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Abstract. Rationalization models, which select a subset of input
text as rationale—crucial for humans to understand and trust predic-
tions—have recently emerged as a prominent research area in eX-
plainable Artificial Intelligence (XAI). However, most of previous
studies mainly focus on improving the quality of the rationale, ig-
noring its robustness to malicious attack. Specifically, whether the
rationalization models can still generate high-quality rationale un-
der the adversarial attack remains unknown. To explore this, this
paper proposes UAT2E, which aims to undermine the explainability
of rationalization models without altering their predictions, thereby
eliciting distrust in these models from human users. UAT2E employs
the gradient-based search on triggers and then inserts them into the
original input to conduct both the non-target and target attack. Exper-
imental results on five datasets reveal the vulnerability of rationaliza-
tion models in terms of explanation, where they tend to select more
meaningless tokens under attacks. Based on this, we make a series of
recommendations for improving rationalization models in terms of
explanation.

1 Introduction

Explanation of deep learning models is the key to human compre-
hension and trust in their predictive outcomes by providing the cor-
responding explanations, as illustrated in Figure 1(a), which plays
an important role in affecting whether these models can be applied to
critical sectors such as finance and law. Rationalization methods offer
intrinsic justifications for model predictions by pinpointing salient
evidence, emerging as a promising solution in the area of explain-
able artificial intelligence. As depicted in Figure 2, rationalization
methods [21, 19, 12] employ a rationalizer to extract a semantically
coherent subset of the input text, known as the rationale. This ratio-
nale is intuitively recognized by humans as a decisive determinant of
the subsequent predictor’s output. By furnishing such interpretable
rationales, rationalization methods significantly bolster human trust
in the predictive outcomes.

While existing studies have made great achievements in improving
the explanation (i.e., rationale quality) of the rationalization models
[8, 15, 1, 17, 16, 25], their explanation robustness to attack is rarely
explored. Recently, Chen et al. [4] exposed the prediction vulnera-
bility of rationalization models by inserting crafted sentences into
the original input text, leading to significant changes in predictions,
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(a) Clean Input
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(b) Crafted Input

Figure 1. Illustration of ML models with clean input and crafted input
separately. (a) ML models not only returns correct prediction but also

provides the comprehensible explanation to human user. (b) The explanation
provided by ML models is incomprehensible for the crafted input.

as shown in Figure 2(b). Building upon this, some works [13, 27]
employ adversarial training strategy to enhance the prediction ro-
bustness of these models, ensuring that the model predictions remain
unchanged under adversarial attack. However, prior studies primarily
focused on the robustness of rationalization methods concerning pre-
diction while ignoring explanation. As illustrated in Figure 1(b), the
models may provide incomprehensible explanation to human users
when the input is crafted, leading to its reduced credibility. To this
end, whether the explanation of rationalization models is robust to
the adversarial attack remains mysterious.

In this work, we investigate the explanation robustness of the ra-
tionalization models against adversarial attacks. More specifically,
as illustrated in Figure 2(c), we aim to craft and insert the attack
trigger into the input text to noticeably change the rationale while
keeping the prediction unchanged. In this way, the trust of human
in the rationalization models can be significantly reduced. We in-
troduce UAT2E, a variant of Universal Adversarial Triggers [23],
which attacks explanations in non-target and target manner sepa-
rately.2 Specifically, UAT2E conducts the non-target attack by pre-
venting the rationalizer from selecting the explainable tokens and
conducts the target attack by limiting the rationalizer to only select
the triggers. To achieve this goal, we employs the mean squared error
(MSE) loss to measure the difference in rationales and leverages the
cross-entropy loss to calculate the difference in predictions. Then,
according to the attack mode, UAT2E adaptively constructs label se-
quences to align the mismatched sequence lengths that result from
inserting triggers. After that, UAT2E iteratively queries words from
the vocabulary using a gradient-based approach and replaces tokens
in the triggers to minimize the loss.

2 https://github.com/zhangyuankai2018/UAT2E
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Figure 2. (a) An example from a beer review sentiment classification
dataset with correct prediction and rationale. (b) Inserting “the tea looks
horrible .” causes the rationalizer to select “tea”, “smell”, and “grain”,

leading to an incorrect prediction. (c) Inserting “yet coincidentally first as
given” results in maintaining a correct prediction but with an obviously

incorrect rationale. The underline, red, and yellow represent
human-annotated rationale, triggers, and selected rationales, respectively.

