
Combining Active Learning and Learning to Reject for
Anomaly Detection

Luca Stradiotti a,b,*, Lorenzo Perinia,b and Jesse Davisa,b

aDepartment of Computer Science, KU Leuven, Belgium
bLeuven.AI

Abstract. Anomaly detection attempts to identify instances in the
data that do not conform to the expected behavior. Because it is often
difficult to label instances, the problem is tackled in an unsupervised
way by employing data-driven heuristics to identify anomalies. How-
ever, the heuristics are imperfect which can degrade a detector’s per-
formance. One way to mitigate this problem is using Active Learning
to collect labels that help correct cases where the employed heuristics
are incorrect. Alternatively, one can allow the detector to abstain (i.e.,
say “I do not know”) whenever it is likely to make mispredictions at
test time, which is called Learning to Reject (LtR). However, while
both have been studied in the context of anomaly detection, they have
not been considered in conjunction. Although they both need labels
to accomplish their task, integrating these two ideas is challenging
for two reasons. First, their label selection strategies are intertwined
but they acquire different types of labels. Second, it is unclear how
to best divide the limited budget between labeling instances that help
AL and those that help LtR. In this paper, we introduce SADAL, the
first semi-supervised detector that allocates the label budget between
AL and LtR by relying on a reward-based selection function. Ex-
perimentally on 25 datasets, we show that our approach outperforms
several baselines by achieving a better performance.

1 Introduction

Anomaly detection attempts to automatically identify instances that
do not follow expected patterns [5]. These instances, named anoma-
lies, are usually associated with critical events such as failures in
manufacturing [43], breakdowns in wind turbines [39], or water leaks
in stores [38]. These critical events usually come with a negative cost
such as the monetary costs of lost products or societal costs such as
wasting vital resources. The timely detection of anomalies offers the
potential to reduce these costs.

Anomaly detection algorithms often operate in an unsupervised
manner because labels, especially for the anomalies, are usually hard
to collect: anomalies are rare (e.g., you may need to inspect thou-
sands of instances before encountering an anomaly) and infeasi-
ble to generate (e.g., voluntarily breaking a machine to collect an
anomaly) [22, 29]. Unsupervised anomaly detectors overcome the
absence of labels by employing heuristic intuitions, such as that
anomalies fall in low-density regions [4], to identify anomalous be-
havior. Choosing the right heuristic is crucial to having an accurate

∗ Corresponding Author. Email: luca.stradiotti@kuleuven.be

anomaly detector. Unfortunately, the chosen heuristic often is not ap-
propriate for all types of anomalies in a domain. Consequently, detec-
tors can perform poorly when confronted with anomalous behavior
that does not align with the chosen heuristic, which can diminish a
user’s trust in the detector’s predictions [18, 26].

Incorporating a human-in-the-loop can help in two different ways.
On the one hand, it is possible to use active learning (AL) [1] to
collect labels and move to a semi-supervised setting. AL queries the
labels for training instances that fall in the regions where the detec-
tor is likely to make mispredictions [9, 30]. By learning from the
newly collected labels, a semi-supervised anomaly detector can sig-
nificantly improve the prediction quality [36]. On the other hand, one
can use learning to reject (LtR) [19, 35, 8] where the detector has the
option to abstain (i.e., return “I do not know”) from making a pre-
diction in situations where it is at a heightened risk of making a mis-
take. When a detector abstains, the human would need to intervene
to make a decision. By understanding its limitations, a detector’s per-
formance improves when it does offer a prediction, which increases
the user’s trust in the model.

AL and LtR both require labeled instances, but they require differ-
ent types of labels. AL strategically targets labels that will improve
the detector, which introduces a strong bias in the set of collected la-
bels. In contrast, LtR needs to assess the detector’s performance so it
needs an unbiased or weakly-biased sample. The mismatch between
the type of labels needed means that AL and LtR are often treated
independently. Nonetheless, trying to integrate these approaches in-
troduces two interesting interdependencies. First, their instance se-
lection strategies are dependent on each other in a detector with re-
jection. The detector would not benefit much from labeling instances
within the rejection region, as it would not make predictions for sim-
ilar test instances. Similarly, learning the rejection region (i.e., the
region of the space where the detector abstains from predicting) de-
pends on the detector’s output, which changes according to which
training instances are labeled. Second, one often has a single budget
to label instances, and deciding how many instances to allocate to
each of AL and LtR is challenging. There is an inherent tension be-
tween these two objectives. On the one hand, allocating more of the
budget to AL will increase the detector’s prediction quality while, on
the other hand, using more for LtR results in a better estimate of the
detector’s performance, hence making it possible to determine when
abstention is warranted.

In this paper, we introduce SADAL (Semi-supervised Anomaly
Detector combining Active learning and Learning to reject) a novel

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240749

2266

semi-supervised anomaly detector with rejection that collects new la-
bels accounting for the interdependence between active learning and
learning to reject. For this task, SADAL starts from an unsupervised
setting. In each round, it uses a reward function to decide whether
to allocate the budget towards acquiring training labels (i.e., AL) or
to determine when the model should abstain (i.e., LtR). For both AL
and LtR, we come up with approaches tailored to our setting to select
which instances should be labeled. An extensive experimental analy-
sis on 25 benchmark and real-world datasets shows that our approach
outperforms its competitors.

Contributions. Our main contributions in this work are:

• we introduce the problem of allocating the label budget between
AL and LtR in order to actively train an anomaly detector with a
reject option

• we design (i) a novel AL strategy for a semi-supervised anomaly
detector with rejection, and (ii) a novel sampling strategy to ac-
quire labels for LtR when the classes are imbalanced;

• we propose a reward function that decides whether to collect the
labels for AL or LtR;

• we empirically perform an extensive analysis on 25 real-world and
benchmark datasets to compare our proposed method to several
baselines.

