
Differentiable Neural Network for Assembling Blocks

Zhiwei Liua, Qiang Lua,*, Yibo Zhaoa, Yanhong Zhaob and Jake Luoc

a Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum, Beijing, China
bKunlun Digital Technology Co.,Ltd., Beijing, China

cDepartment of Health Informatics and Administration, University of Wisconsin Milwaukee, Milwaukee, United
States

Abstract. The goal of assembly blocks is to select blocks from
pre-trained neural network (NN) models and combine them into a
new NN for a different dataset. By reusing the weights of these
blocks, training the NN with the new dataset becomes cost-effective.
To achieve this goal, we propose an end-to-end differentiable neural
network called PA-DNN. PA-DNN consists of two modules: a parti-
tion NN module and an assembly NN module. For the new dataset,
the partition NN module divides existing pre-trained NN models into
blocks. The assembly NN module then selects some of these blocks
and combines them into a new NN using a stitching component. To
train PA-DNN, we design a score function that evaluates the perfor-
mance of each new NN generated by PA-DNN. The evaluated value
is used to train the partition NN module. Additionally, two loss func-
tions are created to train the assembly NN module and the stitching
component in the new NN, respectively. After the training process,
PA-DNN infers a new NN, and only the stitching component of the
NN is fine-tuned with the new dataset. Experiments show that, com-
pared to manual models, neural architecture search, and the assembly
model DeRy, PA-DNN can generate a more accurate and lightweight
NN with lower training costs.

1 Introduction

Model repositories, such as HuggingFace [31] and MMPretrain [5],
store numerous pre-trained neural network (NN) models manually
crafted by AI experts. Although these pre-trained NN models per-
form well on their respective training datasets, their performance
may degrade when encountering a new dataset. To adapt to the new
dataset, these models need to be manually modified and/or retrained,
which can be a waste of human and computational resources. The
goal of assembling blocks is to reduce this waste by automatically
selecting blocks from pre-trained NN models in the model reposi-
tory and assembling them into a new NN. By keeping the weights
of the assembled blocks, training the new NN with the new dataset
becomes cost-effective.

Assembling NN blocks differs from neural architecture search
(NAS) [27], which focuses on creating NNs with new structures.
Instead, assembling NN blocks aims to reuse existing blocks. Tra-
ditional assembly NNs, such as NN2 [12] and SBNN [10], which
originated from biological inspiration, build an NN by dynamically
adjusting the connection weights between blocks. However, these
methods need to deal with the interconnection of all blocks, which
becomes infeasible for current model repositories that store many

∗ Corresponding Author. Email: luqiang@cup.edu.cn.

large NN models. Computing the interconnection is impossible be-
cause it requires all blocks from these NN models. To address this is-
sue, the assembling block method DeRy [34] was proposed to reuse
some blocks. DeRy first splits pre-trained NN models into blocks
based on their structures. It then selects some blocks and combines
them into an NN using stitching layers. However, the combined
NN still requires full training to adapt to the target tasks. Recently,
EvoLLM [1] used evolutionary algorithms to automatically combine
blocks from different large language models. However, this split is
static and not related to the new dataset, which could lead to subopti-
mal performance when building an accurate NN for the new dataset.

To reuse NN blocks and their weights, we propose an end-to-end
differentiable NN model called PA-DNN. PA-DNN consists of two
main components: (1) a partition NN module and (2) an assembly
NN module, as shown in Fig. 1. The partition NN module includes
an embedding block and n segmentation point distribution (SPD)
blocks. The embedding block is extracted from a fixed NN model
and is used to capture the features of the new dataset. Each SPD
block learns the distribution of segmentation points in a pre-trained
NN model from the model repository. The assembly NN module con-
sists of K router blocks. Similar to the mixture of experts (MOE)
approach used in large language models [9], each router block learns
the distribution of choosing a split block for each layer based on the
output of the previously chosen block.

PA-DNN utilizes the partition NN module to split pre-trained NN
models into blocks based on the characteristics of the new dataset.
The assembly NN module then selects and combines some of these
blocks into a new NN. During training, PA-DNN employs a score
function to evaluate the performance of the combined NN. The eval-
uation result is used as a loss function to guide the partition NN mod-
ule in outputting the correct split blocks. Additionally, PA-DNN uses
the training and validation loss functions [21] of the combined NN
to train the assembly NN module and the stitching layers in the com-
bined NN, respectively. After training, PA-DNN samples a combined
NN and fine-tunes the stitching layers in the NN to adapt to the new
dataset.

