hout
u = READOUT(Ẑ(L)

u ). (20)

In practice, we implement this simply with a mean readout function
which is a non-parametric function as follows:

hout
u = Ẑ(L)

u [0 :] +
1

K

K∑

k=1

Ẑ(L)
u [k :], (21)

where Z
(L)
u [k :] denotes the k-th row of Z(L)

u . Based on the hetero-
geneous hop-based transformer, we can flexibly acquire high-order
neighbor information which is a challenge for traditional message-
passing methods, and can capture the rich hop-level semantic corre-
lations of a node’s neighbors.
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3.4 Node Position Encoding

Empirically, the local information of a graph can enable the model to
learn better representations. To incorporate more local-based graph
structure information, also known as graph inductive bias, into the
model, we utilize a graph-based position encoder as follows:

pu = gθ(H)[u : ], (22)

where gθ(·) is a simple and efficient GNN which is the same as gm
and H = {hu}Nu=1 represents initial node features and u is one
row of H denoting the embedding of node u. In this case, we ob-
tain the position embedding of node u, i.e., pu, which represents
the node’s local information. Subsequently, we integrate the position
embedding with the representation obtained from the heterogeneous
hop-based transformer:

z′u = hout
u + pu, (23)

where z′u is the final representation of node u and can be used in
downstream tasks. In this way, we simultaneously learn each node’s
high-order neighbor information and local neighbor information. The
overall architecture of H2Gormer is shown in Algorithm 1.

Algorithm 1 H2Gormer
Input: Heterogeneous Graph G = (V, E ,R) and node features

{xu : u ∈ V}.
Output: Node representation Z′.

1: for u ∈ V do

2: Heterogeneous feature projection using Eq.(2).
3: Calculate node position embedding using Eq.(22).
4: for k=1...K do

5: for v ∈ Sk(u) do

6: Calculate attention coefficient using Eq.(4).
7: end for

8: Calculate token vector zku using Eq.(5) or Eq.(6).
9: end for

10: Concat Z(0)
u = [z0u; z

1
u; z

2
u; ...; z

K
u ].

11: Calculate z′u using Eq.(19)-Eq.(23).
12: end for

13: return Z′ = {z′u}Nu=1 to downstream task

3.5 Training Objective

In this paper, our downstream task is semi-supervised node classifi-
cation on HG. Formally, we use a predictor to predict the node’s label
based on its final representation z′u:

ŷu = hθ(z
′
u), (24)

where hθ is MLPs as a predictor with the learnable parameters θ. The
overall training loss function is as follows:

L =
∑

u∈V
D(ŷu,y

∗
u), (25)

where V is the whole node set, and D is a discriminator function of
Cross-Entropy, ŷu and y∗

u are the ground-truth and predicted label
of node u. Backpropagation is used to optimize parameters with the
guide of labeled data.

Datasets Nodes Node
Types Edges Edge

Types Target Classes

DBLP 26,128 4 239,566 6 author 4
ACM 10,942 4 547,872 8 paper 3
Freebase 43,854 4 151,034 6 movie 3
MUTAG 23,644 1 74,227 23 molecule 2

Table 1. Statistics of multi-relational datasets.

4 Experiment

4.1 Experimental Settings

Datasets. To test the performance of our model, we use four real-
world heterogeneous graph datasets from different domains, includ-
ing two academic citation datasets (DBLP [8] and ACM [17] ), a
knowledge graph dataset (Freebase [3]), and a complex molecules
dataset (MUTAG [20]). The statistical information of the datasets is
in Table 1. More information is as follows.

• DBLP is a computer science bibliography website. There are four
types of nodes including 4057 authors, 14328 papers, 7723 terms,
and 20 publication venues. The authors are categorized into four
research directions, namely Database, Data Mining, Artificial In-
telligence, and Information Retrieval.

• ACM is also a citation network. It contains 4019 papers, 7167
authors, and 60 subjects. The papers are divided into three classes
according to the conference they published. Only paper’s nodes
have original attributes which are bag-of-words representations of
their keywords, others do not have attributes.

• Freebase is a movie-related network. It contains 3492 movies,
33401 actors, 2502 directors, and 4459 writers.

• MUTAG describes the interactions between molecules. The nodes
are divided into two classes as isMutagenic or not. We remove
relations that were used to create entity labels, i.e., isMutagenic.