2 Preliminaries and Related Work

Let X be random variables representing a real d-dimensional fea-
ture vector and Y a random variable representing its class label,
where 0 denotes a normal instance and 1 an anomaly. Let D =
{x1, x2, ..., xm} be an unlabeled dataset with m instances .

Anomaly detection (AD) An anomaly detector h : Rd → R
+

maps an instance x to an anomaly score h(x) that represents the in-
stance’s degree of anomalousness (i.e., a higher score means that an
instance is more anomalous). Typically, unsupervised anomaly de-
tectors leverage heuristic intuitions about what behavior is anoma-
lous to assign anomaly scores. However, raw scores can be hard for a
human to interpret [26]. Thus, existing approaches convert the scores
into a class conditional probability P(Y = 1|X = x) by employing
squashing functions S [38]:

px := P(Y = 1|X = x) = Sλ(h(x)) = 1− 2
−h(x)2

λ2 , (1)

where λ is the decision threshold, which is often set in function of
the dataset’s contamination factor γ (i.e., the expected proportion of
anomalies) [28, 27, 25]. Strictly speaking, Sλ is a monotonic func-
tion that assigns probabilities ≥ 0.5 to anomaly scores ≥ λ. Thus, a
detector’s prediction can be obtained from px as

f(x) =

{
0 px < 0.5;

1 px ≥ 0.5.
(2)

Active Learning (AL) Unsupervised anomaly detectors tend to
make mispredictions for instances close to the decision boundary,
as the lack of labels does not allow a detector to properly distin-
guish between normals and anomalies. Existing work has shown that
acquiring training labels for those instances yields an improvement
in a detector’s performance, when retrained on the enriched training
data [40]. Thus, given a label budget B, Active Learning is a set of
strategies that aim to select the instances where the detector is likely

to make incorrect predictions and query their label to the user. Com-
monly, pool-based Active Learning (AL) strategies iteratively query
b ≤ B instances before retraining the model [23, 21, 9]. The most
common AL strategy is Uncertainty Sampling [17], which selects the
instances in the training set T that are closer to the decision boundary
by measuring the margin between the two class conditional probabil-
ities as:

xt = argmin
xi∈T

{|pxi − (1− pxi)|} = argmin
xi∈T

{|pxi − 0.5|} .

Other existing AL strategies propose to select instances exploiting
different heuristics, like diversity and anomalousness [1, 10, 11, 13,
33, 2] but are less common in anomaly detection.

Learning to Reject (LtR) Alternatively, one can reduce the detec-
tor’s mistakes by limiting the number of predictions. That is, Learn-
ing to Reject (LtR) allows a model to abstain (i.e., reject) from mak-
ing a prediction for a test instance whenever the detector is likely to
be incorrect [19]. For this, we include a detector-agnostic reject op-
tion that acts as a filter based on the detector’s output [42, 14, 34, 7].
Formally, learning a classifier with rejection entails (1) estimating
the model’s confidence in predictions cx and (2) learning a rejec-
tion threshold τ ∈ [0, 1] such that predictions with low confidence
(equivalent to high probability of misprediction) are rejected, i.e.,
deferred to the user. A common confidence function measures the
margin between the two class conditional probabilities [24] as

cx = |P(Y = 1|X = x)− P(Y = 0|X = x)| = |2px − 1|. (3)

A standard approach for setting the rejection threshold τ on cx is
to evaluate the model on a labeled validation set V for different
threshold values [16, 31, 14]: on one hand, a low τ increases the
chance of mispredictions while, on the other hand, a high τ decreases
the model’s usage (i.e., forces the human to intervene). Optimiz-
ing this trade-off often requires defining the cost of mispredictions
(CFP > 0 for false positives, CFN > 0 for false negatives) and
rejections (CR > 0).

However, Tortorella [37] showed that thresholding the confidence
differently per predicted class improves the model’s performance, es-
pecially when dealing with limited labeled instances. Denoting by
τn and τa the rejection thresholds for the normal and anomaly class,
finding their value entails optimizing the cost functions:

τn=argmin
0<tn<1

[
P(cx≤ tn|y=0)CR+P(cx>tn, px<0.5|y=1)CFN

]

τa=argmin
0<ta<1

[
P(cx≤ ta|y=1)CR+P(cx>ta, px≥0.5|y=0)CFP

]

At test time, an instance x is rejected if either (1) px ≥ 0.5 and
cx ≤ τa or (2) px < 0.5 and cx ≤ τn. Because the confidence is
normally obtained as a function of the class conditional probabilities
(Eq. 3), one can equivalently set the rejection thresholds over px by
transforming τn and τa into τN = 1+τn

2
and τA = 1−τa

2
. From now

on, we use τN , τA to refer to the rejection thresholds.

3 Methodology

Our goal is to learn an anomaly detector with rejection f R© : Rd →
{0, 1, R©} of the form:

f R©(x) =

⎧⎪⎨
⎪⎩
0 if px < τN ;

R© if px ∈ [τN ; τA];

1 if px > τA.

L. Stradiotti et al. / Combining Active Learning and Learning to Reject for Anomaly Detection 2267

We will approach this problem from a semi-supervised perspec-
tive. An anomaly detector with rejection can benefit from acquiring
labels in two different ways. On the one hand, collecting more la-
bels via AL to train the detector will improve its performance. On
the other hand, having more labels will allow setting more accurate
rejection thresholds via LtR.