The main contributions of our work can be summarized as follows:

• We propose PA-DNN, an end-to-end differentiable NN model
consisting of two differentiable NN modules: the partition NN
module and the assembly NN module. To generate an accurate
combined NN, the partition NN module learns the distribution of
segmentation points, while the assembly NN module learns the
distribution of split blocks. The end-to-end and differentiable na-
ture of PA-DNN allows for easy adjustment of the combined NN

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240747

2250

Figure 1. PA-DNN framework.

to fit the new dataset.
• We introduce a scoring method that efficiently evaluates the per-

formance of the combined NN. This scoring method only requires
the output of the combined NN on a subset of samples, eliminating
the need for training the combined NN during evaluation.

• Experimental results demonstrate that PA-DNN outperforms nine
baseline methods by generating a more accurate and lightweight
NN with lower training costs. On the CIFAR10 benchmark, PA-
DNN assembles an NN that achieves 95.22% accuracy by fine-
tuning only 2.28M parameters, whereas the manually designed
ResNet-152 requires training 58.35M parameters to achieve
95.37% accuracy. Similarly, on the CIFAR100 benchmark, PA-
DNN’s combined NN achieves 82.73% accuracy by fine-tuning
14.10M parameters, while ResNet-152 requires training 58.35M
parameters to achieve 80.86% accuracy. By fine-tuning only the
stitching network parameters, the combined NN incurs a lower
training cost compared to full training. Experiments show that
stitching layer fine-tuning reduces the training time by 23% com-
pared to full training.

2 Related Work

2.1 Neural architecture search

Neural Architecture Search (NAS) [27] is a technique that aims to
discover new neural network architectures within a predefined search
space. The goal is to achieve high performance after full training.
NAS is typically divided into two main categories: global network
search [2, 37, 32] and cell network search [38, 25, 26].

Global network search involves directly exploring the entire archi-
tecture of a neural network. However, as the network depth increases,
the search space expands exponentially. For instance, in ENAS [25],
a neural network with a search depth of 12 can potentially generate
around 1029 different network architectures, significantly increasing
the search space. In contrast, cell network search focuses on identify-
ing individual cell networks and constructs the final architecture by
stacking multiple instances of these cell networks in a predefined

manner. Unlike global network search, cell network search is not
constrained by network depth, which effectively reduces the search
space. However, due to the reduced search space, cell network search
may not discover as diverse and rich network architectures as global
network search.

Neural architecture search often comes with a high computational
cost. For instance, NASNet [38] and AmoebaNet-A [26] required
approximately 2,000 and 3,150 GPU days, respectively, to search
for optimal network architectures using reinforcement learning and
evolutionary algorithms. Although various techniques have been pro-
posed to reduce search costs, such as accuracy prediction [20, 23] and
differentiable search [21, 33, 7], the searched NN does not necessar-
ily achieve the best accuracy after retraining, which can be attributed
to the random initialization of network block weights. Unlike NAS,
which aims to create new networks, neural network assembly focuses
on reusing pre-trained network blocks to reduce search and training
costs.

2.2 Assembly neural network

Assembly neural networks imitate the assembly and interconnection
between neurons in the biological brain. Neurons are organized into
blocks, with dense connections within blocks and relatively sparse
connections between them. Assembly neural networks often possess
self-organizing learning capabilities, automatically adjusting con-
nection weights and network architecture based on input data char-
acteristics. The Hebbian learning rule [4] states that "cells that fire
together, wire together," meaning that connections between neurons
that are activated simultaneously will be strengthened. In assem-
bled neural networks, Hebbian learning rules adjust the connection
weights between neurons, reinforcing the connections between co-
activated neurons.

Goltsev [11] proposed a texture segmentation method utilizing as-
sembled neural networks, employing competitive learning mecha-
nisms and Hebbian learning rules to learn texture features in images.
They also introduced a modular neural network approach based on

Z. Liu et al. / Differentiable Neural Network for Assembling Blocks 2251

Hebbian learning rules [12], addressing issues such as low learning
efficiency and poor generalization ability in traditional neural net-
works when handling complex tasks. Ferigo and Iacca [10] intro-
duced a self-building neural network that utilizes Hebbian learning
rules to adjust neuron connections and conducts network branch re-
duction operations based on connection weights.

Assembling neural networks update parameters with dense inter-
nal connections, making them unsuitable for large-scale pre-trained
model repositories. In contrast, the proposed method exhibits spar-
sity characteristics, enabling its effective use in large-scale pre-
trained model repositories.

Large language models (LLM) have recently achieved break-
through results in various NLP fields. Akiba et al. [1] used evolution-
ary algorithms to merge multiple LLMs to build a new large language
model and achieve greater performance improvements. Specifically,
two model merging methods are adopted: directly reusing a cer-
tain module or summing the weights of multiple modules and then
reusing them. However, this method only applies to homogeneous
model collections and is unsuitable for heterogeneous network model
collections.

