
Bottlenecked Backpropagation to Train Differentially
Private Deep Neural Networks

Arghyadeep Ghosh a,* and Mrinal Das b,**

a,b Indian Institute of Technology Palakkad

Abstract. Deep neural networks often tend to memorize data and
can risk information leakage if trained on private data. There has
been some attempts to train deep neural networks by contaminating
the gradients during backpropagation. Over the years, this has be-
come one of the most prominent techniques to make neural networks
differentially private. One downside of this method is that contam-
inated gradients lead to suboptimal solutions during backpropaga-
tion. In this paper, we make an attempt to diminish the contamina-
tion effect by proposing a bottlenecked backpropagation technique.
The proposed bottlenecked backpropagation technique follows Reny
differential privacy, a recently developed more optimized version in
the realm of differential privacy. On the other hand, the bottlenecked
backpropagation considers the direction and neglects the magnitude
of the gradient vectors. The idea is built on top of signed stochas-
tic gradient descent, another recent advancement in the optimization
methods for deep learning. By prioritizing gradient direction over
magnitude, it minimizes noise impact on model convergence. Ex-
perimental results on benchmarks including MNIST, FMNIST, and
IMDB datasets demonstrate substantial improvements over the state-
of-the-art methods, achieving faster convergence and higher model
accuracy, striking a promising balance between privacy and perfor-
mance. Furthermore, we observe the proposed methods to be resilient
against membership inference attacks.

1 Introduction

Deep neural networks excel in real-world tasks by learning from vast
datasets through backpropagation, often outperforming traditional
methods. While sharing these large models benefits the research
community, they are sometimes trained on private data, raising pri-
vacy concerns. Ensuring these models maintain efficiency while pro-
tecting individual privacy is crucial.

Differential privacy is a powerful theory that has evolved over last
few years which can be blend into training models in such a way
that it provides plausible deniability to individuals participating in
the data source. This provides sufficient guarantee to any individ-
ual that their secret is safe. Our interest is in training deep neural
networks in such a way that after the training is done they become
differentially private. There are several attempts made in recent past
towards this goal [1]. However, often such methods are either less
efficient in solving the task or not sufficiently private.

In privacy aware learning often there is a natural trade-off between
privacy and accuracy. Larger privacy means less contribution from

∗ Corresponding Author. Email: arghyadeep.ghosh@cvv.ac.in
∗∗ Corresponding Author. Email: mrinal@iitpkd.ac.in

data and hence less accuracy. In state of the art models, gradient is
clipped by some constant upper threshold which in turn clips the con-
tribution from data in updation of the weights. It is hard to break this
trade-off that is we want larger privacy as well as larger accuracy. We
aim to achieve larger accuracy for same privacy budget. By playing
around with the clipping threshold we may not be able to improve
much.

To train differentially private neural networks to improve the bal-
ance between privacy and accuracy we have targeted the learning
process itself which is the backpropagation algorithm. Our idea
stems from the simple intuition that use less from the data to risk less
on the data. That is we use a bottleneck on the information used to
update weights in the neural networks during backpropagation. That
makes the learnt model less sensitive to the private data leading to
less noisy updates, which in turn often lead to faster learning costing
less cumulative privacy budget.

Our contribution is to propose the novel concept of using the di-
rection from the gradients discarding the magnitude. This drastically
reduces the impact of data on training the deep neural nets. We re-
fer to this mechanism as bottlenecked backpropagation. We imple-
ment bottlenecked backpropagation through stochastic gradient de-
scend (SGD) and Adam, two of the most popular optimizers to train
neural networks. We have used sampled Gaussian mechanism along
with Rényi differential privacy to build a differentially private bottle-
necked backpropagation. We have theoretically analyzed the privacy
budget of the proposed algorithm. We have also experimented with
three real-life datasets to show the efficacy of the proposed algorithm
on the state of the art.

The paper is organized as follows: in Section 2 we cover the rele-
vant preliminaries on differential privacy and privacy-aware learning
for deep neural networks. In Section 3 we discuss the related works.
In Section 4 we describe the proposed approach, and in Section 5
present our experimental results.

2 Preliminaries

In this section we briefly state the required definitions and concepts
related to differential privacy (DP), Rényi differential privacy (RDP),
and their use in training privacy aware neural networks.

2.1 Differential Privacy

Differential privacy is a precise mathematical framework that for-
mally defines the concept of data privacy. It stipulates that the inclu-
sion or exclusion of any single entry in the input dataset should not

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240743

2218

result in statistically significant alterations in the output [17, 12, 13],
provided that the principles of differential privacy are upheld.

Definition 1. (Differential Privacy [13]) A randomized mechanism
M : D → R with domain D and range R satisfies (ε, δ)-
Differential Privacy (DP) if, for any two neighboring datasets D
and D′ that differ in only a single entry, and for any subset S ⊆
Range(M):

Pr(M(D) ∈ S) < eε × Pr(M(D′) ∈ S) + δ. (1)

Here, ε > 0 controls the level of privacy guarantee in the worst
case, with a smaller ε indicating a stronger privacy level. The param-
eter δ > 0 represents the failure probability that the property does
not hold, which ideally should be negligible [35, 28]. In practice, δ
is often set to be less than 1

|D| .
This equation enforces an upper bound on the probability ratio

of all possible outcomes from two neighboring datasets. Its purpose
is to limit an adversary’s confidence in distinguishing between the
original dataset D and its neighbor D′. The parameters ε and δ play
critical roles in quantifying the level of privacy and the associated
failure probability, respectively.

Additionally, by adding random noise, differential privacy for a
function f : Xn → R

d can be achieved, as stated in Definition
2.1. The l-sensitivity of the function determines the amount of noise
required to achieve differential privacy.