Based on the designed attack strategy, we investigate the explana-
tion robustness of several typical and recent rationalization models
on five public datasets, where the experimental results reveal sev-
eral important findings (more findings can be found in Section 5.3).
First, existing rationalization models are vulnerable to the attacks on
explanation including both non-target and target attacks. Second, the
explanation vulnerablity of rationalization models arises from their
inherent defects such as unmanageable sparsity, degeneration, and
spurious correlation. Third, using powerful encoders such as BERT
and supervised training with human-annotated rationales in rational-
ization models does not guarantee the robustness of explanations;
instead, it makes the explanation more susceptible to influence of
attack. Based on these findings, we present a series of recommenda-
tions for improving explanation robustness of rationalization models.
Although we mainly focus on the explanation robustness of rational-
ization models, we believe this work can provide a cautionary note
regarding the robustness of all explainable machine learning systems.

The contributions of this paper can be summarized as follows:

• To the best of our knowledge, this work is the first to investigate
the explanation robustness of the rationalization models.

• We design UAT2E to conduct both non-target and target at-
tacks over explanations of rationalization models. By employing
gradient-based search to construct adversarial samples, UAT2E in-
duces significant changes in rationale while maintaining predic-
tion consistency.

• We conduct extensive experiments on five public datasets, reveal-
ing the fragility of existing rationalization models in terms of
explanation robustness and summarizing several reasons behind
these phenomena. Additionally, we provide recommendations to
enhance the explanation robustness of rationalization models.

2 Related Work

The rationalization model can be categorized into two types: extrac-
tive and generative. The extractive rationalization model [8, 15, 22]

involves selecting a subset from the original input to provide an ex-
planation for the prediction. In contrast, the generative rationaliza-
tion model [1, 25] uses text generation approaches to produce a piece
of text explaining the prediction. While both approaches have their
unique advantages, this paper focuses on related works on the robust-
ness of the extractive rationalization model.
The prediction robustness of rationalization model Recent studies
have focused on examining the prediction robustness of rationaliza-
tion models. The prediction robustness refers to the model’s ability to
maintain its prediction unchanged when under attack. Chen et al. [4]
explore the insertion of attack text into the original input by utiliz-
ing sentences from English Wikipedia or constructing them based on
rules, inducing significant prediction flips. Li et al. [13] employ Tex-
tAttack to modify specific words in the meaningless token regions
of the original input, such as nouns, locations, numbers, and named
entities, in order to generate adversarial samples. They also use ad-
versarial training to enhance the prediction robustness of the rational-
ization model. Zhang et al. [27] utilize the rationalization model as a
defense strategy against adversarial attacks. They construct adversar-
ial text using Glove and WordNet and employ adversarial training to
ensure that the binary mask generated by the rationalizer effectively
masks out the adversarial text, resulting in correct predictions. Un-
like previous studies, we focus on the explanation robustness of ratio-
nalization models. The explanation robustness refers to the model’s
ability to maintain a consistent explanation when under attack. We
focus on this by conducting attacks that induce significant changes
in the explanation while maintaining the prediction.
Degeneration and suprious correlations Rationalization models
face challenges, namely “Degeneration” [26] and “Spurious Corre-
lation” [3]. Degeneration occurs when the predictor overfits to noise
generated by an undertrained generator, causing the generator to con-
verge to a suboptimal model that selects meaningless tokens. Several
approaches have been proposed to address the degeneration prob-
lem. Yu et al. [26] introduced adversarial games and produces both
positive and negative rationales. Liu et al. [15] employed a unified
encoder between the generator and predictor. Liu et al. [19] assigned
asymmetric learning rates to the two modules. The issue of spurious
correlation arises because the maximum mutual information criterion
can be influenced by false features associated with causal rationales
or target labels, leading the generator to select content with false
correlations. Existing works have attempted to address this problem
from different perspectives, such as adopting environmental risk min-
imization [3] or the minimum conditional dependency criterion [18].
Adversarial attacks in NLP Adversarial attack research has played
a critical role in uncovering vulnerabilities in interpretable NLP mod-
els [5]. Adversarial attack methods can be categorized based on the
input perturbations, including sentence-level [11], word-level [23, 9],
character-level [7], and embedding-level [14] attacks. In this study,
we use Universal Adversarial Triggers [23] to identify triggers in a
white-box setting. By utilizing gradient-based search, we success-
fully identify the optimal combination of attack triggers.