DeRy et al. [34] split the heterogeneous network model repository
into network blocks, selected some blocks for assembly, but fully
trained the assembled models to adapt to the target data set. The
model constructed by the PA-DNN method only needs to fine-tune
the stitching layer to adapt to the target data set.

2.3 Model stitching

Model stitching typically involves using 1×1 convolutional layers to
establish connections between distinct neural networks. Lenc and
Vedaldi [18] effectively merged the initial and final layers of two
pre-trained networks using a 1×1 convolutional layer, noting no sig-
nificant performance degradation. Bansal et al. [3] demonstrated that
stitching layers could connect models trained with varying architec-
tures or training methodologies with minimal impact on their perfor-
mance. Pan et al. [24] employed stitching layers to connect the front
and rear segments of models from two distinct pre-trained model
families, such as DeiT-Base and DeiT-Large [30]. Previous studies
focused on the stitching of two models. Yang et al. [34] partitioned
the heterogeneous pre-trained network model repository and recon-
stituted it using 1×1 convolutions. In contrast to prior research, the
model stitching layer proposed in this paper does not have fixed hy-
perparameters, automatically constructing convolution or deconvolu-
tion layers based on input and output dimensions.

3 PA-DNN Architecture

3.1 Partition NN

The partition NN module is designed to automatically divide pre-
trained network models into multiple blocks based on a validation
dataset, denoted as Dv , which is a subset of the overall dataset D.
The module consists of two main components: a pre-trained embed-
ding block and n segmentation point distribution (SPD) blocks. The
pre-trained embedding block can be any suitable pre-trained neural
network model from the repository that has the same input format as
the target dataset, such as the number of channels and image dimen-
sions.

Each SPD block is a fully connected neural network that is re-
sponsible for splitting a pre-trained NN model with k+1 layers into
multiple blocks. The SPD block has k outputs, where k is the number
of potential segmentation points in the pre-trained NN model. Each

Figure 2. Network partitioning pipeline.

output oi represents the probability Pi of separating the i-th layer and
the (i+ 1)-th layer, which is calculated using the below function:

Pi =
exp(oi)∑k
i=1 exp(oi)

. (1)

The function ensures that the sum of all probabilities is equal to 1
and that each probability is non-negative. The SPD block essentially
learns the distribution of segmentation points for the pre-trained NN
model.

To split a pre-trained neural network model into c + 1 blocks,
the top c probability values are selected from the k outputs of the
SPD block. The pipeline for partitioning the pre-trained neural net-
work is illustrated in Figure 2. For example, if the SPD output is
[0.1146, 0.1698, 0.0910, 0.1571, 0.1229, 0.1025, 0.2421] and c =
3, then the top three probability values of 0.1698, 0.1571, and 0.2421
are selected. This splits the neural network model into four blocks by
separating the layers at indices 1, 3, and 6.

The Partition NN module divides n pre-trained NN models into
(c+1)×n blocks, as shown in Figure 1. These blocks are represented
by M [c + 1][n], where M [i] is the set of the i-th blocks from the n
pre-trained NN models.

3.2 Assembly NN

The Assembly NN module consists of c+ 1 router blocks and c+ 1
stitching blocks. The i-th router block is responsible for selecting
one block from the block set M [i] based on the output of the previous
block selected by the (i−1)-th router block, as illustrated in Figure 3.
The router block architecture is inspired by the Switch Transformer
encoder block [9] and includes self-attention, softmax, and nor-
malization layers. However, unlike the Switch Transformer encoder
block, the input to the router block is a batch of data rather than a sin-
gle data point. The self-attention mechanism in the router block fo-
cuses on capturing relationships between different data points within
the batch. To aggregate these relationships, the router block intro-
duces an average layer denoted by ′⊕′. The functionality of the router

Z. Liu et al. / Differentiable Neural Network for Assembling Blocks2252

block can be expressed by the following equation:

PRouter = Softmax(
1

n

∑n
i=1Attention(Norm(

Flatten(H1, H2...Hn) · ε))) (2)

where H represents a batch of previous block output, ε is a random
noise to achieve the load balance of these candidate blocks [9].

Figure 3. Router block. Figure 4. Stitching layer.