Definition 2. (lk-Sensitivity [12]) For a function f : Xn → R
d, we

define its lk norm sensitivity (denoted as Δkf) over all neighboring
datasets x, x′ ∈ Xn differing in a single sample as

sup
x,x′∈Xn

||f(x)− f(x′)||k ≤ Δkf. (2)

In this paper, we focus on l2 sensitivity, i.e., || · ||2 or the l2 Norm.
Additionally, the following Lemma 2.3 ensures the privacy guarantee
of post-processing operations.

Lemma 1. (Post-processing [13]) Let A be a mechanism satisfying
(ε, δ)-DP. Let f be a function whose input is the output of A. Then
f(A) also satisfies (ε, δ)-DP.

2.2 Rényi Differential Privacy

Rényi differential privacy (RDP) offers a relaxation of ε-differential
privacy, utilizing Rényi divergence as its cornerstone.

Definition 3. (Rényi divergence [14]) The Rényi divergence of order
α > 1 between two probability distributions P and Q is expressed as:

Dα(P ‖ Q) =
1

α− 1
lnEx∼Q

[(
P (x)

Q(x)

)α]
, (3)

where Ex∼Q denotes the expected value of x under the distribution
Q, and P (x) and Q(x) represent the densities of P and Q at x,
respectively.

Definition 4. (Rényi Differential Privacy [24]) RDP is defined as
follows: For any neighboring datasets x, x′ ∈ Xn, a randomized
mechanism M : Xn → Rd satisfies (α, τ)-RDP if:

Dα(M(x) ‖ M(x′)) ≤ τ. (4)

Next we state a formal definition of the Gaussian mechanism along
with its associated RDP guarantee.

Definition 5. (RDP of Gaussian mechanism [24]) For a real valued
function f with sensitivity μ, the Gaussian mechanism as follows

Gσf(D) = f(D) +N (
0, μ2σ2) , (5)

satisfies (α, α/2σ2)-RDP, where N (0, μ2σ2) is a normally dis-
tributed random variable with standard deviation μσ and mean 0.

Lemma 2. (Conversion from (α, τ)-RDP to (ε, δ)-DP [6]). Let M :
D → R be a randomized mechanism with domain D and range
R. Suppose α > 1 and ε ≥ 0. If M satisfies (α, τ)-RDP, given a
specific δ, M satisfies (ε, δ)-DP for

ε = τ +
log

(
1
δ

)
+ (α− 1) log

(
1− 1

α

)− log(α)

α− 1
. (6)

2.3 Deep Learning With Differential Privacy

Differentially Private Stochastic Gradient Descent (DPSGD) is a
popular training algorithm utilized in deep neural network training
to ensure differential privacy. In each iteration, DPSGD samples a
batch of data tuples from the dataset D with a fixed probability pro-
portional to the batch size. After sampling, the gradient of each tuple
xi ∈ Bt is computed with respect to the model parameters θi, de-
noted as gt(xi) = ∇θiL(θi, xi), where L represents the loss func-
tion. DPSGD employs gradient clipping to limit the magnitude of
the per-sample gradient, ensuring that it does not exceed a predeter-
mined �2 norm bound (Equation(7). The clipped gradient gt(xi) is
computed as the original gradient gt(xi) scaled by the ratio of the
maximum allowed norm and the �2 norm of the original gradient.

g̃t(xi) = Clip(gt(xi);C)

= gt(xi)/max

(
1,

‖gt(xi)‖2
C

)
(7)

In this way, for any two neighboring datasets, the sensitivity of the
query g(xi) for i ∈ Bt is bounded by C. Then, it adds Gaussian
noise scaling with C to the sum of the gradients when computing the
batch-averaged gradients where b is the batch size:

g̃t =
1

b

(∑
i∈Bt

gt(xi) +N (
0, σ2C2I

))
(8)

where σ is the noise multiplier depending on the privacy budget.
Last, the gradient descent is performed based on the batch-averaged
gradients. Since initial models are randomly generated and indepen-
dent of the sample data, and the batch-averaged gradients satisfy dif-
ferential privacy, the resulting models also satisfy differential privacy
due to the post-processing property.

Three factors determine DPSGD’s privacy guarantee — the noise
multiplier σ, the sampling ratio b

|D| , and the number of training it-
erations T . In reality, given the privacy parameters (ε, δ), we can
set appropriate values for these three hyperparameters to optimize
the performance. The privacy calibration process is performed using
a privacy accountant: a numerical algorithm providing tight upper
bounds for the given (ε, δ) as a function of the hyperparameters ,
which in turn can be combined with numerical optimization routines
to optimize one hyperparameter given the other two. In this work,
we use the RDP for privacy accounting. In practice, given σ, δ, and
b at each iteration, we select α from {2, 3, ..., 64} to determine the
smallest ε similar to recent practice.

A. Ghosh and M. Das / Bottlenecked Backpropagation to Train Differentially Private Deep Neural Networks 2219

3 Related Work

Privacy-preserving model training was initially proposed in the lit-
erature [34, 4]. Subsequently, a generalized algorithm known as
DPSGD was introduced for deep learning with differential privacy
[1]. Since then, various efforts have been made to enhance DPSGD
from different perspectives.

At each iteration of training, an approximate bound on the gra-
dient norm was derived using public data, and the gradients were
subsequently clipped at this approximate bound [46]. The concept of
adaptive clipping within each layer of the neural network was also
suggested [37]. Additionally, a method for dynamically adjusting
the clipping threshold to monitor a specified quantile of the update
norm distribution during training, particularly in federated learning
scenarios, was presented [2]. Furthermore, AdaCliP, which involves
coordinate-wise adaptive clipping of the gradient, was proposed [31].
However, recent research has indicated that redefining the clipping
equation can render clipping equivalent to normalization by setting
the clipping bound sufficiently small [41]. Notably, our paper does
not utilize any adaptive clipping techniques during the training phase.

