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Abstract. Reinforcement learning (RL) has gained popularity in
the realm of recommender systems due to its ability to optimize
long-term rewards and guide users in discovering relevant content.
However, the successful implementation of RL in recommender sys-
tems is challenging because of several factors, including the lim-
ited availability of online data for training on-policy methods. This
scarcity requires expensive human interaction for online model train-
ing. Furthermore, the development of effective evaluation frame-
works that accurately reflect the quality of models remains a fun-
damental challenge in recommender systems. To address these chal-
lenges, we propose a comprehensive framework for synthetic envi-
ronments that simulate human behavior by harnessing the capabili-
ties of large language models (LLMs). We complement our frame-
work with in-depth ablation studies and demonstrate its effective-
ness with experiments on movie and book recommendations. Us-
ing LLMs as synthetic users, this work introduces a modular and
novel framework to train RL-based recommender systems. The soft-
ware, including the RL environment, is publicly available on https:
//github.com/SUBER-Team/SUBER.

1 Introduction

In an age defined by the ubiquitous presence of digital platforms
in both leisure and commerce, recommender systems have emerged
as instrumental tools in guiding user choices. From Netflix tailoring
movie suggestions to match the cinematic tastes of users to Amazon
presenting personalized products lists to shoppers, recommendation
systems are the engines driving enhanced user experiences and the
engagement of the platform [41, 3].

Reinforcement Learning (RL), with its principles rooted in learn-
ing by interaction, provides a compelling approach to dynami-
cally and adaptively tailor recommendations. Recommender systems
should take into account both short- and long-term rewards and di-
rect the interests of users towards appropriate recommendations. An
increasing body of research has investigated the use of RL in recom-
mender systems [18, 9, 23, 1, 22]. Although promising, the use of RL
for recommendation systems comes with its own set of challenges:

Data Availability: RL algorithms require a significant amount of
data from interactions with the environment to learn effective poli-
cies. However, in the case of recommender systems, users may
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quickly abandon the service if they receive random or irrelevant rec-
ommendations. This makes it impractical to collect the large amount
of data needed to train an RL model without compromising the user
experience [50].

Unknown user model: In RL, a reward function is crucial to al-
low the model to learn effectively. In the context of recommender
systems, designing an appropriate synthetic reward function that ac-
curately reflects user satisfaction or preferences can be challenging
due to the complexity of modeling human behavior [10, 39].

Model evaluation: A key challenge in recommender systems is the
evaluation of models without directly interacting with real users, thus
avoiding any potential negative impact on the user experience. On
the other hand, evaluating on offline data does not guarantee good
recommendation performance in the real world [38, 13].

In this work, we propose a "Simulated User Behavior for Recom-
mender Systems" (SUBER), a novel framework for recommender
systems to address the aforementioned challenges. SUBER is a
framework for synthetic environments that use Large Language
Models (LLM) at its core. SUBER leverages recent advances in
LLMs to simulate human behavior [31, 4]. Furthermore, by train-
ing on large amounts of data, LLMs have obtained inherent knowl-
edge about movies, books, and various other objects. These strengths,
the ability to mimick human behavior coupled with vast knowl-
edge about humanity, uniquely position LLMs as a powerful tool
to simulate users in synthetic environments for recommender sys-
tems. Therefore, SUBER serves as a versatile playground for re-
searchers, allowing them to experiment with different LLM configu-
rations, fine-tune user specifications, and improve their RL strategies.
Our contributions can be summarized as follows:

• We introduce SUBER, a versatile framework for training and
evaluating RL-based recommender systems. Our framework in-
cludes a gym environment with an LLM designed to simulate
human behavior and rate recommended items accordingly.

• We conduct extensive ablation studies to assess the impact of
each component in our framework. Moreover, we present find-
ings across multiple LLM families, revealing their influence on
the environment’s performance and highlighting their effective-
ness in replicating human behavior for item recommendations.

• We experimentally validate our environment using both movie
and book recommendation settings. Additionally, we have made
all code available as open-source.
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Table 1. Comparison of simulation environments for recommender systems. We list whether the user and item datasets are real or synthetic. Simulation
Engine indicates the different approaches used. For the evaluation strategy, we distinguish between offline evaluation in the original dataset used to train the

simulator, online testing on a platform, sanity checks, and case studies.