Unfortunately, there is a single, limited budget that must be used
for both tasks. This poses two challenges. First, AL and LtR are
strongly intertwined: allocating labels to one affects the other. That
is, allocating the budget to improve the detector will result in a better
calibration of the detector’s probabilities, which simplifies learning
the rejection thresholds, to the extent that, with perfectly calibrated
probabilities, the optimization problem narrows down to setting a
constant value. Similarly, allocating the budget to LtR enables set-
ting better rejection thresholds. This affects the AL’s selection strat-
egy, to the extent that, with optimal thresholds, AL would only tar-
get instances outside the rejection region. A natural question is how
to design label selection strategies that account for this interdepen-
dence. Second, AL and LtR need different types of labels to achieve
their objectives: AL targets the regions where the detector performs
poorly, thus introducing a strong bias in the labeled population, while
LtR requires a reliable estimate of the detector’s performance over
the entire instance space, thus preferring un/weakly-biased labeled
instances. This introduces the challenge that in each round, we must
decide whether to acquire labels that help improve the detector’s per-
formance (AL) or to better set the rejection thresholds (LtR). It is
unlikely that evenly dividing the budget between each objective will
yield optimal performances (see the experiments).

We tackle these challenges by introducing SADAL, a novel de-
tector with rejection utilizing a K-round allocation loop considering
the interplay between Active Learning and Learning to Reject. Ini-
tially, SADAL partitions the unlabeled dataset D into the training
set T to learn the detector and the validation set V to optimize the
rejection thresholds. The detector h0 is trained with no labels, the re-
jection thresholds τA and τN are set to default values, and the budget
B is split into K allocation rounds, where b = �B/K� labels are
acquired. In the first two rounds, SADAL collects b validation and b
training labels, and measures the initial rewards Re

V(1) and Re
T (2),

i.e., how beneficial the new training and validation labels are for the
model. The allocation loop begins, distributing B − 2b of the re-
maining budget over K − 2 rounds. Labels are obtained from either
the training or validation set based on the option yielding the highest
reward. After a training set allocation, the detector is retrained with
new labels; after a validation set allocation, the rejection thresholds
are optimized again. Then, SADAL updates the rewards for the next
allocation round by measuring the impact of the past labels. Figure 1
shows how SADAL’s performance improves when more labels are
added (center) to T and (right) to V on a 2D toy test set. See Algo-
rithm 1 for the model’s pseudo-code. Next, we discuss the two key
points of our approach, namely how to select the labels to train the
detector and to optimize the rejection thresholds (Sec. 3.1) and how
to measure the reward for the next allocation round (Sec. 3.2).

3.1 How to select which instances to label

Selecting strategic instances to enhance a detector with rejection re-
quires accounting for two important aspects. First, labeling training
instances that fall in the rejection region may not affect the detec-
tor’s performance, as a similar test instance would be rejected. Thus,

Algorithm 1 SADAL
Given : D - unlabeled dataset with contamination factor γ,
h - anomaly detector, B - overall budget, K - number of
rounds

1: split randomly D into T and V
2: train h0 unsupervised and set τN = 0.5− γ

2
, τA = 0.5 + γ

2

3: collect b labels from V as in Sec. 3.1, update τN and τA
4: measureRe

V(1) as in Sec. 3.2
5: collect b labels from T as in Sec. 3.1, update h
6: measureRe

T (2) as in Sec. 3.2
7: b = B/K
8: k = 3
9: while k ≤ K do

10: if Re
T (k − 1) > Re

V(k − 1) then

11: collect b labels from T as in Sec. 3.1 and update h
12: measureRe

T (k) andRe
V(k) as in Sec. 3.2

13: update τA and τN
14: else

15: collect b labels from V as in Sec. 3.1 and update τN and τA
16: measureRe

T (k) andRe
V(k) as in Sec. 3.2

17: end if

18: k = k + 1
19: end while

such labels might be wasted. Second, selecting i.i.d. instances to opti-
mize the rejection thresholds is likely to end up labeling only normal
instances due to high class imbalance. Thus, learning the rejection
thresholds might become an ill-posed optimization problem.

a) Collecting labels to train the detector Existing AL approaches
tend to acquire labels for instances that are close to the decision
boundary [40]. However, for a model with rejection, such instances
lie in the rejection region. Acquiring labels in the rejection region
will not improve a detector’s performance at test time because the
model will abstain from making a prediction. Our intuition is that in
a rejection setting, a detector’s decision boundary lies around the re-
jection thresholds. Consequently, we propose a novel rejection-aware
Active Learning strategy that queries the b unlabeled instances in T
that are closest to τN and τA and fall outside of the rejection region:

xt = argmin
xi∈T

{min(|pxi − τN |, |pxi − τA|)} , s.t. pxi /∈ [τN ; τA].

b) Collecting labels to optimize the rejection thresholds. To es-
timate the rejection thresholds we need validation labels that satisfy
two criteria. On the one hand, they should give an accurate esti-
mate of a detector’s performance. This suggests a (1) i.i.d. strategy
would be appropriate. On the other hand, it is important to identify
those regions of the instance space where the model performs worse
(i.e., is more likely to make a misprediction). This suggests a (2) bi-
ased sampling strategy. We trade off these two criteria by proposing
a weakly-biased strategy that samples the instances uniformly over
their class conditional probability values, rather than over the data
density. Strictly speaking, we (1) sample p∗ ∼ UNIF(0, 1), and (2)
query the instance whose conditional probability px is closer to p∗:

xv = argmin
xi∈V

{|pxi − p∗|} , where p∗ ∼ UNIF(0, 1).

This weakly-biased sampling mechanism targets instances from both
classes equally, overcoming the class imbalance issue.