The utilization of a family of bounded activation functions (tem-
pered sigmoids), as opposed to the unbounded activation function
ReLU in DPSGD, was discovered to yield favorable performance
outcomes [29]. Scattering Networks were applied to pre-process
images and extract features prior to DPSGD training [36]. Care-
ful hyper-parameter tuning, coupled with group normalization and
weight standardization, was amalgamated to deliver notable perfor-
mance enhancements [9].

Adaptive noise addition was implemented in [30] using a hier-
archical correlation propagation protocol approach, where a small
amount of noise was added to features with high correlation to the
model’s output. An optimized Gaussian mechanism was introduced
by [3], which directly calibrates variance using the Gaussian cumu-
lative density function instead of relying on a tail-bound approxima-
tion.

The best learning rate was selected by [22] based on model eval-
uation, and adaptive privacy budget allocation was implemented in
each round of DPSGD training. [12]adopts the NoisyMax method
on loss values from a variety of models obtained through different
learning rates in a single iteration.

Additionally, [40] employed the Root Mean Square Prop (RM-
SProp) gradient descent technique to adaptively add noise to coor-
dinates of the gradient. Subsequently, many works have focused on
reducing the dimensionality [16, 45, 44], of the model during training
to mitigate the impact of noise on the overall model.

A method known as the Moments Accountant (MA) was proposed
for providing an upper bound on the privacy curve of a composition
of [1]. The Moments Accountant subsequently became integrated
into the framework of Renyi Differential Privacy (RDP) [24]. Ad-
ditionally, the notion of Gaussian Differential Privacy (GDP) based
on hypothesis testing was introduced [7].

Various other variants of differential privacy exist, such as Con-
centrated DP (CDP) and zero Concentrated-DP [8] , each tailored
for specific scenarios and convertible into one another under cer-
tain conditions. (ε, δ)-differential privacy remains our primary fo-
cus, as it is the most prevalent and widely adopted in both aca-
demic literature and practical applications. Moreover, several works
based on local differential privacy concentrate on ε-differential pri-
vacy [10, 11, 42, 43, 47].

The problem of bias due to Poisson sampling in DPSGD was first
explored in [18]. It was proposed, which weights the importance

Algorithm 1 SignSGD [5]
Input: learning rate α, current point xk

g̃k ← stochasticGradient(xk)
xk+1 ← xk − α · sign(g̃k)

Figure 1. Comparison of SGD and SignSGD on f(x) = 1
2
x2

sampling by the gradient norm of the sample. The impact of Pois-
son sampling on convergence speed is mitigated through the process
of resampling in a recent algorithm. This method [15] employs the
validation test to select model updates, accelerating convergence and
improving utility. To mitigate injected Gaussian noise, it integrates
clipping and gradient thresholding. Moreover, the Gaussian mecha-
nism with selective release reduces privacy budget consumption.

[19] addresses key challenges in Federated Learning, by intro-
ducing stochastic-sign-based gradient compressors and an error-
feedback variant to enhance performance.

4 Method

The main motivation of our method comes from two core ideas
present in [1] which is one of the first papers in differentially private
deep learning and [5] which discusses special type of compressed
optimization techniques.

4.1 Bottlenecked Backpropagation

Backpropagation is de facto the standard in training deep neural net-
works. The basic idea in backpropagation is that we optimize the
loss function using gradients and the gradients flow backward from
the output layer to the input layer exactly in the reverse direction of
flow of the information. Briefly, each weight in the neural networks
gets updated as follows:

wt+1 = wt − η
∂L
∂w

, (9)

where L is the loss function and η is the learning rate often fixed by
some hyper-parameter. We can rewrite the above equation as

wt+1 = wt − η stw mt
w, (10)

where stw is the sign of the gradient at iteration t for weight w, and
mt

w is the magnitude of the gradient at iteration t for weight w. For
the bottlenecked backpropagation our idea is to use the following
update rule:

wt+1 = wt − αt stw, (11)

where αt is not dependent on w and also can be a public information.
The motivation behind the above idea is that we restrict the impact

A. Ghosh and M. Das / Bottlenecked Backpropagation to Train Differentially Private Deep Neural Networks2220

Algorithm 2 SignAdam [38]
Input: learning rate α, decay rates β1, β2, current point xk, initial
accumulators m0, v0
Initialize: m0 ← 0, v0 ← 0 t ← 0
gk ← stochasticGradient(xk)
mt ← β1 ·mt−1 + (1− β1) · gk
vt ← β2 · vt−1 + (1− β2) · g2k
m̂t ← mt/(1− βt

1)
v̂t ← vt/(1− βt

2)
g̃k ← m̂t/(

√
v̂t + ε)

xk+1 ← xk − α · sign(g̃k)

Figure 2. Comparison of Adam and SignAdam on f(x) = 1
2
x2

of data on the change in parameters of the neural network to a great
extent compared to the clipping trick used in DPSGD [1]. Further-
more, by restricting the impact of the data on the learning of the
neural networks, we in turn reduce sensitivity of the backpropaga-
tion algorithm. Therefore we refer to this approach as bottlenecked
backpropagation. We implement bottlenecked backpropagation with
stochastic gradient descent (SGD) and Adam [20] to be reffered as
signSGD and signAdam. We describe them below.

4.1.1 Bottlenecked Backpropagation with SignSGD

The SignSGD algorithm presents a subtle variation from traditional
stochastic gradient descent [32, 5]. Instead of utilizing the magnitude
of the gradient for descent, it solely relies on the sign of the gradi-
ent. In essence, if the gradient is positive, a value of +1 is utilized
for the next update; conversely, if the gradient is negative, a value of
−1 is utilized. Algorithm 1 provides an overview of the SignSGD
algorithm. The exclusive use of signs may raise doubts regarding
its convergence. To address this concern, we conducted a compar-
ative analysis between traditional SGD and its signed counterpart on
a toy function f(x) = 1

2
x2 for 10 iterations. The comparison plot

is illustrated in Figure 1, and for more comprehensive details on this
optimizer, refer to [5].