The stitching block constructs a stitching layer between two se-
lected blocks, as shown in Figure 4. The stitching layer fulfills
two requirements: preserving features and aligning different dimen-
sional vectors. To preserve features, the stitching layer employs ei-
ther convolution or deconvolution operations. If the input size of
the current block is smaller than the output size of the previous
block, the stitching layer applies convolution; otherwise, it applies
deconvolution. To align different dimensional vectors, the parame-
ters of the convolution or deconvolution operations are determined
by the following function: Conv(ci, cj , 3, �wi/wj�, �hi/hj�) or
DeConv(ci, cj , 3, �wj/wi�, �hj/hi�), where ci, wi and hi are the
number of channels, width, and height of the previous block output,
respectively. ci, wi, and hi are the current block input. �wi/wj� is
the step width while �hi/hj�) is the step height.

3.3 Training

The training of PA-DNN consists of three main steps: splitting pre-
trained NN models (lines 14, 23), training the partition NN module
(lines 17-21), and training the assembly NN module (lines 5-10), as
outlined in Algorithm 1. These three steps are executed iteratively
until PA-DNN converges.

3.3.1 Training Partition NN

The partition NN module Pθ generates the probability distribution of
segmentation points, which effectively serves as the policy for split-
ting pre-trained NN models. The output of a combined NN M∗ is
considered the reward r for a segmentation operator sampled from
the probability distribution Pθ . To train the partition NN module,
we employ the Proximal Policy Optimization (PPO) algorithm with
clipped objective [29], as defined by the following objective function:

argmax
θ

(
A(r)(min(

Pθ

Pθ
′
, clip(

Pθ

Pθ
′
, 1− ξ, 1 + ξ))

)
(3)

Algorithm 1 PA-DNN algorithm
Input:Dt = {xt, yt}, Dv = {xv, yv}
Output: M∗

1: Pθ = PartitionNN
2: Qβ = AssemblyNN
3: Function assembly(xt, yt, xv, yv):
4: /* training assembly NN module */
5: while Qβ is not converge do

6: M∗ = Qβ(xv) (3.2)
7: γ ← γ − η∇γL(M∗(xt), yt) (6)
8: β ← β − η∇βL(M∗(xv), yv)(5)
9: end while

10: return M∗

11: for 1 to max_epoch do

12: for xt, yt, xv, yv in Dt,Dv do

13: /* splitting NNs */
14: M [c+ 1][n] ← Sample(Pθ(xv), c)
15: M∗ = assembly (xt, yt, xv, yv)
16: /* training partition NN module*/
17: r = Score(M∗) (3.3.1)
18: for 1 to T do

19: J(θ) = −A(r)(min(Pθ
P
θ
′ , clip(

Pθ
P
θ
′ , 1− ξ, 1 + ξ)) (3)

20: θ ← θ − η∇θJ(θ)
21: end for

22: /* evaluate partition NN module */
23: M [c+ 1][n] ← TopK(Pθ(xv), c)
24: M∗ = assembly (xt, yt, xv, yv)
25: /* save best M∗ by Score */
26: end for

27: end for

28: return M∗

where Pθ
′ is the probability of receiving reward r, Pθ/Pθ

′ is im-
portance sampling that evaluates the importance of Pθ to reward r,
A(r) represents the advantage function [28] of reward r, and ξ is a
predefined threshold.

Obtaining the reward r of the combined NN is time-consuming
due to the process of training the combined NN M∗. Inspired by
Zen-Score [19], we propose a simple scoring method that obtains the
reward r via some samples without training M∗. The scoring method
is computed by the following Equation.

score(M∗) = log(
1

n

n∑
i=1

||fM∗(xi)− fM∗(xi + αε)||F),

s.t.ε ∼ U(0, 1) (4)

where x is a batch of samples in the training dataset Dt, M∗ is the
combined NN with random weights in stitching layers, fM∗ is the
output from the last selected block in the combined NN. For the com-
bined NN in Figure 1, fM∗ is the output of the k-th RegNet block
segmented by partition NN module from pre-training NN models. α
is a scaling factor, and ε is random noise. As ||fM∗(xi)− fM∗(xi +
αε)||F is the feature distance between two outputs of fM∗ via sam-
ple xi and its neighbor sample xi + αε, the small score shows the
combined NN M∗ generate similar features for similar input sam-
ples. So, the larger score is better.

3.3.2 Training Assembly NN

The goal of training the assembly NN module is to ensure that the
combined NN M∗ performs well on the validation dataset Dv after

Z. Liu et al. / Differentiable Neural Network for Assembling Blocks 2253

Table 1. Comparison of Manual models, NAS, DeRy, and PA-DNN.