L. Stradiotti et al. / Combining Active Learning and Learning to Reject for Anomaly Detection2268

Figure 1: Illustration of how collecting labels via SADAL improves the performance of DEEPSAD on a 2D toy test set. The boxes on the
top indicate the number of available labels, while the background colors show the prediction (red for anomalies, blue for normals) and the
rejection region (gray). SADAL starts with no labels available (left), then collects five labels from T (center), and five labels from V (right).
Both labeling T and V reduce the number of mispredictions (black cross marks): the former enhances the quality of DEEPSAD’s output, while
the latter limits the number of (incorrect) predictions.

3.2 Reward function for budget allocation

Ideally, at each round, one would allocate the budget to the option
that results in the best performance after all allocation rounds. How-
ever, future knowledge is not available during training/validation.
Thus, we propose to look at the past rounds to measure the reward
of acquiring new labels. Our insight is that a larger variation in the
detector’s output implies a larger gain in performance at test time.
Following this, we design two reward functions for the instances to
train the detector and to optimize the rejection thresholds.

Reward function for the labels in T . We look at how the class
conditional probabilities vary when retraining the detector with the
newly acquired training labels, as a large variation implies that the
labels had a strong impact. For this task, we compute the expecta-
tion of the absolute difference between the entropy of px before and
after retraining the detector. Moreover, one wants to average over all
historical changes resulting from the acquired training labels, assign-
ing a lower weight to such variations the earlier in the rounds they
occurred.

For this task, we include an exponential decay. As a result, the
reward for the k-th allocation round is computed as:

Re
T (k) =

k∑
i=1

αφT (i,k) · Ex∈D
[∣∣Hhi (x)−Hhi−1 (x)

∣∣] (4)

Hh(x) = −px log2 px − (1− px) log2(1− px).

where hi is the detector learned using the acquired labels up to the
i-th round (h0 is unsupervised), φT : N2 → N returns for how many
rounds labels were collected from T between the i-th and the k-
th round, and α is a hyperparameter to weigh the influence of the
past allocation rounds. Note that if the budget is not allocated to the
training set for a round j ≤ k, then the j-th round does not contribute
to the k-th reward becauseHhj (x) = Hhj−1(x) for any x.

Reward function for the labels in V . We proceed similarly to
the reward for the labels in T but look at the rejection probabilities
instead of the class conditional probabilities. Specifically, the reward
in this case is computed as in Equation 4 by substituting φT with φV ,

andHh withH R©, which is equal to

H R©(x) = −p R©
x log2 p

R©
x −

(
1− p

R©
x

)
log2

(
1− p

R©
x

)
,

where p R©
x represents the rejection probability for an instance x, i.e.,

the likelihood that x will be rejected if seen at test time.

Estimating the rejection probabilities is not straightforward.
Roughly speaking, rejected instances should have a rejection prob-
ability ≥ 0.5, while accepted instances should have p R©

x < 0.5.
Having access to px, we need to map the class conditional prob-
abilities to rejection probabilities. Because the rejection thresholds
define the boundaries of the rejection region, a desired property is
that p R©

τN = p R©
τA = 0.5. Thus, we propose to estimate the rejection

probabilities by leveraging the squashing function S [38] with the
two rejection thresholds playing the role of the decision threshold in
Equation 1:

p R©
x =

{
SτN (px) if px < 0.5;

S1−τA(1− px) if px ≥ 0.5.

4 Experiments

Empirically, we answer the following research questions:

Q1: Does SADAL outperform the baselines?
Q2: How does SADAL behave when varying CFP , CFN?
Q3: How does each component of SADAL impact its performance?

Additionally, the online supplement1 evaluates how SADAL per-
forms when some annotated anomalies are available from the be-
ginning.

4.1 Experimental Setup

Methods. Given that no existing methods directly address our
problem, we consider five possible strategies one may adopt in this
setting and compare SADAL2 against the following baselines:
1 https://github.com/ML-KULeuven/SADAL/blob/main/supplement.pdf
2 Code available at: https://github.com/ML-KULeuven/SADAL.

L. Stradiotti et al. / Combining Active Learning and Learning to Reject for Anomaly Detection 2269

• ALLINAL assigns the full budget to AL to improve the detector’s
performance. The same labels used to train the detector are used
to set the rejection thresholds;

• ALLINLTR learns an unsupervised detector and assigns the full
budget to optimize the rejection thresholds via LtR. The detector
is trained in a fully unsupervised manner;

• HALF splits equally the budget between AL and LtR; First, the
detector collects half of the labels via AL in multiple rounds. Then
the rest of the budget is allocated to obtain labels to optimize the
rejection thresholds.

• RANDOM randomly selects at each round between assigning the
budget to AL or LtR.

• ONLYAL does not include any reject option. The full budget is
assigned to AL to improve the detector’s performance.

For AL, we always use Uncertainty Sampling [17] to select the in-
stances to label. While, when the budget is allocated to LtR, the in-
stances are randomly selected. None of the baselines use our reward
function because it is one of our main contributions.

Data. We run our experimental analysis on two real-world wind
turbine datasets and the 23 benchmark datasets described in Table
1 (Supplement) that are widely used in anomaly detection [18]. The
task for the two turbine datasets (T15 and T21) is to detect blade
icing (i.e., the anomalies), which could potentially damage the tur-
bines and slow power production [41]. Various measurements (e.g.,
wind speed and power) are collected every seven seconds for either
two months (T15) or one month (T21). Following [41], we construct
feature-vectors by averaging over segments of 1 minute.