4.1.2 Bottlenecked Backpropagation with SignAdam

SignAdam introduces a nuanced adaptation to the traditional Adam
optimization algorithm [20]. Unlike Adam, which considers both the
magnitude and direction of the gradient, SignAdam solely focuses
on the sign of the gradient similar to SignSGD. Algorithm 2 outlines
the procedure of SignAdam. A comparative convergence analysis be-
tween Adam and SignAdam is illustrated in Figure 2 that is done on
the same toy example and averaged over ten runs. Further insights on
SignAdam can be explored in [38].

Algorithm 3 Differentially Private SignSGD (DPSignSGD)
Input: Examples {x1, . . . , xN}, loss function L(θ) =
1
N

∑
i L(θ, xi).

Parameters: Learning rate α, noise scale σ, group size S, gradient
norm bound C.
Initialize θ0 randomly.
for t ∈ [T] do

Take a random sample St with sampling probability S
N

.
Compute gradient:

for each i ∈ St do

Compute gt(xi) ← ∇θtL(θt, xi).
end for

Clip gradient:

ḡt(xi) ← gt(xi)/max
(
1, ‖gt(xi)‖2

C

)
.

Add Noise and take sign:

g∼t ← sign
(

1
S

∑
i ḡt(xi) +N (0, σ2C2I)

)
.

Descent:

θt+1 ← θt − αt · g∼t .
end for

Output θT and compute the overall privacy cost (ε, δ) using a pri-
vacy accounting method.

Table 1. Model architectures used for MNIST and FMNIST

Layer Parameters

Convolution 16 filters of 8× 8, stride 2, padding 2
Max-Pooling 32 filters of 4× 4, stride 2, padding 0
Convolution 2× 2, stride 1
Max-Pooling 2× 2, stride 1
Fully connected 32 units
Fully connected 10 units

4.2 Differential Privacy with Bottlenecked Backprop

Differentially private bottlenecked backpropagation extends the
framework of DPSGD [1] that adds noise to the gradients during
backpropagation. We consider SignSGD and SignAdam algorithms
for the exploration in this paper. For ensuring differential privacy we
adopt sampled Gaussian mechanism and Reny differential privacy.
Privacy analysis of the method is given in the following subsection.

Note that, the strategy to make the training differentially private,
we first clip the gradients and add noise using the sampled Gaus-
sian mechanism and Reny differential privacy, then we take the sign
of the contaminated gradient to update the weights. We do not add
noise only to the sign because that may induce a large amount of
randomness which may jeopardize the training process.

Deferentially Private Sign based Stochastic Gradient Descent (DP-
SignSGD) algorithm takes a set of examples x1, . . . , xN and a loss
function L(θ), where L(θ) = 1

N

∑
i L(θ, xi). It requires parameters

such as the learning rate ηt, noise scale σ, group size S, and gradient
norm bound C. The model parameters θ0 are initialized randomly.
At each iteration t, a random sample St is drawn with a sampling
probability of S/N . For each i ∈ St, the gradient gt(xi) is com-
puted as ∇θtL(θt, xi). The gradients are clipped to ensure that their
L2 norm does not exceed the specified bound C. The clipped gra-
dient ḡt(xi) is calculated as gt(xi)/max(1, |gt(xi)|2/C). Gaussian
noise with zero mean and variance σ2C2I is added to the average of
clipped gradients, and then the sign function is applied to obtain the
noisy gradient g∼t . Here I is the identity matrix. The new gradient
is calculated as sign

(
1
S

∑
i ḡt(xi) +N (0, σ2C2I)

)
i.e. first adding

the Gaussian noise to the gradient and the taking the sign of noise

A. Ghosh and M. Das / Bottlenecked Backpropagation to Train Differentially Private Deep Neural Networks 2221

Algorithm 4 Differentially Private SignSGD with Adaptive Moment
Estimation (DPSignAdam)

Input: Examples {x1, . . . , xN}, loss function L(θ) =
1
N

∑
i L(θ, xi).

Parameters: Base learning rate α noise scale σ, group size S,
gradient norm bound C, decay rates β1, β2.
Initialize θ0 randomly.
Initialize first moment vector m0 = 0, second moment vector
v0 = 0 and εa = 10−8

for t ∈ [T] do

Take a random sample St with sampling probability S
N

.
Compute gradient:

for each i ∈ St do

Compute gt(xi) ← ∇θtL(θt, xi).
end for

Clip gradient:

ḡt(xi) ← gt(xi)/max
(
1, ‖gt(xi)‖2

C

)
.

Add Noise and take sign:

g∼t ← sign
(

1
S

∑
i ḡt(xi) +N (0, σ2C2I)

)
.

Update biased first moment estimate:

mt ← β1 ·mt−1 + (1− β1) · g∼t .
Update biased second raw moment estimate:

vt ← β2vt−1 + (1− β2)(g
∼
t)2.

Compute bias-corrected first moment estimate:

m̂t ← mt/(1− βt
1).

Compute bias-corrected second raw moment estimate:

v̂t ← vt/(1− βt
2).

Descent:

θt+1 ← θt − αt · m̂t/(
√
v̂t + εa).

end for

Output θT and compute the overall privacy cost (ε, δ) using a pri-
vacy accounting method.

Table 2. Model architecture used for IMDB

Layer Parameters

Embedding 100 units
Fully connected 32 units
Bidirectional LSTM 32 units
Fully connected 16 units
Fully connected 2 units

added gradient. The model parameters are updated using the descent
step, where θt+1 is calculated as θt − αt · g∼t . Finally, the trained
parameters θT are outputted, and the overall privacy cost (ε, δ) is
computed using a privacy accounting method. Algorithm 3 describes
the method.