Method Training Params (M)
Acc on AUC on Acc on AUC on

CIFAR-10 (%) CIFAR-10 (%) CIFAR-100 (%) CIFAR-100 (%)

ResNet-34 21.34 94.08 99.52 77.98 99.18
ResNet-50 23.51 94.17 99.59 78.63 99.15
ResNet-101 42.52 94.81 99.66 79.87 99.19
ResNet-152 58.35 95.37 99.68 80.86 98.67
RegNetY-800mf 6.30 95.35 99.73 79.53 99.28
RegNetY-3.2GF 20.60 96.05 99.71 80.81 99.39
MobileNet-V3-Large 5.40 94.07 99.72 75.50 99.04

Manual model ∗ [34] 25.43 ± 6.68 94.84 ± 0.27 99.66 ± 0.03 79.03 ± 0.66 99.13 ± 0.08

AmoebaNet-A 3.2 96.66 - 81.07 -
NASNet-A 3.3 97.35 - 83.18 -
PNAS 3.2 96.59 - 80.47 -
ENAS 4.6 96.46 - 80.57 -
DARTS(1st) 3.4 97.00 - 82.46 -
DARTS(2nd) 3.3 97.24 - 83.03 -

NAS ∗ [26, 38, 20, 25, 21] 3.5 ± 0.20 96.88 ± 0.14 - 81.80 ± 0.46 -

DeRy(4,10,3) 7.64 95.84 99.83 82.67 99.56
DeRy(4,20,5) 14.19 96.32 99.71 83.10 99.21
DeRy(4,30,6) 24.89 96.42 99.71 84.05 99.67
DeRy(4,50,10) 40.41 97.07 99.80 84.25 99.63

DeRy ∗ [34] 21.78 ± 6.20 96.41 ± 0.22 99.76 ± 0.03 83.52 ± 0.33 99.52 ± 0.09

PA-DNN(run 1) 7.78 94.44 99.70 - -
PA-DNN(run 2) 1.34 94.58 99.76 - -
PA-DNN(run 3) 1.65 95.05 99.77 - -
PA-DNN(run 4) 2.28 95.25 99.59 - -

PA-DNN(run CIFAR10) 3.26 ± 1.32 94.83 ± 0.17 99.71 ± 0.04 - -

PA-DNN(run 1)_full-train 40.54 96.55 99.72 - -
PA-DNN(run 2)_full-train 12.62 96.57 99.80 - -
PA-DNN(run 3)_full-train 12.61 96.77 99.80 - -
PA-DNN(run 4)_full-train 9.90 96.75 99.86 - -

PA-DNN(run CIFAR10)_full-train 18.92 ± 6.27 96.66 ± 0.05 99.80 ± 0.02 - -

PA-DNN(run 5) 3.40 - - 79.39 99.46
PA-DNN(run 6) 10.13 - - 80.60 99.53
PA-DNN(run 7) 17.31 - - 81.52 99.47
PA-DNN(run 8) 14.11 - - 82.73 99.51

PA-DNN(run CIFAR100) 11.24 ± 2.60 - - 81.06 ± 0.61 99.49 ± 0.01

PA-DNN(run 5)_full-train 15.19 - - 82.91 99.41
PA-DNN(run 6)_full-train 31.22 - - 83.02 99.45
PA-DNN(run 7)_full-train 34.84 - - 82.88 99.63
PA-DNN(run 8)_full-train 31.73 - - 83.91 99.66

PA-DNN(run CIFAR100)_full-train 28.25 ± 3.83 - - 83.18 ± 0.21 99.54 ± 0.05
∗ The results of manual models, NAS, and DeRy are from the corresponding papers.

being trained on the training dataset Dt. To achieve this, we utilize
the validation dataset Dv to compute the loss function of M∗, which
is then used to update the weights in the assembly NN module. This
process guides the selection of candidate blocks for the combined
NN. On the other hand, the training dataset Dt is employed to up-
date the weights of the stitching layers, as proposed in [21]. Con-
sequently, training the assembly NN module does not involve up-
dating the weights of the selected blocks. The process of updating
weights in different components of the NN is described by the fol-
lowing equations:

β ← β − η∇βL(yv,M∗(xv)) (5)

γ ← γ − η∇γL(yt,M∗(xt)) (6)

where (xv, yv)(or (xt, yt)) is the batch of data in Dv (or Dt), β
are weights in the assembly NN module, γ are weights in stitching
layers, η is the learning rate, and L denotes the cross entropy loss
function.