3 Problem Statement

Notation We denote the dataset by D = {(x, y)}, where the in-
put x = x1, x2, ..., xT consists of T sentences and each sentence
xi = (xi,1, xi,2, ...xi,ni) contains ni tokens with y referring to the
sentence label.
Extractive rationalization model As shown in Figure 2(a), a typi-
cal extractive rationalization model comprises two components, i.e.,
a rationalizer and a predictor, where the rationalizer selects the ra-
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Table 1. Notations of the raw input and the adversarial sample.

x xadv = A(x, a, p)

Embedding ex = E(x) eadv = E(xadv)

Mask mx = R(ex) madv = R(eadv)

Rationale zx = mx � ex zadv = madv � eadv
Prediction ŷx = C(zx) ŷadv = C(zadv)

tionale and the predictor makes the prediction. For each input x,
the rationalizer first uses the word embedding layers to map it into
vector e = E(θE ;x) where θE ∈ R

|V|×d denotes its parame-
ters. Then, the rationalizer adopts the Gumbel-Softmax reparame-
terization [10] to sample and generate a discrete binary mask, m =
R(e) = (m1,m2, ...,mL) ∈ {0, 1}L, from a Bernoulli distribu-
tion, where L =

∑T
i=1 ni for token-level rationale or L = T for

sentence-level rationale. In specific, the i-th element mi corresponds
to sentence xi, and thus mi will be extended according to the length
ni for sentence-level. To this end, the rationale is calculated using
z = m� e equaling to a subset from the input.

The predictor module ŷ = C(z) makes a prediction ŷ based on
the rationale z. The overall prediction process can be defined as
M(x) = C(R(E(x)) � E(x)). Rationalization models are typi-
cally trained in an end-to-end fashion, where the cross-entropy loss
between predictions and labels serves as the supervised signal. In
this process, the rationale z is generated unsupervised through the
application of sparsity regularization.3 Appendix B.2 [28] provides
illustrations of the specific forms of sparsity regularization used in
other models.
Attack of rationalization model We define triggers a =
(a1, a2, ..., aK) as input-agnostic sequences of tokens that, when in-
serted into any input from a dataset, cause significant changes in the
rationale while maintaining the prediction. Typically, triggers consist
of K subsequences. For ease of implementation, each subsequence
of triggers, aj = (aj,1, aj,2, ..., aj,na), has the same length na. The
attack A(x, a, p) modifies the input x by inserting triggers a at spec-
ified positions p = (p1, p2, ..., pK). The purpose is to ensure that the
inserted triggers do not alter the semantics of individual sentence.
The length of the adversarial sample xadv = A(x, a, p) is Ladv =∑T

i=1 ni +K × na for token-level rationale or Ladv = T +K for
sentence-level rationale.

In order to establish a clear distinction between the original input
x and the adversarial sample xadv , we provide definitions for word
embedding, mask, rationale, and prediction in Table 1. It should be
noted that the embedding for triggers is denoted as ea = E(a) =
(ea,1, ea,2, ..., ea,K×na).
Assumptions of the attack Reasonable assumptions play a crucial
role in the effective evaluation of rationalization models. In the at-
tack process, we make the assumption of having white-box access to
a well-trained rationalization model. This access enables us to ob-
tain the target model’s structure, gradient, word embedding weight,
and sparsity level. The attacks are conducted exclusively during the
inference stage and not during the training stage.