The Differentially Private SignSGD with Adaptive Moment Esti-
mation (DPSignAdam) algorithm operates as follows: it takes a set
of examples x1, . . . , xN and a loss function L(θ), where L(θ) =
1
N

∑
i L(θ, xi). Parameters include the base learning rate ηt, noise

scale σ, group size S, gradient norm bound C, and decay rates β1 and
β2. The model parameters θ0 are initialized randomly, along with the
first moment vector m0 and the second moment vector v0. At each it-
eration, the algorithm samples a subset St with a probability of S/N ,
computes the gradients gt(xi) for each i ∈ St, clips the gradients to
ensure their L2 norm does not exceed C, adds Gaussian noise to the
average of clipped gradients, and takes the sign to obtain the noisy
gradient g∼t . It then updates the biased first moment estimate mt and

second raw moment estimate vt, computes bias-corrected estimates
m̂t and v̂t, and updates the model parameters using the descent step.
Finally, it outputs the trained parameters θT and computes the over-
all privacy cost (ε, δ) using a privacy accounting method. Algorithm
4 describes the method.

In both algorithms, instead of adding noise directly to each gradi-
ent computation, noise is added after aggregating the gradients from
a group of samples (in DPSignSGD) or after calculating the biased
first and the second moment estimates (in DPSignAdam).

4.3 Privacy Analysis

Calculation of the privacy budget is a significant task in differen-
tially private algorithms. Our method to compute the privacy budget
related to bottlenecked backprop follows sampled Gaussian mecha-
nism (SGM) and Rényi Differential Privacy (RDP).

Definition 6. (Sampled Gaussian Mechanism (SGM) [25]) The
sampled Gaussian mechanism MGq,σ(S) for a real valued function
f defined samples from a set S associated with a sampling probabil-
ity mass function q is defined to be

MGq,σ(S) � f({x : x ∈ S sampled with q})
+N (

0, σ2Id
)

(12)

Now we state a result to quantify the privacy budget of sampled
Gaussian mechanism following Reny differential privacy.

Lemma 3. (RDP privacy budget of SGM [25]) If Mq,σ be the Sam-
pled Gaussian Mechanism for some function f with sensitivity 1, then
Mq,σ satisfies (α, τ)-RDP for

τ ≤ 1

α− 1
ln

(
max(Aα(q, σ), Bα(q, σ))

)
, (13)

where ⎧⎨
⎩

Aα(q, σ) � Ez∼μ0

[(
μ(z)
μ0(z)

)α]
Bα(q, σ) � Ez∼μ

[(
μ0(z)
μ(z)

)α] (14)

with μ0 � N(0, σ2), μ1 � N(1, σ2), μ � (1− q)μ0 + qμ1.
Furthermore, it holds for ∀(q, σ) ∈ (0, 1] × R+, Aα(q, σ) ≥

Bα(q, σ). Thus, Mq,σ satisfies (α, 1
α−1

ln(Aα(q, σ))-RDP.

Next we state the composition property of the Reny differential
privacy which will be useful for our computation.

Lemma 4. (Composition of RDP [24]) For two randomized mech-
anisms f and g such that f is (α,R1)-RDP and g is (α,R2)-RDP,
the composition of f and g, which is defined as a sequence of results
(X,Y), where X ∼ f and Y ∼ g, satisfies (α,R1 +R2)-RDP.

Now we state the main result of the paper to quantify privacy bud-
get of the bottlenecked backprop.

Theorem 5. After accepting t model updates, the bottlenecked back-
prop mechanism satisfies (α, τ)-RDP with τ as:

τ(α) =
t

α− 1
ln

(
α∑

i=0

(
α

i

)
(1− q)α−iqi exp

(
i(i− 1)

2σ2

))
,

where q = S
N

, σ is the noise multiplier of the training phase, and
α > 1 is the order.

A. Ghosh and M. Das / Bottlenecked Backpropagation to Train Differentially Private Deep Neural Networks2222

Table 3. Classification Accuracy Comparison of DPSGD and DPSIGNSGD

Dataset Name Method ε = 0.5 ε = 1.0 ε = 2.0 Non-Private

MNIST DPSGD [1] 93.1% 94.9% 96.1% 99.1%
(Image Dataset) DPSIGNSGD 94.8% 95.8% 96.7%

Fashion MNIST DPSGD [1] 78.4% 80.8% 82.3% 90.9%
(Image Dataset) DPSIGNSGD 79.0% 82.1% 84.5%

IMDB DPAdam 56.4% 60.3% 63.5% 79.5%
(Text Dataset) DPSignAdam 60.9% 65.0% 67.1%

Table 4. Classification Accuracy Comparison of DPSGD-TS and DPSIGNSGD-TS

Dataset Name Method ε = 0.5 ε = 1.0 ε = 2.0 Non-Private

MNIST DPSGD-TS [29] 96.0% 96.8% 97.7% 99.1%
(Image Dataset) DPSIGNSGD-TS 96.2% 97.2% 97.9%

Fashion MNIST DPSGD-TS [29] 79.1.% 82.6% 84.5% 90.9%
(Image Dataset) DPSIGNSGD-TS 80.0% 83.2% 84.7%

IMDB DPAdam-TS 57.5% 60.3% 62.8% 79.5%
(Text Dataset) DPSignAdam-TS 63.0% 68.1% 69.1%

Proof. To establish the theorem, we proceed through the following
logical steps. First, we leverage the RDP characteristics of the sam-
pling Gaussian mechanism to quantify the privacy impact of each
accepted model update. This analysis draws upon Definitions 6 and
Lemma 3. Next, we employ the concept of composition in RDP
mechanisms, as outlined in Lemma 4 to assess the cumulative pri-
vacy cost incurred by multiple accepted model updates.

In the proposed approach, f denotes the computation of clipped
gradients on sampled data points, expressed as f(xi, i ∈ B) =∑

i∈B gt(xi). As gt is derived from the clipping of gradients with
a norm bound of C, the sensitivity of f is defined to be C. [26]
describes a procedure to compute Aα(q, σ) depending on integer α
as Eq. 15.