Table 2. Model Repository Setting.
Id Model Architecture Pre-trained Dataset Number of layers

1 ResNet-34 ImageNet-1k 16
2 ResNet-50 CIFAR10 16
3 ResNet-50 CIFAR100 16
4 ResNet-101 ImageNet-1k 20
5 ResNet-152 ImageNet-1k 24
6 RegNetY_3_2gf ImageNet-1k 18
7 RegNet_Y_800mf ImageNet-1k 14
8 MobileNet_v3_Large ImageNet-1k 15

4 EXPERIMENTAL

4.1 Experiment Setup

To facilitate our experiments, we compiled a repository of pre-trained
models by acquiring eight convolutional network architectures from
TorchVision1 and MMPretrain2. This repository encompasses vari-

1 https://pytorch.org/vision/stable/models.html
2 https://mmpretrain.readthedocs.io/en/latest/index.html

Z. Liu et al. / Differentiable Neural Network for Assembling Blocks2254

Figure 5. Combined NNs found by PA-DNN. The first four NNs are found in CIFAR-10 while the last four NNs found in CIFAR-100.

ous models, specifically ResNet, MobileNet, and RegNet, which are
detailed in Table 2. These models have been previously trained on
three major datasets: ImageNet-1k [6], CIFAR-10 [17], and CIFAR-
100 [17].

4.2 Experimental Setting

The CIFAR-10 and CIFAR-100 datasets were employed as the
benchmark for image classification in our experiments. Each dataset
comprises 50,000 training images and 10,000 test images. The train-
ing images are equally divided into two subsets: a training set and a
validation set, each containing 25,000 images.

For the training of PA-DNN, we adopted a batch size of 64. The
partition NN module is trained using the Adam optimizer [15] with a
learning rate of 5 × 10−5, while the assembly NN module employs
the Stochastic Gradient Descent (SGD) optimizer with the learning
rate 0.01. The stitching layers in the combined neural network are
fine-tuned using the AdamW optimizer [22] with the learning rate
1× 10−3. To enhance model robustness and generalization, we also
applied data augmentation techniques, specifically Mixup [36] and
CutMix [35], during the training of PA-DNN.

PA-DNN runs one each of two benchmarks four times. For each
combined NN found by PA-DNN, fine-tuning was performed on
stitching layers and the entire network, respectively, denoted as
PA-DNN and PA-DNN_full-train. PA-DNN is compared with nine
baseline methods. These methods fall into three categories: the man-
ual models –ResNet[13], RegNet[16] and MobileNet[14], the NAS
method –AmoebaNet-A[26], NASNet-A[38], PNAS[20], ENAS[25]
and DARTS[21], and the assembly block method –DeRy[34].

4.3 Results

Our evaluation involved a comparative analysis between manual
models, NAS methods, DeRy models, and PA-DNN combined NNs.
The evaluation metrics include search cost, number of training pa-
rameters, the number of parameters, model accuracy, and AUC on
the CIFAR datasets, as detailed in Table 1. The combined NN found
by PA-DNN is illustrated in Figure. 5.

Compared with manual models, PA-DNN achieves combined NN
with lower training costs, as shown in Figure 6. For example, for
the CIFAR-10 dataset, the PA-DNN (run 3) obtains an accuracy of
95.05% by updating only 1.65 million parameters. In contrast, the
traditional manual model, ResNet-152, reached a slightly higher ac-
curacy of 95.37% but required training a substantial 58.35 million

parameters. For the CIFAR-100 dataset, PA-DNN (run 8) gets an ac-
curacy of 82.73% by training only 14.10 million parameters, sur-
passing the performance of more extensive models like ResNet-152,
which achieved an accuracy of 80.86% with 58.35 million parame-
ters. However, the combined NNs found by PA-DNN could be large,
leading to high inference costs. For example, the PA-DNN (run 3)
parameters are 12.61M, while the number of MobileNet parameters
is 5.40 M.

Figure 6. Accuracy and training parameters.

Although the combined NN by PA-DNN is usually larger than
NAS, PA-DNN has a smaller search cost and better performance on
the CIFAR-100 dataset. NAS autonomously constructs each layer of
an NN, generally resulting in the NN with a smaller number of pa-
rameters. This method incurs significant computational costs, as evi-
denced by the extensive GPU days required for training, such as 3150
GPU days for AmoebaNet-A [26] and 2000 GPU days for NASNet-
A [38], as shown in Table 3. As the complexity of models increases,
the search space expands exponentially, leading to increased compu-
tational demands. For instance, ENAS, which performs a global ar-
chitecture search, although faster, involves densely connected mod-
ules that consume considerable GPU resources. Similarly, DARTS
[21], a differentiable NAS, offers quicker search capabilities but suf-
fers from the drawback of updating all parameters simultaneously
during the search process. In contrast, PA-DNN utilizes pre-trained
model blocks, which typically possess more parameters, resulting in
generally larger combined NN compared to those designed by NAS.
Despite this, PA-DNN requires a significantly lower number of pa-
rameters to be trained, contributing to reduced computational de-
mands relative to NAS methods. This efficiency makes PA-DNN par-
ticularly advantageous for scenarios where computational resources
are a limiting factor.