Evaluation metric. In learning with rejection, abstaining often
improves the performance on the instances for which the model
makes a prediction. However, abstaining has a cost because it pushes
work to a human. Therefore, often one takes a cost-based ap-
proach where both mispredictions and rejections have an associated
cost [8, 24, 3, 6]. We use the following metric:

Cf = CR · P (f R©(X) = R©) + CFP · P (f R©(X) = 1 | Y = 0)

+ CFN · P (f R©(X) = 0 | Y = 1)
(5)

where CR, CFP , CFN > 0 are the costs of a rejection, a false posi-
tive, and a false negative respectively. We assume correct predictions
have a cost of zero, while we set CFP = CFN = 1. We consider
rejection less costly than misprediction and the rejection cost needs
to satisfy the inequality CR ≤ min{CFP × (1 − γ), CFN × γ},
otherwise one could predict always normal and pay an expected cost
of CFN × γ or anomaly and pay CFP × (1 − γ). We always set
CR = min{CFP × (1− γ), CFN × γ}.

Setup. For each dataset, we employ the following procedure: (i) we
split the dataset into training, validation, and test set (40% −40%−
20%), (ii) we fit the anomaly detector on the unlabeled training set
and set two default rejection thresholds to 0.5 ± γ

2
; (ii) we collect

b validation labels and b training labels; (iii) we optimize the rejec-
tion thresholds and measure the initial validation labels’ reward; (iv)
we train the anomaly detector on the partially labeled training set
and measure the initial training labels’ reward; (v) we allocate the
next round budget b to the option with the highest reward and repeat
(iii) or (iv) for K − 2 allocation rounds. During each of the steps,
we measure the detector’s performance on the test set using the cost
function in Equation 5. We set B to be 30% of the combined size of
the training and validation sets, and b = 2%. Consequently, we run

15 allocation rounds. To obtain more consistent results, we repeat (i -
v) 10 times and report the average results. Therefore, we run in total
25× 15× 10 = 3000 experiments.

Hyperparameters We use DeepSAD [32] with its default hyper-
parameters as the semi-supervised anomaly detector. For LtR, we
set the two rejection thresholds through Bayesian Optimization (GP
MINIMIZE implemented in SKOPT) with 30 calls [15] and limit
the rejection rate on the validation set to be at most 50% (this thresh-
old prevents the model from rejecting all the instances). The hyperpa-
rameter α that weights the influence of the previous allocation rounds
on the actual reward is set to 0.5.

4.2 Results

Q1: models’ comparison. Figure 2 shows a fine-grained view of
the results by plotting the average test cost per instance Cf as a func-
tion of the allocation round k. On average, SADAL outperforms all
baselines by reducing the test cost by approximately 10% vs HALF
and RANDOM, 11% vs ALLINLTR, 13% vs ALLINAL, and 50%
vs ONLYAL. Moreover, SADAL achieves lower/similar (i.e., differ-
ences ≤ 0.001) test cost in around 78% of the experiments against
the two runner-ups HALF and RANDOM.

For each experiment, we rank the methods from the best (rank 1)
to the worst (rank 6) and report the average ranks in Table 1. Results
show that SADAL consistently obtains the lowest (best) average
rank when aggregating for each allocation round over all datasets.
Remarkably, all the baselines that include a reject option achieve sim-
ilar average positions (around 3), indicating that their performance
strictly depends on the allocated budget and dataset.

Finally, we analyze the statistical significance of the models’ per-
formance separately for each allocation round k. For any k, the Fried-
man test [12] rejects the null hypothesis that all the methods perform
similarly (p-value < 10−5). Moreover, the Nemenyi post-hoc statis-
tical test with α = 0.05 finds that SADAL is significantly better
than all baselines in the vast majority of allocation rounds, with the
only exceptions for ALLINLTR/ALLINAL at k = 1, and for HALF
at k = 11, 15.

Q2: varying CFP and CFN . The misprediction costs CFP and
CFN usually depend on the application domain: in some contexts,
one must avoid false alarms, while in others, undetected anomalies
may be harmful. In this experiment, we vary the costs to study how
SADAL works in 4 representative settings: (i) CFP is higher than
CFN (CFP = 5, CFN = 1), (ii) CFP is much higher than CFN

(CFP = 20, CFN = 1), (iii) CFP is lower than CFN (CFP = 1,
CFN = 5), and (iv) CFP is much lower than CFN (CFP = 1,
CFN = 20). We always set the rejection cost cR = min{CFP ×
(1− γ), CFN × γ} to satisfy the constraint on the costs.

Table 2 shows each method’s average cost per instance over all
datasets and allocation rounds. We observe that SADAL outper-
forms the baselines when CFP > CFN : it decreases the cost by
at least 22% when compared to the runner-up ALLINLTR. More-
over, for both (i) and (ii), at the end of the allocation loop (k = 15),
SADAL obtains on average a lower test cost on 19, 21, 21, 22, 25
datasets when compared to, respectively, ALLINLTR, ALLINAL,
HALF, RANDOM and ONLYAL. This shows that SADAL is very
useful when false alarms are costly. When CFN > CFP , SADAL
still outperforms the baselines, despite achieving a smaller improve-
ment. When CFN >> CFP , most of the methods perform similarly

L. Stradiotti et al. / Combining Active Learning and Learning to Reject for Anomaly Detection2270

0.02

0.04

cover celeba fraud

SADAL ALLinAL ALLinLtR HALF RANDOM onlyAL

http speech

0.05

0.07

mammography landsat vowels Cardiotocography Waveform

0.065

0.085

Av
er
ag

e
te
st

co
st

pe
r
ex

am
pl
e
(C

f)

annthyroid skin T15 T21 Wilt

0.08

0.1

InternetAds letter yeast satellite PageBlocks

3 5 7 9 11 13

0.14

0.19

Pima

3 5 7 9 11 13

Stamps

3 5 7 9 11 13
Allocation round (k)

WBC

3 5 7 9 11 13

SpamBase

3 5 7 9 11 13

magic.gamma

Figure 2: Average test cost per instance for all the considered strategies on all the 25 datasets for 15 allocation rounds (k). Overall, SADAL
outperforms the considered baselines on 13 datasets and is competitive in almost all the others.