4 Universal Adversarial Triggers to attack the
explanations (UAT2E)

4.1 Attack Objective

The objective of our method is to attack the explanation robustness,
specifically by identifying the optimal trigger a∗ that maximizes the

3 Although coherent regularization is effective, we do not consider continuity
constraints in order to compare each models as fairly as possible.
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Figure 3. Examples of label sequences under non-target and target attacks.
Attack triggers are highlighted in red. Grey indicates 0, and pink indicates 1.

difference in rationale while maintaining the prediction.

a∗ = argmax
a

Ex[Dz(zadv, zx)− β · Dy(ŷadv, ŷx)] (1)

where Dz(·, ·) measures the difference between the rationales zadv
and zx, Dy(·, ·) measures the difference between the predictions ŷadv
and ŷx, and β serves as the Lagrange multiplier. We employ the Mean
Squared Error (MSE) loss to calculate the difference Dz(·, ·) and
cross-entropy loss to compute the difference Dy(·, ·). β is set to a
value greater than 0.

4.2 Non-target and Target Attack

Equation (1) illustrates our intent, but inserting attack triggers leads
to a mismatch in the lengths of zadv and zx. To address this, we
construct a label sequence m∗ from the discrete binary mask mx to
replace zx and align the length of madv . We then calculate the dif-
ference between madv and the label sequence m∗, as shown below:

max
a

Ex[Dz(madv,m
∗)− β · Dy(ŷadv, ŷx)] (2)

Similar to general adversarial attack methods [2], we consider the
non-target attack Mnt and target attack Mt.
Non-target attack Mnt The goal of the non-target attack is to pre-
vent the rationalizer module from selecting tokens previously chosen
as rationale. This results in rationalization models selecting attack
triggers or previously unselected tokens. To generate the label se-
quence for the non-target attack, denoted as m∗

nt = Mnt(mx), we
insert K 0-sequences of length na into the mask mx at specified
positions p, as depicted by m∗

nt in Figure 3. Noting that in the non-
target attack mode, the calculation of the difference is limited to the
original input segment, totaling L tokens. Furthermore, we adjust
Equation (2) by replacing “maximize” with “minimize” to align the
optimization process with the gradient descent method.

min
a

Ex[−Dz(madv,m
∗
nt) + β · Dy(ŷadv, ŷx)] (3)

Target attack Mt The goal of the target attack is to limit the ra-
tionalizer to selecting only attack triggers. The label sequence for
the target attack is denoted as m∗

t = Mt(mx), where the elements
corresponding to the triggers are assigned a value of 1, while other
positions are set to 0, as depicted by m∗

t in Figure 3. Given the goal of
the target attack, we need to minimize the difference between madv

and the label sequence m∗
t . The objective is shown as follows:

min
a

Ex[Dz(madv,m
∗
t ) + β · Dy(ŷadv, ŷx)] (4)

By employing Equations (3) and (4), we can identify the optimal
triggers a∗, through the standard gradient descent algorithm.

4.3 Trigger Search Algorithm

First, we initialize the attack triggers a with the character at index
1 in the vocabulary V . Next, we insert triggers into the original in-
put and compute the loss based on Equation (3) (or Equation (4))
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depending on the attack mode. Then, we replace each token in the
triggers with the one that minimizes the loss, using a greedy strategy.
To determine the candidate token set, we use a KD-Tree to query the
top-k closest tokens by moving each token’s embedding one step,
sized η, in the gradient descent direction. We iteratively execute this
process until we find the optimal trigger a∗ or reach the maximum
number of search rounds N . More details of the attack process are in
Appendix A [28].

5 Experiments

We aim to explore the explanation robustness of existing models.
Our experiments are conducted with five models, five datasets, two
encoders, two training settings, and two attack modes, including a
total of 200 tests.

5.1 Experimental setup

Datasets We consider five public datasets: Movie, FEVER, Mul-
tiRC from ERASER [6], as well as Beer [20] and Hotel [24], two
widely used datasets for rationalization. Such a setting encompasses
both sentence-level and token-level rationalization tasks. More de-
tails about datasets are in Appendix B.1 [28].
Models We investigate five methods: RNP [12], VIB [21], SPEC-
TRA [8], FR [15] and DR [19]. Details about these rationalization
methods can be found in Appendix B.2 [28].
Training details All of the models are implemented using PyTorch
and trained on a RTX3090 GPU. We adjust the sparsity parameter
S based on the final sparsity level and select the model parameters
based on the task performance achieved on the development dataset.
Further training details can be found in Appendix B.3 [28].
Attack details We set the maximum length of adversarial samples
Ladv to 256 and the maximum number of search rounds N to 100.
We specified 5 insertion positions p = (0, 2, 4, 6,−1), where “−1”
represents the end position of the input. At each position, five tokens
are inserted, denoted as na = 5. The initial index of triggers is set to
1. For each trigger token, we query the 15 nearest candidate tokens
using a KD-tree. The attack process employs an early stopping strat-
egy: if the triggers no longer change after 10 epochs, the search is
stopped. The step size η is set to 1e4, and β is set to 0.9. Experimen-
tal results are averaged across 5 random seeds.