Aα =
α∑

k=0

(
α

k

)
(1− q)α−kqk exp

(
k(k − 1)

2σ2

)
(15)

Lemma 4 shows the composition property of RDP mechanisms.
According to Definition 6, Lemma 3 and Lemma 4 Theorem 5 is
proved.

5 Experimental Evaluation

In this section, we perform experiments to demonstrate the perfor-
mance of bottlenecked backprop to train a differentially private neu-
ral network. We have used three real datasets and two popular opti-
mization methods. Furthermore, we conduct experiments involving
two membership inference attacks. The source code to reproduce our
experiments is available at https://nmrinl.github.io/dpbb.zip.

5.1 Baseline

As baseline, we have used DPSGD [1] and two contemporary vari-
ants: DPSGD with handcrafted features [36], DPSGD with tempered
sigmoid activation [29] denoted as DPSGD-HF, DPSGD-TS respec-
tively. We do not include comparisons with approaches that modify
the structures of over-parameterized models [9] or semi-supervised
models like PATE [28], as they fall outside the scope of our study.
We will call our algorithms with sign keyword attached such as DP-
SIGNSGD, DPSIGNSGD-TS and DPSIGNSGD-HF.

5.2 Parameter Setting

In our experimental setup, we configured the privacy budget (ε) to
three different values: 0.5, 1.0, and 2.0, for each dataset. We kept
the value of δ fixed at 10−5. For image datasets, we utilized the
SIgnSGD optimizer with zero momentum (momentum = 0), while
for the IMDB dataset, we employed the SignAdam optimizer with
parameters β1 = 0.9 , β2 = 0.999, ε = 10−8 and without any
weight decay.

5.3 Datasets and Results

Table 3, Table 4, and Table 5 shows the comparison study between
bottlenecked privacy-aware training and standard privacy-aware
training. We give the details below.

MNIST [21] dataset comprises 60,000 training samples and
10,000 testing samples, each representing handwritten digits cate-
gorized into ten classes, with approximately 7,000 grayscale images
per class. Each sample consists of a 28× 28 grayscale image paired
with a label indicating its category. In the absence of privacy mea-
sures, a model trained on handcrafted features achieves an accuracy
of 99.1% after 20 epochs [36]. Table 3 shows the architecture we
followed for training as indicated in [18].

FMNIST [39] encompasses 60,000 training samples and 10,000
testing samples of fashion products, distributed across 10 categories.
Each category consists of approximately 7,000 grayscale images
sized 28 × 28. The dataset is annotated with labels indicating the
category of each image. In the absence of privacy measures, a model
trained on handcrafted features achieves an accuracy of 90.9% after
20 epochs [36]. Table 3 shows the architecture we followed for
training as indicated in [18].

IMDB [23] comprises 50,000 movie reviews, with each review
represented as a list of word indexes and labeled with a discernible
bias towards either positive or negative sentiment. The dataset is par-
titioned into a training set consisting of 25,000 reviews and a test
set containing another 25,000 reviews. In the non-private scenario,
employing a cross-entropy loss function, Adam optimizer, and an
expected batch size of 32, a model attains an accuracy of 79.9% after

A. Ghosh and M. Das / Bottlenecked Backpropagation to Train Differentially Private Deep Neural Networks 2223

Table 5. Classification Accuracy Comparison of DPSGD-HF and DPSIGNSGD-HF

Dataset Name Method ε = 0.5 ε = 1.0 ε = 2.0 Non-Private

MNIST DPSGD-HF [36] 96.1% 97.2% 98.3% 99.1%
(Image Dataset) DPSIGNSGD-HF 96.8% 97.7% 98.4%

Fashion MNIST DPSGD-HF [36] 83.9% 86.0% 87.8% 90.9%
(Image Dataset) DPSIGNSGD-HF 85.2% 86.9% 88.2%

Table 6. Accuracy of models for membership inference attack on MNIST

Attack Model ε = 0.5 ε = 1.0 ε = 2.0

BlackBox-Shadow

DPSGD 0.502 0.501 0.499
DPSIGNSGD 0.495 0.500 0.498

DPSGD-TS 0.500 0.502 0.506
DPSIGNSGD-TS 0.495 0.495 0.498

WhiteBox-Partial

DPSGD 0.500 0.500 0.500
DPSIGNSGD 0.500 0.500 0.500

DPSGD-TS 0.500 0.500 0.500
DPSIGNSGD-TS 0.500 0.500 0.500

Table 7. Accuracy of models for membership inference attack on FMNIST

Attack Model ε = 0.5 ε = 1.0 ε = 2.0

BlackBox-Shadow

DPSGD 0.500 0.500 0.497
DPSIGNSGD 0.500 0.498 0.494

DPSGD-TS 0.502 0.502 0.499
DPSIGNSGD-TS 0.500 0.498 0.494

WhiteBox-Partial

DPSGD 0.500 0.500 0.500
DPSIGNSGD 0.500 0.500 0.500

DPSGD-TS 0.500 0.500 0.500
DPSIGNSGD-TS 0.500 0.500 0.500

20 epochs. Table 2 shows the architecture we followed for training as
indicated in [18]. We will not show the results for DPSIGNSGD-HF
for IMDB dataset because that is a text dataset and scattering of the
network which is main concept in the algorithm is not possible to
perform on text.

5.4 Resilience Against Membership Inference Attacks

Differential privacy protection is inherently meant to be resilient
against membership inference attacks. The objective is to infer the
membership of some sample in the training data by utilizing the
trained models. In case of a classification task, if a sample provides
high accuracy then it is understood that that sample belongs to the
training dataset. We used two state-of-the-art frameworks for mem-
bership inference attacks: BlackBox-Shadow [33] and WhiteBox-
Partial [27].