Table 1: Average rank (± std.) for each method across all datasets for 15 allocation rounds. Overall, SADAL outperforms the competing
baselines and always achieves the lowest (best) average rank, indicating that it consistently obtains good performances over the experiments.

Ranks (avg. ± std.)
k SADAL ALLINAL ALLINLTR HALF RANDOM ONLYAL

1 1.84 ± 0.99 2.68 ± 0.99 2.44 ± 1.58 4.00 ± 1.22 4.24 ± 0.88 5.80 ± 0.65
2 1.40 ± 0.71 2.72 ± 1.31 3.12 ± 1.42 3.84 ± 1.18 4.08 ± 0.91 5.84 ± 0.47
3 1.44 ± 0.71 2.76 ± 1.20 3.24 ± 1.45 3.68 ± 1.18 3.96 ± 1.10 5.92 ± 0.40
4 1.36 ± 0.64 2.96 ± 1.14 3.44 ± 1.47 3.52 ± 1.36 3.80 ± 1.04 5.92 ± 0.40
5 1.44 ± 0.71 3.08 ± 1.26 3.48 ± 1.50 3.44 ± 1.26 3.64 ± 1.19 5.92 ± 0.40
6 1.28 ± 0.54 3.40 ± 1.22 3.40 ± 1.41 3.36 ± 1.32 3.68 ± 1.11 5.88 ± 0.60
7 1.40 ± 0.76 3.12 ± 1.42 3.48 ± 1.36 3.48 ± 1.23 3.56 ± 1.08 5.96 ± 0.20
8 1.32 ± 0.63 3.40 ± 1.32 3.76 ± 1.36 3.32 ± 1.11 3.20 ± 1.15 6.00 ± 0.00
9 1.44 ± 0.71 3.56 ± 1.29 3.56 ± 1.39 3.16 ± 1.25 3.28 ± 1.21 6.00 ± 0.00

10 1.28 ± 0.54 3.76 ± 1.01 3.64 ± 1.47 3.16 ± 1.25 3.16 ± 1.11 6.00 ± 0.00
11 1.72 ± 0.84 3.36 ± 1.22 3.84 ± 1.55 2.64 ± 1.25 3.44 ± 1.16 6.00 ± 0.00
12 1.44 ± 0.65 3.52 ± 1.08 3.96 ± 1.59 3.00 ± 1.04 3.08 ± 1.19 6.00 ± 0.00
13 1.52 ± 0.96 3.44 ± 1.16 3.84 ± 1.52 3.16 ± 1.14 3.04 ± 1.14 6.00 ± 0.00
14 1.52 ± 0.65 3.56 ± 1.29 3.96 ± 1.43 2.96 ± 1.06 3.00 ± 1.26 6.00 ± 0.00
15 1.76 ± 0.88 3.56 ± 1.12 4.00 ± 1.44 2.60 ± 1.08 3.08 ± 1.41 6.00 ± 0.00

and obtain high costs: this is due to the underlying detector produc-
ing too many false negatives that LtR is unable to reject. This is fur-
ther supported by a quick analysis of the rejection rates. ALLINLTR
rejects on average 7% more test instances compared to SADAL:
ALLINLTR achieves a lower test cost by optimizing the rejection

thresholds more effectively, leveraging the larger number of labels
for LtR.

Q3: ablation study. To assess the impact of the three main con-
tributions of SADAL, we create three variants of our method. Each

L. Stradiotti et al. / Combining Active Learning and Learning to Reject for Anomaly Detection 2271

Table 2: Each method’s average test cost per instance averaged over all datasets and allocation rounds. Overall, SADAL outperforms the
competing baselines when CFP > CFN , while being less effective in the other cases because of its sampling strategy for the LtR labels.

Average cost per instance Cf

CFP CFN SADAL ALLINAL ALLINLTR HALF RANDOM ONLYAL

5 1 0.122 0.210 0.161 0.166 0.164 0.495
20 1 0.343 0.671 0.488 0.510 0.504 1.833
1 5 0.290 0.299 0.299 0.297 0.298 0.336
1 20 0.913 0.953 0.890 0.910 0.910 1.077

3 5 7 9 11 13

0.02

0.04

0.06

C f

vowels
3 5 7 9 11 13

letter
3 5 7 9 11 13

Allocation round (k)

speech

SADAL UncSampl_AL_Labels Rand_LtR_Labels Rand_AL_or_LtR One_Rej_Thresh

3 5 7 9 11 13
landsat

3 5 7 9 11 13
celeba

Figure 3: The impact of SADAL’s contributions and the two-thresholds plug-in on the average test cost per instance as a function of the
allocation round (k) for five representative datasets. All components have a positive impact on the final performance and decrease SADAL’s
average test cost per instance.

variant removes one contribution:

1. UNCSAMPL_AL_LABELS selects the instances to be labeled to
train the detector using standard Uncertainty Sampling instead of
our rejection-aware strategy;

2. RAND_LTR_LABELS selects instances to be labeled uniformly at
random for setting the rejection thresholds instead of using our
weakly-biased sampling approach;

3. RAND_AL_OR_LTR randomly decides in each allocation
whether to collect labels to train the detector or to optimize the
rejection thresholds as opposed to using our reward function.