5.2 Evaluation Metric

We evaluate the robustness of models in terms of task performance
and rationale quality.
Task performance We compare the accuracy between the original
and adversarial test sets. The absolute differences in accuracy are
shown below:

|�Acc| = 1

|D|
∑

(x,y)∈D
|�[M(x)=y] − �[M(A(x,a,p))=y]|

Here, |D| represents the total number of samples, | · | denotes the
absolute value, and � is the indicator function. In our experiments,
we considered a difference in accuracy within 5% as the threshold,
indicating that the predictions are generally consistent.
Rationale quality To evaluate the impact of the attack on rationales,
we employ the following six metrics. Note that all metrics are av-
eraged on the dataset consisting of non-flipped samples, which are
defined as Dnf = {x|M(x) = M(A(x, a, p))}. This is because a
prediction flip will result in a more substantial change in rationale,
leading to higher metric values.

• Sparsity (�S): This metric calculates the ratio of selected tokens
to all input tokens. The sparsity level varies before and after the
attack due to the different degrees of sparsity in the label sequence
under non-target and target attacks. Thus, we calculate sparsity’s
difference before and after the attack.

�S =
||mx||
L

− ||madv||
Ladv

where || · || represents the l1 norm.
• Gold Rationale F1 (GR): This metric assesses the F1 score

between the rationale produced by the model and the human-
annotated rationale. A decrease in GR typically indicates fragility
in explanation robustness.

GR =
||m ∩ m̂||
||m ∪ m̂||

Here, m̂ represents the human-annotated mask, m represents the
mask generated by either the original input or the adversarial ex-
ample. �GR = GRx −GRadv , where GRx and GRadv denote
the GR of the original input and the GR of the adversarial sample,
respectively.

• �G̃R: This metric represents the relative difference of GR and
is designed to facilitate the comparison of the impact on different
models.

�G̃R =
GRx −GRadv

GRx

• Attack Capture Rate (AR): AR represents the recall of attack trig-
gers in the rationale generated by the adversarial sample. Mod-
els exhibiting strong explanation robustness should exclude attack
triggers in their selections.

AR =
||madv ∩m∗

t ||
||m∗

t ||
• Rationale Shift F1 (F1shift): This metric assesses the F1 score

between rationales before and after the attack, indicating the de-
gree of token shifting.

F1shift =
||madv ∩m∗

nt||
||m∗

nt||
This metric assesses the consistency of the rationalizer’s selection
when the GR remains constant. If the rationalizer’s selection shifts
from one set of tokens to another, F1shift will decrease.

• Rationale Shift F1 on Annotation (F1shift,m̂): This metric eval-
uates the F1 score of the tokens selected by the model before and
after the attack within the region of the human-annotated ratio-
nale.

F1shift,m̂ =
||madv ∩m∗

nt ∩ m̂||
||m∗

nt ∩ m̂||
By comparing F1shift and F1shift,m̂, we can analyze the
model’s ability to recognize and retain tokens from the human-
annotated rationale.

5.3 Main experiments

Finding 1: Existing rationalization models exhibit significant

fragility in explanation robustness Figure 4 (a) illustrates the vul-
nerability of rationalization models in terms of explanation robust-
ness, even when predictions remain unchanged. It is worth noting
that directly comparing different methods is meaningless due to var-
ious factors. For instance, VIB shows much smaller �S than other

Y. Zhang et al. / Adversarial Attack for Explanation Robustness of Rationalization Models 2293



Figure 4. Comparison across different settings. We compare three settings: (a) different models, (b) using BERT or GRU as an encoder, and (c) unsupervised
training and supervised training with human-annotated rationales. The comparison is conducted using five models and five datasets.