5.4.1 Attack Details

We randomly partition each dataset into four subsets: the target
training dataset, target testing dataset, shadow training dataset, and
shadow testing dataset, maintaining a 2:1:2:1 sample size ratio. The
training phase involves optimizing the attack model’s parameters us-
ing the Adam optimizer and a cross-entropy loss function. During
testing, the trained attack model’s performance is evaluated to as-
sess its effectiveness. Additionally, both methods integrate a Random
Forest classifier to process data from shadow and partial models, en-
hancing attack performance. Functionalities for saving trained mod-
els and managing temporary files ensure efficient resource utilization
throughout the attack process.

Table 8. Accuracy of models for membership inference attack on IMDB

Attack Model ε = 0.5 ε = 1.0 ε = 2.0

BlackBox-Shadow

DPSGD 0.499 0.499 0.500
DPSIGNSGD 0.500 0.498 0.494

DPSGD-TS 0.502 0.502 0.499
DPSIGNSGD-TS 0.500 0.498 0.494

WhiteBox-Partial

DPSGD 0.500 0.500 0.500
DPSIGNSGD 0.500 0.500 0.500

DPSGD-TS 0.500 0.500 0.500
DPSIGNSGD-TS 0.500 0.500 0.500

5.4.2 Result

Table 6, Table 7, and Table 8 demonstrate that proposed bottlenecked
differentially private algorithms are equally effective as their stan-
dard differentially private algorithms. Due to the internal use of scat-
tering nets, we opted not to conduct tests with DPSGD-HF [36]. Af-
ter the attack, the accuracy of all our methods is near 0.5, which is
equivalent to random guessing. This indicates their effectiveness in
defending against membership inference attacks.

5.5 Discussion

Through two standard optimization techniques (SGD and Adam),
three real-life datasets (MNIST, FMNIST, and IMDB), and two sets
of evaluations (Classification and Membership attack) we demon-
strate that the concept of bottlenecked backpropagation by ignoring
the magnitude of the gradients can train deep neural networks which
are more efficient. The results confirm our hypothesis that by ignor-
ing magnitude we can not only avoid the noise level in update but also
reduce sensitivity towards private data. Interestingly to note, the im-
provement over the baseline for a relatively complex dataset (IMDB)
is much larger than the rest. On all datasets, it can be seen that the
models are completely confused about guessing the membership as
proof of resilience against membership inference attacks.

6 Conclusion

Our study introduces a bottlenecked backprop technique which uses
only sign of the gradients to update the neural network parameters.
This reduces the sensitivity of the training procedure. We implement
the bottlenecked version on SGD and Adam optimizers two most
popular optimization techniques in deep learning. We employ Rényi
DP and sampled the Gaussian mechanism to ensure differential pri-
vacy of the proposed algorithms. We compare the proposed methods
with the state of the art to observe that under the same privacy budget,
the proposed algorithms are significantly more accurate as well as re-
silient to membership inference attacks. Future research avenues may
explore further refinements and extensions of bottlenecked backprop
for diverse neural network architectures and applications.

A. Ghosh and M. Das / Bottlenecked Backpropagation to Train Differentially Private Deep Neural Networks2224

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang. Deep learning with differential privacy. In Proceed-
ings of the 2016 ACM SIGSAC conference on computer and communi-
cations security, page 308–318, 2016.

[2] G. Andrew, O. Thakkar, B. McMahan, and S. Ramaswamy. Differ-
entially private learning with adaptive clipping. advances. In Neural
Information Processing Systems 34 (2021), 17455–17466, 2021.

[3] B. Balle and Y.-X. Wang. Improving the gaussian mechanism for dif-
ferential privacy: Analytical calibration and optimal denoising. In In-
ternational Conference on Machine Learning, pages 394–403, 2018.

[4] R. Bassily, A. Smith, and A. Thakurta. risk minimization: Efficient al-
gorithms and tight error bounds. In 2014 IEEE 55th annual symposium
on foundations of computer science, 2014.

[5] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandku-
mar. signsgd: Compressed optimisation for non-convex problems.
arXiv:1802.04434v3, 2018.

[6] M. G. J. H. Borja Balle, Gilles Barthe and T. Sato. Hypothesis testing
interpretations and renyi differential privacy. In Conference on Artificial
Intelligence and Statistics. PMLR, page 2496–2506, 2020.

[7] Z. Bu, J. Dong, Q. Long, and W. J. Su. Deep learning with gaussian dif-
ferential privacy. Harvard data science review 2020, 23, page 10–1162,
2020.

[8] M. Bun and T. Steinke. Concentrated differential privacy: Simplifi-
cations, extensions, and lower bounds, 2016. URL https://doi.org/10.
1007/978-3-662-53641-4_24.

[9] S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle. Unlocking high-
accuracy differentially private image classification through scale. arXiv
preprint arXiv:2204.13650 (2022), 2022.

[10] R. Du, Q. Ye, Y. Fu, H. Hu, J. Li, C. Fang, and J. Shi. Differential
aggregation against general colluding attackers. In Proceedings of the
IEEE International Conference on Data Engineering, 2023.

[11] J. Duan, Q. Ye, and H. Hu. Utility analysis and enhancement of ldp
mechanisms in high-dimensional space. In 2022 IEEE 38th Interna-
tional Conference on Data Engineering (ICDE), pages 407–419. IEEE,
2022.

[12] C. Dwork, A. Roth, et al. The algorithmic foundations of differential
privacy, volume 9, 3-4, 211-407.Issues 3-4. Foundations and Trends®
in Theoretical Computer Science, 2014.

[13] C. Dwork, A. Roth, et al. The algorithmic foundations of differential
privacy, volume 9, 3-4, 211-407. Foundations and Trends® in Theoret-
ical Computer Science, 2014.

[14] T. V. Erven and P. Harremos. Rényi divergence and kullback-leibler
divergence. IEEE Transactions on Information Theory 60, 7 (2014),
3797–3820), 2014.