Baselines. To assess the model’s performance, we choose nine state-
of-the-art baselines, including:
(1) Homogeneous GNNs: GCN [13], GAT [25].
(2) Multi-relational GNNs: RGCN [20], EMR-GNN [28].
(3) HGNNs: HAN [27], HGT [11], SimpleHGN [17].
4) Heterogeneous GT: SeHGNN [32], HINormer [18].

Parameter Settings. For the feature transformation layers and the
predictor, we uniformly employ multi-layer MLPs across all datasets.
For the hidden dimension of embeddings, we tune it from {64, 128,
256} for all datesets. For learning rate, we tune it from {1e-4, 2e-4,
5e-4, 1e-3}. For the number of transformer layers, we tune it from {2,
3, 4, 5}. For K of hop number, we tune it from {2, 3, 4, 5}. To sim-
plify, we only use a single attention head in a hop-based transformer
encoder for all datasets. For the dropout rate, we tune it from {0, 0.1,
0.2, 0.3, 0.4, 0.5}. We perform five iterations across all datasets using
a consistent dataset division in every experiment. We implement our
model based on PyTorch and use Adam optimizer [12].

4.2 Node Classification Results

Table 2 summarizes the performance of all methods in the semi-
supervised node classification task. We utilize Accuracy and Recall,
with standard deviation over five runs, as evaluation metrics. Some
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Methods
DBLP ACM Freebase MUTAG

Acc (%) Recall (%) Acc (%) Recall (%) Acc (%) Recall (%) Acc (%) Recall (%)

GCN 90.39±0.38 89.49±0.52 89.58±1.47 89.47±1.49 68.35±0.11 62.32±0.21 72.35±2.17 63.28±2.95

GAT 91.97±0.40 91.25±0.58 88.99±1.58 88.89±1.56 67.32±0.77 58.26±2.13 70.74±2.13 63.01±3.79

RGCN 90.08±0.60 88.56±0.76 89.79±0.62 89.71±0.59 61.64±0.09 61.55±0.06 71.32±2.11 61.97±3.52

EMR-GNN 93.54±0.50 92.39±0.78 90.87±0.11 90.84±0.13 66.90±0.12 61.94± 4.49 74.26±0.78 64.19±1.08

HAN 91.73±0.61 91.15±0.72 88.51±0.35 88.50±0.30 62.34±2.13 59.13±1.91 - -

SeHGNN 94.72±0.15 94.19±0.14 91.41±0.31 91.30±0.22 67.52±0.67 62.50±2.92 - -

HGT 94.30±0.75 92.20±1.02 87.39±1.04 87.34±1.02 64.01±1.32 58.28±1.06 - -

SimpleHGN 93.99±0.42 93.50±0.40 90.82±0.40 90.62±0.43 67.64±0.87 60.80±3.02 67.15±0.91 62.34±4.15

HINormer 94.87±0.17 94.32±0.13 90.12±1.20 89.54±1.23 68.53±0.28 62.80±0.81 72.71±1.61 61.25±1.17

Ours 95.33±0.48 94.62±0.62 91.50±0.15 91.35±0.24 69.02±0.41 63.32±0.24 74.41±1.34 63.39±2.23

Table 2. The mean and standard deviation of classification Accuracy and Recall over five different runs on four datasets.

(a) Hidden Dim (b) Learning Rate

(c) Transformer Layers (d) Hops

Figure 2. Analysis of parameters on DBLP and ACM.

methods do not design specific meta-paths for the MUTAG dataset
(where nodes only have one type and a high number of relations),
so we do not reproduce the corresponding results for these methods.
From the obtained results, we have the following observations:

• Our proposed H2Gormer achieves state-of-the-art (SOTA) perfor-
mance in seven out of eight indicators across all datasets. This
demonstrates the promising effectiveness of our model on HGs.
In particular, compared to HINormer, our proposed H2Gormer
outperforms it over Accuracy and Recall by 0.46% and 0.3% on
DBLP. This is attributed to the efficacy of our multi-relational en-
coder and hop-based transformer, which better captures the con-
nections between node feature information and heterogeneous in-
formation into embedding.

• Among all the baselines, Heterogeneous GTs, namely SeHGNN
and HINormer, consistently achieve relatively good performance,

Figure 3. Parameters comparison. The height of the bars represents the
relative quantity of model parameters. The x-axis represents different

methods.

generally outperforming HG models without a transformer struc-
ture. This demonstrates the effectiveness of the transformer struc-
ture in modeling complex heterogeneous semantics.