For the sake of completeness, we consider ONE_REJ_THRESH that
optimizes a symmetric rejection threshold τ centered in 0.5 (i.e., x
is rejected if px ∈ [0.5− τ ; 0.5 + τ]), and keeps the same sampling
strategies and reward functions as SADAL.

Figure 3 shows the comparison between SADAL and its four
simplified versions on five representative datasets. Results show
that all contributions have a positive impact on the final perfor-
mance of the detector: on average, RAND_AL_OR_LTR and UNC-
SAMPL_AL_LABELS increase the test cost per instance by 7%,
RAND_LTR_LABELS by more than 8% and ONE_REJ_THRESH by
more than 44%. Moreover, SADAL obtains a lower/similar (i.e.,
differences ≤ 0.001) test cost on 64% of the experiments when
compared to RAND_AL_OR_LTR and UNCSAMPL_AL_LABELS,
on 66% vs RAND_LTR_LABELS, and 95% vs ONE_REJ_THRESH.
Thus, each contribution is relevant to achieve the final performance.

5 Conclusion

The literature on semi-supervised anomaly detection has focused on
designing new algorithms to learn from labeled and unlabeled data,
but largely ignored some practical challenges. First, a recurring as-
sumption is that acquiring training labels always improves a detec-
tor’s performance. However, the detector might be unable to make

accurate predictions in regions where the true class label is ambigu-
ous (e.g., when the key features to recognize an anomaly are miss-
ing). In such regions, a better option is to defer the decision to the
user at test time. Second, traditional active learning strategies may
not be beneficial for a detector with reject option because labeling
instances falling within the rejection region may have no impact at
test time. Thus, new AL strategies need to be developed. Third, the
literature has typically considered using a label budget for a single
task (e.g., active learning). However, an unexplored and challenging
problem for practitioners is how to smartly distribute it when dealing
with multiple tasks.

In this paper, we proposed SADAL, a novel semi-supervised
anomaly detector with rejection that allocates the available budget
in multiple rounds to reduce the expected cost at test time. When the
budget for a round is allocated to the training set, our novel active
learning strategy queries the training instances closest to the rejection
thresholds but falling outside the rejection region. When the budget is
allocated to the validation set, our novel weakly-biased strategy sam-
ples instances across the entire instance space. At each round, the
budget is allocated depending on a reward function that looks at the
past rounds to estimate the expected gain in performance by measur-
ing the entropy of the class conditional probabilities for the training
labels, and of the rejection probabilities for the validation ones. We
empirically validate our approach on 25 datasets, showing that it of-
ten outperforms the baselines and all its contributions have a positive
impact on the final performance. In the future, it would be interesting
to extend our approach by leveraging insights from the literature on
uncertainty quantification [20]. Only instances with high epistemic
uncertainty are actually useful to improve the detector via AL, while
instances with high aleatoric uncertainty should be rejected.

L. Stradiotti et al. / Combining Active Learning and Learning to Reject for Anomaly Detection2272

Acknowledgements

This research is supported by the Flemish Government under the
“Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
programme [LS,JD], an FB Ph.D. fellowship by FWO-Vlaanderen
(grant 1166224N) [LP], and KUL Research Fund iBOF/21/075 [JD].

References

[1] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learn-
ing. In KDD, pages 504–509. ACM, 2006.

[2] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds.
In ICLR. OpenReview.net, 2020.

[3] P. L. Bartlett and M. H. Wegkamp. Classification with a reject option
using a hinge loss. J. Mach. Learn. Res., 9:1823–1840, 2008.

[4] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander. LOF: identifying
density-based local outliers. In SIGMOD Conference, pages 93–104.
ACM, 2000.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, 2009.

[6] N. Charoenphakdee, Z. Cui, Y. Zhang, and M. Sugiyama. Classification
with rejection based on cost-sensitive classification. In ICML, volume
139 of Proceedings of Machine Learning Research, pages 1507–1517.
PMLR, 2021.

[7] C. K. Chow. On optimum recognition error and reject tradeoff. IEEE
Trans. Inf. Theory, 16(1):41–46, 1970.

[8] C. Cortes, G. DeSalvo, and M. Mohri. Learning with rejection. In ALT,
volume 9925 of Lecture Notes in Computer Science, pages 67–82, 2016.

[9] A. Culotta and A. McCallum. Reducing labeling effort for structured
prediction tasks. In AAAI, pages 746–751. AAAI Press / The MIT Press,
2005.

[10] I. Dagan and S. P. Engelson. Committee-based sampling for training
probabilistic classifiers. In ICML, pages 150–157. Morgan Kaufmann,
1995.

[11] S. Dasgupta and D. J. Hsu. Hierarchical sampling for active learning.
In ICML, volume 307 of ACM International Conference Proceeding
Series, pages 208–215. ACM, 2008.

[12] J. Demsar. Statistical comparisons of classifiers over multiple data sets.
J. Mach. Learn. Res., 7:1–30, 2006.

[13] S. Ebert, M. Fritz, and B. Schiele. RALF: A reinforced active learning
formulation for object class recognition. In CVPR, pages 3626–3633.
IEEE Computer Society, 2012.

[14] V. Franc, D. Průša, and V. Vorácek. Optimal strategies for reject option
classifiers. J. Mach. Learn. Res., 24:11:1–11:49, 2023.

[15] P. I. Frazier. A tutorial on bayesian optimization. CoRR,
abs/1807.02811, 2018.

[16] K. Fukunaga and D. L. Kessell. Application of optimum error-reject
functions (corresp.). IEEE Trans. Inf. Theory, 18(6):814–817, 1972.