Table 2. Samples with degeneration or spurious correlations after attacks. We present samples from different datasets to illustrate cases of model
degeneration or spurious correlations resulting from attacks, along with statistical figures for these issues within the impacted samples. Human annotated

rationales are underlined. Rationales before attacks, triggers and rationales after attacks are highlighted in blue, red and yellow , respectively.

Model Dataset Context Prediction
(Label)

Issue Percentage
(%)

RNP Beer

miniseries ruins ich smashwords ! inviting copper color with a sticky, if thin , head . caramel and apricots in the nose .

pondered friar vito assassinated hitler wheat, dried apricots , caramel , and a dry finish . some lingering banana , too . cliff

dismounted smashwordsSell board the hops provide a late , but pronounced character. pretty tasty . ##" hack humour rumbled

! i wouldn’t say it’s as outstanding as others from southern tier like pumking and creme brulee stout , though valorbadgor
concluded fatigue

Positive
(Positive)

Degeneration 57.0

DR Beer

same however time as only poured from bomber into a pint glass as part of a side-by-side tasting with duck-rabbit baltic porter. a :

brown-black with a thin head. came. however time but s : not much of a nose from this bottle. coffee and caramel or toffee. time as

although time same t/mf : great taste : silky smooth in the mouth. malty with a toffee finish. came as same another however

crisper finish than expected. d : very drinkable example of the style, good flavor combined with lighter mf makes for great
experience. time though time. however

Positive
(Positive)

Spurious
Correlation 48.1

RNP Hotel

however though neither fact first recently stayed 6 days there. staff was very friendly and helpful. . time this same the
rooms were clean and quiet. i would rate the beds as a 5 - not the worst i ’ve slept in but not the best . the the the the all location

is great . pics of the room are a little exaggerated. time this came this the bathroom is tiny , small closet and no dressers ( in

the standard room ) and the elevator is a joke. we usually walked down from the 6th floor rather than wait. if you are only
interested in a place to sleep and shower, this works fine. the the as the this

Positive
(Positive)

Spurious
Correlation 68.4

FR Hotel

deployed stockholm !logic ! time and time again as i stand jaded by brutal service and hotel properties , a westin hotel restores my

faith . the downtown location is great, staff was excellent and you can never go wrong with a heavenly bed - - the first to market

and still best by my standards . mentIonal ! able u edUisLieUsly ! locals ! situation viz ! ation can normalAble !

Positive
(Positive)

Degeneration 66.6

VIB MultiRC

Where did Mr. Steadman go to get the paper ? || The grocery store only neither yet quickly putting He read the telegram again. In
desperation he went back to the long distance booth, but found the line still out of order, and a wire had come giving the details of the
damage done by the storm. so kept next given just It would be several days before communication could be established. There was no
help coming from headquarters, and from the wording of the telegram there seemed to be a reason for their not giving clear details.
addition another the the another He must get a copy of the paper. Reluctantly he went to the printing office and made known his
errand. it several especially yet almost Mr. Driggs was delighted to give him the paper – he had it some place, though he very
seldom opened any of his exchanges. He evidently bore Mr. Steadman no ill - will for his plain talk two weeks ago. ......
Mr.Steadman remarked carelessly that there was an editorial in it to which his attention had been drawn, on hearing which

Mr. Driggs turned his head and winked at an imaginary accomplice. another first first part another

Negative
(Negative)

Spurious
Correlation 42.6

SPECTRA FEVER

the first inauguration of bill clinton was in the united states. ran ! ored ‡ ! the first inauguration of bill clinton
as the 42nd president of the united states was held on january 20, 1993 on the west front of the united states capitol
building in washington, d. c.. the inauguration marked the commencement of the first four - year term of bill clinton as president and
al gore as vice president. boro navarrekia ! . wal at of age time of his first inauguration, clinton was the third - youngest person to
become president, and the first from the baby boomer generation. ! ! ! ie ! ) 2war lu ! sselUresAUtnantTern

Positive
(Positive)