Simulators User dataset Item dataset Simulation engine Evaluation strategy

Adversarial [10] Real Real GAN Offline
VirtualTaobao [39] Real Real GAN Online
RL4RS [47] Real Real Transformer Online
KuaiSim [51] Real Real Transformer Offline
RecoGym [34] Synthetic Synthetic Statistical modelling Sanity checks
RecoSim [17] Synthetic Synthetic Statistical modelling Case studies
SUBER (our) Synthetic Real LLM Sanity checks & case studies

2 Related Work

RL for Recommender Systems. Platforms such as YouTube
[18, 9] and BytePlus [23] are two of many recent successful examples
of training and evaluating recommender systems with online data.
Traditional and neural recommender systems and have been exten-
sively researched in the past three decades [15, 42, 5, 40, 24, 49].
However, since our work focuses on RL in recommender systems
(RL4Rec), we limit the related work to this area of research. Al-
though RL4Rec has been the subject of several studies, most of the
work has been based primarily on training and evaluation based on
offline datasets [1, 22]. As indicated by Afsar et al. [1], online assess-
ment is the preferred approach for evaluation. However, it presents
significant challenges with respect to complexity and expense. In
contrast, offline evaluation takes place in a static and biased envi-
ronment. Therefore, Afsar et al. call for the creation of a versatile
simulator for RL4Rec similar in nature to OpenAI’s Gym for conven-
tional RL tasks [6]. Additional challenges exist in the wider domain
of RL, specifically regarding issues related to off-policy learning and
offline policy evaluation, which become even more complex when
incorporated into recommender systems [33, 14, 21].

Notable efforts have been made to address the limitations of of-
fline learning in recommender systems. To this end, many simula-
tion environments for recommender systems have been developed.
Rohde et al. [34] presented RecoGym, a synthetic environment that
addresses exploding variance by simulating user responses to dif-
ferent recommendation strategies. RecSim [17] is a customizable
synthetic simulation platform that incorporates various assumptions
about user preferences, item familiarity, user latent states and dy-
namics, and choice models. Chen et al. [10] proposed a generator
that captures the underlying distribution of historical user interac-
tions and learns to generate realistic interactions. Extending this idea,
Shi et al. [39] proposed VirtualTaobao, a virtual shopping environ-
ment, and demonstrated the superiority of policies developed in this
framework over traditional supervised techniques in real-world set-
tings. Wang et al. [47] introduced the RL4RS dataset to address the
lack of validated simulation environments and advanced evaluation
methods in RL-based recommender system research. The dataset is
collected from a NetEase game and anonymized through a three-step
process. Zhao et al. [51] propose KuaiSim, a versatile environment
that provides user feedback with multi-behavior and cross-session re-
sponses, supporting three tasks: request-level list-wise recommenda-
tion task, whole-session-level sequential recommendation task, and
cross-session-level retention optimization task. Unlike previous ap-
proaches, our work leverages natural language by using LLMs to
simulate user behavior. In addition, our framework is not dataset de-
pendent, and therefore, the set of users and items are not restricted to
specific domains.

Large Language Models. There have been significant recent ad-
vances in the field of LLMs. These models are primarily based on the
transformer architectures introduced by Vaswani et al. [46] and have
continued to grow in size, capability, and performance. The Gen-
erative Pre-trained Transformer (GPT) series by OpenAI [7, 30] is
one of the most notable developments in this area, demonstrating the
immense potential and scalability of transformer-based models. The
recent release of foundation language models such as Llama-1 and
Llama-2 [43, 44], has democratized the access to these large LLMs.
This has paved the way for the creation of instruction-following mod-
els such as Vicuna [52] and Mistral [19]. Meanwhile, numerous ef-
forts have focused on optimizing the memory consumption and in-
ference speed of LLMs. For example, GPTQ Frantar et al. [12] com-
pressed the model parameters to 4 bits, allowing larger models to
run on hardware with less memory and without significant loss of
performance.

LLMs can generate textual content that rivals the quality of
human-generated text [7]. However, their applications go beyond text
generation. Park et al. [31] demonstrated how LLMs can be used to
simulate human behavior. These simulated agents wake up, cook, go
to work, make decisions, and reflect on past experiences in a be-
lievable manner. Furthermore, Argyle et al. [4] suggests using lan-
guage models as surrogates for certain demographic groups within
social science research. Their study demonstrates how conditioning
GPT-3 on the socio-demographic backgrounds of real human sub-
jects can accurately replicate response distributions among diverse
human subgroups.

Contemporary work has also integrated LLMs into recommender
systems. Kang et al. [20] demonstrated that fine-tuned LLMs outper-
form traditional supervised methods in predicting user ratings with
less training data, while Wang et al. [48] employed LLMs as a rec-
ommendation agent, showcasing their potential to improve recom-
mender systems. Both works show how LLMs can act as a good
predictor of the ratings that a user would assign to an item. The au-
thors further investigated whether LLMs can also be used as a rec-
ommender directly; they restricted their experiment to choosing an
item from a list of 100 items. However, this task is still challenging
for LLMs, as they must have knowledge of the entire set of possi-
ble items to be recommended. The limited context length does not
allow one to provide a list of all possible items in the prompt to an
LLM. Therefore, to date, the application of large language models
(LLMs) as recommender systems has yet to exceed the performance
of traditional recommender systems, which encompass both classi-
cal supervised algorithms and those based on reinforcement learning
techniques. Our work diverges from these approaches by leveraging
LLMs as simulation environments for item recommendation, in con-
trast to prior efforts that focused on training LLMs to function as the
recommender system itself.
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Figure 1. Overview of SUBER. The environment is built as a modular framework where each component can be modified as required. The basic control flow
is as follows: The environment provides an observation using the memory module; the RL model returns an item recommendation in the form of an action,

which is processed into a prompt by the memory and preprocessing component before being passed to the LLM. The score returned by the LLM is
postprocessed, stored in memory and returned as a reward to the RL model.