[17] G. Hacohen, A. Dekel, and D. Weinshall. Active learning on a budget:
Opposite strategies suit high and low budgets. In ICML, volume 162 of
Proceedings of Machine Learning Research, pages 8175–8195. PMLR,
2022.

[18] S. Han, X. Hu, H. Huang, M. Jiang, and Y. Zhao. Adbench: Anomaly
detection benchmark. In NeurIPS, 2022.

[19] K. Hendrickx, L. Perini, D. V. der Plas, W. Meert, and J. Davis. Machine
learning with a reject option: a survey. Mach. Learn., 113(5):3073–
3110, 2024.

[20] E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty
in machine learning: an introduction to concepts and methods. Mach.
Learn., 110(3):457–506, 2021.

[21] D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for su-
pervised learning. In ICML, pages 148–156. Morgan Kaufmann, 1994.

[22] R. A. Maxion and K. M. C. Tan. Benchmarking anomaly-based detec-
tion systems. In DSN, pages 623–630. IEEE Computer Society, 2000.

[23] R. M. Monarch. Human-in-the-Loop Machine Learning: Active learn-
ing and annotation for human-centered AI. Simon and Schuster, 2021.

[24] L. Perini and J. Davis. Unsupervised anomaly detection with rejection.
CoRR, abs/2305.13189, 2023.

[25] L. Perini, V. Vercruyssen, and J. Davis. Class prior estimation in active
positive and unlabeled learning. In IJCAI, pages 2915–2921. ijcai.org,
2020.

[26] L. Perini, V. Vercruyssen, and J. Davis. Quantifying the confidence of
anomaly detectors in their example-wise predictions. In ECML/PKDD

(3), volume 12459 of Lecture Notes in Computer Science, pages 227–
243. Springer, 2020.

[27] L. Perini, V. Vercruyssen, and J. Davis. Transferring the contamination
factor between anomaly detection domains by shape similarity. In AAAI,
pages 4128–4136. AAAI Press, 2022.

[28] L. Perini, P. Bürkner, and A. Klami. Estimating the contamination fac-
tor’s distribution in unsupervised anomaly detection. In ICML, vol-
ume 202 of Proceedings of Machine Learning Research, pages 27668–
27679. PMLR, 2023.

[29] L. Perini, M. Rudolph, S. Schmedding, and C. Qiu. Uncertainty-aware
evaluation of auxiliary anomalies with the expected anomaly posterior.
arXiv preprint arXiv:2405.13699, 2024.

[30] T. Pimentel, M. Monteiro, A. Veloso, and N. Ziviani. Deep active learn-
ing for anomaly detection. In IJCNN, pages 1–8. IEEE, 2020.

[31] A. Pugnana and S. Ruggieri. Auc-based selective classification. In
AISTATS, volume 206 of Proceedings of Machine Learning Research,
pages 2494–2514. PMLR, 2023.

[32] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller,
K. Müller, and M. Kloft. Deep semi-supervised anomaly detection. In
ICLR. OpenReview.net, 2020.

[33] D. Shen, J. Zhang, J. Su, G. Zhou, and C. L. Tan. Multi-criteria-based
active learning for named entity recognition. In ACL, pages 589–596.
ACL, 2004.

[34] A. Sotgiu, A. Demontis, M. Melis, B. Biggio, G. Fumera, X. Feng, and
F. Roli. Deep neural rejection against adversarial examples. EURASIP
J. Inf. Secur., 2020:5, 2020.

[35] C. D. Stefano, C. Sansone, and M. Vento. To reject or not to reject: that
is the question-an answer in case of neural classifiers. IEEE Trans. Syst.
Man Cybern. Part C, 30(1):84–94, 2000.

[36] L. Stradiotti, L. Perini, and J. Davis. Semi-supervised isolation forest
for anomaly detection. In SDM, pages 670–678. SIAM, 2024.

[37] F. Tortorella. An optimal reject rule for binary classifiers. In SSPR/SPR,
volume 1876 of Lecture Notes in Computer Science, pages 611–620.
Springer, 2000.

[38] V. Vercruyssen, W. Meert, G. Verbruggen, K. Maes, R. Baumer, and
J. Davis. Semi-supervised anomaly detection with an application to
water analytics. In ICDM, pages 527–536. IEEE Computer Society,
2018.

[39] A. Zaher, S. McArthur, D. Infield, and Y. Patel. Online wind turbine
fault detection through automated scada data analysis. Wind Energy,
12:574 – 593, 09 2009. doi: 10.1002/we.319.

[40] X. Zhan, H. Liu, Q. Li, and A. B. Chan. A comparative survey: Bench-
marking for pool-based active learning. In IJCAI, pages 4679–4686.
ijcai.org, 2021.

[41] L. Zhang, K. Liu, Y. Wang, and Z. B. Omariba. Ice detection model of
wind turbine blades based on random forest classifier. Energies, 11(10):
2548, 2018.

[42] L. Zhou, F. Martínez-Plumed, J. Hernández-Orallo, C. Ferri, and
W. Schellaert. Reject before you run: Small assessors anticipate big
language models. In EBeM@IJCAI, volume 3169 of CEUR Workshop
Proceedings. CEUR-WS.org, 2022.

[43] K. Zope, K. Singh, S. Nistala, A. Basak, P. Rathore, and V. Runkana.
Anomaly detection and diagnosis in manufacturing systems: A compar-
ative study of statistical, machine learning and deep learning techniques.
In Annu. Conf. PHM Soc, volume 11, 2019.

L. Stradiotti et al. / Combining Active Learning and Learning to Reject for Anomaly Detection 2273