Degeneration 60.7

methods. But that does not mean it’s more robust than other methods.
The main reason is that it samples top-k tokens while other meth-
ods sample rationales with Gumbel-Softmax. However, when sam-
pling from the Gumbel-Softmax distribution, VIB’s �S increases.
Therefore, instead of horizontally comparing different methods, we
focus on the individual performance of each method to highlight the
widespread fragility in terms of explanation. Following UAT2E at-

tacks, these models tend to shift the selection of rationales from to-
kens prior to the attack to meaningless tokens or triggers, resulting in
a decrease in �G̃R, F1shift, and F1shift,m̂, while increasing AR.
Finding 2: Rationalization models tend to exhibit degeneration

or select spurious correlations when subjected to attacks Analy-
sis of sample cases indicates that these shifts occur because UAT2E
identifies trigger combinations leading the model to experience de-
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Figure 5. Evaluating the impact of improving prediction robustness on explanation robustness. We train RNP on the Movie (a) and MultiRC datasets (b).
“w/o adv” and “w/ adv” represent the cases without and with adversarial training, respectively.

generation or select spurious correlations, as presented in Table 2. In
the beer dataset, 57.0% of the samples exhibit a higher tendency to
select “,”, “.”, or other meaningless tokens after being attacked, while
48.1% of the samples choose non-appearance-related content.
Finding 3: Using a powerful encoder or supervised training with

human-annotated rationales fails to mitigate degeneration and

spurious correlations resulting from attacks Compared to GRU,
the model with BERT demonstrates higher GR on sentence-level
datasets and experiences a greater GR boost through supervised
training before attacks. When considering the rationale quality before
and after attacks, BERT-based models generally experience greater
impact, resulting in larger �GR values. However, the �G̃R values
are smaller due to the higher pre-attack GR. The disparity in sparsity
indicates that BERT is more vulnerable to attacks, resulting in a more
significant increase in sparsity compared to GRU. Consequently, pre-
cision and GR experience a decrease, as illustrated in Figure 4 (b).
Models trained under supervision with human-annotated rationales
fail to prevent the impact of attacks. Specifically, they tend to se-
lect more meaningless tokens and triggers while discarding the orig-
inally selected human-annotated rationale tokens. This also leads to
increased sparsity and decreases in precision, recall, and the GR
score, as shown in Figure 4 (c).

These two approaches help the model recognize rationales and
provide more accurate gradient information, which assists UAT2E in
selecting tokens that can induce model degradation or spurious cor-
relations. Notably, the discrepancy between F1shift and F1shift,m̂
is more pronounced in both situations. This indicates that using the
two approaches is better at identifying and preserving tokens anno-
tated as rationales by humans, resulting in more shifts occurring on
meaningless tokens.
Finding 4: Enhancing prediction robustness does not effectively

improve explanation robustness We conduct experiments on the
Movie and MultiRC datasets to investigate whether improving pre-
diction robustness can enhance explanation robustness. Specifically,
we train RNP on the Movie, MultiRC, Movie_ADV, and Mul-
tiRC_ADV datasets. The Movie_ADV and MultiRC_ADV datasets,
mentioned in [13], are used for adversarial training to enhance pre-
diction robustness. Following the model training, we perform non-
target attacks, and the experimental results are depicted in Figure 5.
It is noteworthy that we employ �G̃R to intuitively compare the im-
pact on models with different encoders. The results indicate that en-
hancing prediction robustness through adversarial training does not
significantly improve explanation robustness. Particularly, RNP with
GRU on the Movie dataset experiences a more pronounced impact
after adversarial training.
Finding 5: Utilizing gradient-based search in attacks to facilitate

trigger selection We conduct transferability tests using the identified
triggers. Specifically, we transfer the triggers from a source model to

a target model and assess the attack effects, as depicted in Figure 6. It
is worth noting that we do not have access to any information about
the target model in order to demonstrate the effectiveness of trigger
transfer in a black-box setting. Despite a slight reduction in effec-
tiveness, the triggers are still capable of influencing the target model.
However, the AR value is lower, which could potentially be attributed
to the absence of a gradient-based search, making it challenging for
the model to select triggers.

Figure 6. Evaluating the transferability of identified triggers. We conduct
tests on five models using BERT as the encoder, across three datasets: Beer,
Movie, and FEVER. Triggers identified on one model (source model) are

then transferred to other models (target models). Blue: Triggers apply to the
source model, Red: Triggers are transferred to target models, and the

experimental results are averaged.