[15] J. Fu, Q. Ye, H. Hu, Z. Chen, L. Wang, K. Wang, and X. Ran. Dp-
sur: Accelerating differentially private stochastic gradient descent using
selective update and release. arXiv:2311.14056, 2023.

[16] A. Golatkar, A. Achille, Y.-X. Wang, A. Roth, M. Kearns, and S. Soatto.
Mixed differential privacy in computer vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8376–8386, 2022.

[17] B. J. Grosz and S. Kraus. A firm foundation for private data analysis.
Commun.ACM, 54(1):86–95, 2011.

[18] X. X. Jianxin Wei, Ergute Bao and Y. Yang. Dpis: An enhanced mech-
anism for differentially private sgd with importance sampling. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2855–2899, 2022.

[19] R. Jin, Y. Huang, X. He, H. Dai, and T. Wu. Stochastic-sign sgd for
federated learning with theoretical guarantees, 2020.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[21] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database.
M. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2
(2010), 2010.

[22] J. Lee and D. Kifer. Concentrated differentially private gradient de-
scent with adaptive per-iteration privacy budget. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
Data Mining, pages 1656–1665, 2018.

[23] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, , and C. Potts.
Learning word vectors for sentiment analysis. In The 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language
Technologies, Proceedings of the Conference, 19-24 June, 2011, Port-
land, Oregon, USA. The Association for Computer Linguistics,, pages
142–150, 2011.

[24] I. Mironov. Rényi differential privacy. In IEEE 30th computer security
foundations symposium (CSF). IEEE, pages 263–275, 2017.

[25] I. Mironov, K. Talwar, and L. Zhang. Rényi differential privacy of the
sampled gaussian mechanism. arXiv preprint arXiv: Learning, 2019.

[26] I. Mironov, K. Talwar, and L. Zhang. Rényi differential privacy of the
sampled gaussian mechanism, 2019.

[27] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning. In 2019 IEEE symposium on
security and privacy (SP), pages 739–753, 2019.

[28] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
Úlfar Erlingsson. Scalable private learning with pate. Preprint
arXiv:1802.08908, 2018.

[29] N. Papernot, A. Thakurta, S. Song, S. Chien, and Úlfar Erlingsson. Tem-
pered sigmoid activations for deep learning with differential privacy.
In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 9312–9321, 2021.

[30] N. Phan, X. Wu, H. Hu, and D. Dou. Adaptive laplace mechanism:
Differential privacy preservation in deep learning. In 2017 IEEE in-
ternational conference on data mining (ICDM). IEEE, pages 385–394,
2017.

[31] V. Pichapati, A. T. Suresh, F. X. Yu, S. J. Reddi, and S. Kumar. Adaclip:
Adaptive clipping for private sgd. arXiv preprint arXiv:1908.07643
(2019), 2019.

[32] H. Robbins and S. Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951.

[33] A. Salem, Y. Zhang, M. Humbert, P. B. amd Mario Fritz, and M. Backes.
Ml-leaks: Model and data independent membership inference attacks
and defenses on machine learning models. In Network and Distributed
Systems Security (NDSS) Symposium, 2019.

[34] K. C. Shuang Song and A. D. Sarwate. tochastic gradient descent with
differentially private updates. In 2013 IEEE global conference on signal
and information processing. In 2. IEEE, 245–248, 2013.

[35] W. Z. Tianqing Zhu, Gang Li and S. Y. Philip. Differential Privacy and
Applications, volume 69. Springer, 2017.

[36] F. Tramer and D. Boneh. Differentially private learning needs better
features (or much more data). In International Conference on Learning
Representations, 2020.

[37] K. S. V. Veen, R. Seggers, P. Bloem, and G. Patrini. Three tools for
practical differential privacy, 2018.

[38] D. Wang, Y. Liu, W. Tang, F. Shang, H. Liu, Q. Sun, and L. Jiao. Sig-
nadam++: Learning confidences for deep neural networks. In 2019 In-
ternational Conference on Data Mining Workshops (ICDMW), pages
186–195. IEEE, 2019.

[39] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv e-prints
(2017), arXiv–1708, 2017.

[40] Z. Xu, S. Shi, A. X. Liu, J. Zhao, and L. Chen. An adaptive and fast
convergent approach to differentially private deep learning. In IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications, page
1867–1876, 2020.

[41] X. Yang, H. Zhang, W. Chen, and T.-Y. Liu. Normalized/clipped sgd
with perturbation for differentially private non-convex optimization.
arXiv preprint arXiv:2206.13033, 2022.

[42] Q. Ye, H. Hu, K. Huang, M. H. Au, and Q. Xue. Stateful switch: Op-
timized time series release with local differential privacy. In IEEE IN-
FOCOM 2023-IEEE Conference on Computer Communications, pages
1–10. IEEE, 2023.

[43] Q. Ye, H. Hu, X. Meng, H. Zheng, K. Huang, C. Fang, and J. Shi.
Privkvm*: Revisiting key-value statistics estimation with local differen-
tial privacy. IEEE Transactions on Dependable and Secure Computing,
pages 17–35, Jan 2023. doi: 10.1109/tdsc.2021.3107512.

[44] S. W. Yingxue Zhou and A. Banerjee. Bypassing the ambient dimen-
sion: Private sgd with gradient subspace identification. In International
Conference on Learning Representations, 2020.

[45] D. Yu, H. Zhang, W. Chen, and T.-Y. Liu. Do not let privacy overbill
utility: Gradient embedding perturbation for private learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8376–8386, 2022.

[46] X. Zhang, S. Ji, and T. Wang. Differentially private releasing via deep
generative model (technical report). arXiv e-prints, 2018.

[47] Y. Zhang, Q. Ye, R. Chen, H. Hu, and Q. Han. Trajectory data collection
with local differential privacy. Proceedings of the VLDB Endowment,
16(10):2591–2604, 2023.

A. Ghosh and M. Das / Bottlenecked Backpropagation to Train Differentially Private Deep Neural Networks 2225