PA-DNN has a smaller training cost than DeRy. For instance,

Z. Liu et al. / Differentiable Neural Network for Assembling Blocks 2255

Table 3. Comparison of NAS and PA-DNN in the training cost.
Method Search Cost (GPU days)

AmoebaNet-A 3150
NASNet-A 2000
PNAS 225
ENAS 0.5
DARTS(1st) 0.4
DARTS(2nd) 1
PA-DNN 1.8
PA-DNN_full-train 2.1

Figure 7. Validation accuracy on CIFAR.

when trained on the CIFAR-10 dataset, PA-DNN (run 3) updated
1.65M parameters and achieved an accuracy of 95.05%. In contrast,
DeRy(4,10,3) trained 7.64M parameters but only achieved an accu-
racy of 95.84%. Furthermore, the average accuracy of PA-DNN_full-
train is better than that of DeRy. However, when it comes to the
CIFAR-100 dataset, the advantages of PA-DNN are not obvious. This
is because the performance scoring method of the CIFAR-100 dataset
is unstable.

Since the combined NN found by PA-DNN reserves weights of
NN blocks from the repository of pre-trained models, training the
combined NN only updates the weights of stitching layers. So,
the training has high efficiency. For example, when training the
combined NN found by PA-DNN on the 7th run, ResNet50, Reg-
Net_Y_800mf, and MobileNet_V3_Large, the combined NN ex-
hibits superior convergence and performance, as shown in Figure 7.

4.4 Performance score verification

The goal of the performance score function is to predict the ac-
curacy of the combined NN without training. To verify the effec-
tiveness of the performance scoring method, we conducted experi-
ments based on the NAS-Bench-201[8]. NAS-Bench-201 is a NAS
dataset that contains 15,625 different model architectures with ran-
dom parameters and accuracy on the datasets CIFAR10, CIFAR100,
and ImageNet16-120. 100 models are selected from NAS-bench-201
with random initialized parameters. Then, their performance scores
are computed by 2048 image data in CIFAR10 and CIFAR100. Ex-
perimental results show that the score function outcome is positively
correlated with the accuracy of the trained model, i.e., models with
higher performance scores have higher accuracy, as shown in Fig-
ure 8. It proves the effectiveness of the performance scoring method,
which can guide the training of the partition NN module.

5 Discussion

As indicated in Table 1, PA-DNN is capable of discovering a more
compact combined model with lower training costs. Unlike manual
models that rely on human-designed architectures and lack specific
optimizations for new datasets, PA-DNN can discover thinner mod-
els through the partitioning capabilities of its partition NN module.

Figure 8. The relationship between model accuracy and score function.

This module divides models into smaller blocks, which are then dy-
namically selected by the assembly NN module based on dataset
specifics, resulting in better overall performance.

In contrast to NAS, which often involves extensive search costs
due to its broad and deep search spaces, PA-DNN benefits from
the differentiability architecture and the sparsity of its assembly NN
module. This leads to a reduced search cost, making PA-DNN more
efficient in finding the suitable architecture of the combined NN.

PA-DNN also shows advantages over the DeRy method in terms
of training costs. PA-DNN’s innovative stitching layer design, which
offers superior feature conversion capabilities, allows the system to
fine-tune only the stitching layer parameters rather than retraining all
parameters as DeRy requires. This approach significantly reduces the
computational expense.

However, PA-DNN does not always hold an absolute advantage
in terms of accuracy. Since most parameters of the combined NN
are frozen, and only a select few within the stitching layers are up-
dated, the accuracy may not always reach the highest potential. En-
hancements in stitching layer design or additional fine-tuning of pre-
trained blocks could potentially improve results. Additionally, the
high variance in accuracy observed in PA-DNN models, as shown
in Figure 6, might be attributed to two main factors: the sparsity
in policy sampling and the instability in performance scoring. The
large sampling space in our experiments—24 probabilities out of
139—could be better managed with policy optimization techniques
suited for extensive action spaces. Moreover, as depicted in Figure 8,
the current performance scoring method’s instability could lead to in-
accuracies in model evaluation, affecting the policy updates. Adopt-
ing more stable performance evaluation techniques could further en-
hance the effectiveness of PA-DNN.