5.4 Ablation Study

We conducted non-target attacks on VIB, utilizing GRU as the en-
coder, on three datasets: Hotel, Movie, and MultiRC, and the re-
sults are shown in Figure 7. When comparing Mean Absolute Error
(MAE) with Mean Squared Error (MSE) as a rationale measurement
function, the use of MSE yields a more significant attack effect. This
discrepancy arises from MSE more prominently capturing the differ-
ences between madv and the label sequence m∗. The attack effects
of calculating MSE in the embedding space and executing attacks by
randomly selecting words in each round are similar. This is because
the former emphasizes distinctions between word vectors rather than
masks, resulting in gradient fluctuations and a reduction in the attack
effect. Additionally, when employing the HotFlip [7] query method,
the attack effect closely resembles that of randomly selecting words
in each round.
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Figure 7. The impact of measurement functions and query methods. We
employed MSE and MAE as measurement functions. “MSEz” was used to

calculate the differences in rationale embeddings, specifically
MSEz(m� ex,m∗ � ex). For querying candidate tokens, we uses the

KD-Tree, random selection in each round, or the HotFlip [7] method.

Figure 8. Comparison various insertion positions and number of triggers.
We conducted non-target attacks on RNP using the Movie and MultiRC
datasets. “5-5”: insert 5 groups of triggers, each with 5 tokens. “1[p]-5”:

insert 1 group of triggers before the p-th sentence. The “-1” position means
insert 1 group of triggers at the end of the document. For the 5-group
strategy, we specified positions as p=(0,2,4,6,-1), and for the 3-group

strategy, p=(0,4,-1).

5.5 Triggers Position And Number

We examine the impact of different insertion positions and numbers
of triggers on model performance, as depicted in Figure 8. Gradu-
ally increasing the number of trigger groups and tokens per group
intensifies their influence on the model. Notably, the variation in the
number of trigger sets exhibits a more significant effect on model
performance. Additionally, triggers inserted near the end of the doc-
ument have a greater impact. This observation aligns with previous
findings by Chen et al. [4] and can be attributed to the fact that ratio-

nale positions in Movie and MultiRC datasets are typically located
close to the end of the document.

6 Recommendations

Based on our experimental results and analysis, we offer several rec-
ommendations to researchers and practitioners:
Conducting rigorous evaluations of rationalization models Re-
searchers should assess both task performance and rationale quality
by implementing various types of attacks on explanations and pre-
dictions. This examination helps determine whether rationalization
models exhibit both high prediction and explanation robustness.
Exploring defense mechanisms to enhance explanation robust-

ness Our experimental findings reveal rationalization models suffer
from issues such as degeneration and spurious correlation after being
attacked. Therefore, researchers should explore the development of
defense mechanisms to protect rationalization models from attacks
and reduce the occurrence of degeneration and spurious correlation.
Establishing robustness evaluation benchmarks and metrics It
is imperative for researchers to construct benchmarks that facili-
tate standardized and rigorous evaluation of model robustness. Such
benchmarks enable the identification of strengths and weaknesses
across various models using unified criteria. Additionally, it is im-
portant to note that Gold Rationale F1 (GR) may not accurately re-
flect rationale shifts. Therefore, developing more effective evaluation
metrics is essential for measuring these shifts accurately.

7 Conclusion

In this study, we investigate the robustness of rationalization models
in terms of explanation. To explore this, we propose UAT2E, a variant
of Universal Adversarial Triggers. UAT2E attacks explanations in
non-target and target manner separately, resulting in significant shifts
in rationales while maintaining predictions.

Based on the experimental findings, it is evident that existing ra-
tionalization models generally exhibit vulnerabilities in explanation,
making them susceptible to attacks that result in significant shifts
in rationales. These vulnerabilities can be attributed to degeneration
or spurious correlations after being attacked. Furthermore, despite
employing techniques to improve rationale quality, such as using
more powerful encoders or utilizing supervised training with human-
annotated rationales, the explanation robustness of rationalization
models does not significantly improve.

Based on our findings, we supplement our findings with a series
of recommendations for enhancing the explanation robustness of ra-
tionalization models.
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