4.3 Model Analysis

Ablation Study. To verify the effectiveness of the components of
our proposed model, we conduct ablation studies on all datasets. The
result is shown in Table 3. We test three variants of the model: (a)
Without heterogeneous information (HI). We remove the learnable
edge features from Eq.(4), using standard GATv2 attention [4] in-
stead. (b) Without semantic information (SI). After learning different
hop information of the nodes, we remove the hop-based transformer
encoder and directly obtained the final representation of the node
through the readout function. (c) Without local structure information
(LI). We remove the node position encoding of the model. From the
results, we can observe:

• Without HI, there is a significant decline in the model’s perfor-
mance, reflecting the model’s inability to consider heterogeneous
information in the attention module, which is particularly evident
in datasets with multiple types of relations. This also demonstrates
the effectiveness of our proposed multi-relational encoder.
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Methods
DBLP ACM Freebase MUTAG

Acc (%) Recall (%) Acc (%) Recall (%) Acc (%) Recall (%) Acc (%) Recall (%)

Ours 95.33±0.48 94.62±0.62 91.50±0.15 91.35±0.24 69.02±0.41 63.32±0.24 74.41±1.34 63.39±2.23

without HI 94.73±0.57 94.37±0.49 90.99±0.52 90.83±0.65 68.33±0.24 61.69±0.16 72.43±1.41 62.67±1.62

without SI 94.57±0.24 94.19±0.29 90.86±0.40 90.73±0.41 68.59±0.48 62.37±0.33 72.79±0.85 63.49±1.82

without LI 95.05±0.43 94.49±0.42 90.65±0.22 90.44±0.11 68.32±0.15 61.45±0.18 71.32±1.85 61.52±1.64

Table 3. Ablation study for our model.

(a) HGT (b) HINormer (c) Ours

Figure 4. Visualization of the learned node embeddings on DBLP dataset.

• Without SI, the model fails to capture the semantic information of
different hops, leading to a decline in performance in all datasets.
This suggests that capturing information from distant nodes and
learning the semantic information between multi-hop neighbors
can enhance the capability of HG representation learning.

• Consistent with empirical conjecture, incorporating local position
information can improve the model’s performance. So without LI,
the model’s performance declines due to the lack of local infor-
mation of the node. Finally, the complete model achieves the best
results.

Parameters Study. In addition to the model’s performance, we also
explore the sensitivity of some important parameters of our model
such as hidden dim d, learning rate lr, the number of transformer
layers L, and the hops of neighbor k on DBLP and ACM datasets,
with results shown in the Figure 2. From the results, we can observe
that:

• We observe that for the dimension d of the hidden layers, larger is
generally better, as a greater dimension can help the model capture
more information.

• For DBLP and ACM, as transformer layers L gradually increase,
the model’s performance progressively improves. However, if L
continues to increase, performance begins to decline, indicating
that too few layers may not capture the relations of different hops,
while too many layers may lead to overfitting and diminish model
performance.

• For hop number k, similar to empirical thinking, insufficient hop
count fails to introduce enough neighbor information, while too
many hops may introduce noise. The choice of k is dependent on
the dataset.

• Additionally, we calculated the total number of parameters be-
tween our proposed model and several baselines, with the results
shown in Figure 3. We observed that our model has advantages on
both the parameters quantity and the model effect.

Visualization. For a more intuitive display and comparison, we vi-
sualize a contrast between our method and two other meta-path-free
methods (HGT and HINormer) on DBLP; the result is shown in
Figure 4. We reduce the dimensionality of the learned node embed-
dings using t-SNE [24] for visualization and color nodes with ground
truth labels. In comparison, our proposed H2Gormer outperforms the
aforementioned techniques by demonstrating superior cluster forma-
tion with well-defined boundaries, signifying an advancement in em-
bedding quality.

5 Conclusion

In this work, we propose H2Gormer, a novel heterogeneous graph
transformer model that includes a heterogeneous hop-based trans-
former and a multi-relational encoder to exploit high-order and het-
erogeneous information. Heterogeneous hop-based transformer con-
structs a sequence for each node’s multi-hop neighbors, utilizing in-
formation from neighbors at different hops, and then learns the se-
mantic information through a hop-based transformer. Furthermore,
we enhance the model’s ability to represent heterogeneity by us-
ing the multi-relational encoder to utilize node information and edge
information. Experiments demonstrate the effectiveness of our pro-
posed model.
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