6 Conclusion

We propose a novel method called PA-DNN that uses an end-to-end
differentiable neural network to assemble NN blocks from the NN
model repository. PA-DNN consists of two main components: the
partition NN module and the assembly NN module. The two compo-
nents are responsible for model partitioning and network assembly,
respectively. Compared to manual models, NAS methods, and DeRy
models, PA-DNN is more efficient in discovering thinner combined
NNs with smaller search and training costs and better model per-
formance. Although the combined NN has fewer parameters, it still
exhibits high accuracy. Our future research is dedicated to designing
more powerful stitching layer structures and more accurate model
performance scoring methods. Additionally, we will extend our re-
search on neural network assembly to multi-task and multi-modal
scenarios.

Z. Liu et al. / Differentiable Neural Network for Assembling Blocks2256

References

[1] T. Akiba, M. Shing, Y. Tang, Q. Sun, and D. Ha. Evolutionary opti-
mization of model merging recipes. arXiv preprint arXiv:2403.13187,
2024.

[2] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural
network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

[3] Y. Bansal, P. Nakkiran, and B. Barak. Revisiting model stitching to
compare neural representations. Advances in neural information pro-
cessing systems, 34:225–236, 2021.

[4] T. H. Brown, E. W. Kairiss, and C. L. Keenan. Hebbian synapses: bio-
physical mechanisms and algorithms. Annual review of neuroscience,
13(1):475–511, 1990.

[5] M. Contributors. Openmmlab’s pre-training toolbox and benchmark,
2023.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[7] X. Dong and Y. Yang. Searching for a robust neural architecture in four
gpu hours. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1761–1770, 2019.

[8] X. Dong and Y. Yang. Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. arXiv preprint arXiv:2001.00326,
2020.

[9] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity. The Journal
of Machine Learning Research, 23(1):5232–5270, 2022.

[10] A. Ferigo and G. Iacca. Self-building neural networks. arXiv preprint
arXiv:2304.01086, 2023.

[11] A. Goltsev. An assembly neural network for texture segmentation. Neu-
ral Networks, 9(4):643–653, 1996.

[12] A. Goltsev and V. Gritsenko. Modular neural networks with hebbian
learning rule. Neurocomputing, 72(10-12):2477–2482, 2009.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[14] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference on computer vision,
pages 1314–1324, 2019.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[16] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations
for fine-grained categorization. In Proceedings of the IEEE interna-
tional conference on computer vision workshops, pages 554–561, 2013.

[17] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[18] K. Lenc and A. Vedaldi. Understanding image representations by mea-
suring their equivariance and equivalence. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 991–999,
2015.

[19] M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, and R. Jin.
Zen-nas: A zero-shot nas for high-performance image recognition. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 347–356, 2021.

[20] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy. Progressive neural architecture
search. In Proceedings of the European conference on computer vision
(ECCV), pages 19–34, 2018.

[21] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture
search. arXiv preprint arXiv:1806.09055, 2018.

[22] I. Loshchilov and F. Hutter. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101, 2017.

[23] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural architec-
ture search without training. In International Conference on Machine
Learning, pages 7588–7598. PMLR, 2021.

[24] Z. Pan, J. Cai, and B. Zhuang. Stitchable neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16102–16112, 2023.

[25] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural archi-
tecture search via parameters sharing. In International conference on
machine learning, pages 4095–4104. PMLR, 2018.

[26] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution
for image classifier architecture search. In Proceedings of the aaai con-
ference on artificial intelligence, volume 33, pages 4780–4789, 2019.

[27] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang.

A comprehensive survey of neural architecture search: Challenges and
solutions. ACM Computing Surveys (CSUR), 54(4):1–34, 2021.

[28] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-
dimensional continuous control using generalized advantage estima-
tion. arXiv preprint arXiv:1506.02438, 2015.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[30] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jé-
gou. Training data-efficient image transformers & distillation through
attention. In International conference on machine learning, pages
10347–10357. PMLR, 2021.

[31] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cis-
tac, T. Rault, R. Louf, M. Funtowicz, et al. Huggingface’s trans-
formers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

[32] L. Xie and A. Yuille. Genetic cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1379–1388, 2017.

[33] S. Xie, H. Zheng, C. Liu, and L. Lin. Snas: stochastic neural architecture
search. arXiv preprint arXiv:1812.09926, 2018.

[34] X. Yang, D. Zhou, S. Liu, J. Ye, and X. Wang. Deep model reassembly.
Advances in neural information processing systems, 35:25739–25753,
2022.

[35] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features.
In Proceedings of the IEEE/CVF international conference on computer
vision, pages 6023–6032, 2019.

[36] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[37] B. Zoph and Q. V. Le. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578, 2016.

[38] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8697–
8710, 2018.

Z. Liu et al. / Differentiable Neural Network for Assembling Blocks 2257