3 Framework

To address the aforementioned challenges of data availability, un-
known user model, and model evaluation, we propose SUBER, an
environment designed to simulate human behavior through the inte-
gration of LLMs. SUBER serves a dual purpose by generating syn-
thetic data and harnessing the capabilities of LLMs to replicate the
behavior of individuals with unknown patterns. Additionally, this dy-
namic environment can serve as a model evaluation tool for recom-
mender systems.

SUBER consists of an LLM component and three separate mod-
ules that contain multiple individual components. An overview of
the overall structure is presented in Figure 1. The internal memory
module of the environment contains two separate datasets, one for
users and one for items. The environment also includes a prepro-
cessing module that retrieves raw data from the memory module and
transforms it to ensure compatibility with the LLM. Finally, a post-
processing component transforms the output produced by the LLM
before returning it to the RL model.

The interaction with an RL model involves the following infor-
mation flow: initially, the environment selects a user from memory,
along with their interaction history (i.e., items and associated ratings)
as the observation for the RL model. The RL model then recom-
mends an item to the user as its action, with an action space equal to
the number of items in the environment. The action and observation
are subsequently processed through the preprocessing module, the
LLM component, and the postprocessing module. Finally, the envi-
ronment returns a reward corresponding to the post-processed rating
predicted by the LLM. We describe each module in more detail in
the following sections.

Our environment is designed with easy accessibility and extensi-

bility in mind. Therefore, we chose a modular approach and based
the environment interface on the Gymnasium standardized API [45].
Different components can be modified at will, providing additional
flexibility in future design choices.

3.1 Memory

We introduce the following notation. We define U as the set of users
and I as the set of items. For every pair of user-items (u, i) ∈ U × I ,
we have a set Ru,i that records all interactions between user u and
item i. Similarly, for every user u we define with Ru the set of all
interactions with all items, defined as follows:

Ru = {(i, h)|i ∈ I, h ∈ Ru,i}. (1)

The memory module consists of three components: an item dataset, a
user dataset, and a record of all interactions between users and items.
This interaction history stores the set of interactions Ru,i for each
pair of user-items (u, i). Every interaction between the RL model
and the environment produces a new interaction record between a
user and an item, which is added to the interaction history.

3.2 Pre-processing

Item Retrieval. As the RL model interacts with the environment,
the history of the interaction increases. It may be challenging to ex-
tract relevant information from long histories, and the increasing du-
ration of the history will probably exceed the context length of cur-
rent LLMs [31]. To address this issue, we propose an item-retrieval
component responsible for retrieving the most appropriate items for

N. Corecco et al. / SUBER: An RL Environment with Simulated Human Behavior for Recommender Systems2212
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Figure 2. Pipeline of one interaction between the RL model and SUBER. The environment provides an observation in the form of a user description and
user-item interaction history to the RL model. The RL model then recommends an item, which is processed into a prompt together with the user description and
interaction history. The LLM uses this prompt to generate a reward for the recommended item. The reward is stored as part of the user-item interaction history

and returned to the RL model.

the current query from the interaction history of a user. Addition-
ally, as user interests and preferences may evolve over time, relying
solely on user features may not accurately capture current interests.
Therefore, historical rating data are used to provide a more detailed
depiction of their evolving preferences.

Prompting. The prompting component aggregates the information
retrieved by the item retrieval component, creating a prompt that con-
tains the necessary details for the LLM, including the user and query
item data. The objective of this prompt is to enable the LLM to ac-
curately predict the rating of the current query item. An example of
such a prompt as part of an interaction example can be seen in Fig-
ure 2.

3.3 Postprocessing

Reward Perturbation. The reward perturbation component intro-
duces noise into the ratings generated by the LLM. This component
functions as a simulation of “concept drift" for users [53]. Concept
drift refers to the notion that users may change their interests over
time and are unlikely to maintain static preferences.

Reward Shaping. Similarly to the reward perturbation component,
reward shaping modifies the reward. However, unlike the perturbed
reward which is added to the memory, the reward modified by the
reward shaping component is returned directly to the RL model and
is not stored in memory. The reward shaping module aims to reflect
changes in the reward that are not related to a change in the prefer-
ence of a user, such as spontaneous decisions or fleeting interests.

4 Experiments

To evaluate SUBER, we followed the approach of Rohde et al. [34]
and Ie et al. [17]. We perform sanity checks and case studies, which
we present in Section 4.2 and Section 4.4. To achieve this, we imple-
mented a movie recommendation and a book recommendation envi-
ronment in our framework. In the following sections, we discuss our
implementation and design choices for these environments, as well
as our ablation study and experiments. For the movie setting, we use
rewards from 1 to 10, similar to TMDB 2, while for the book setting
we use rewards from 1 to 5, as found in the Amazon Reviews Dataset
[28].

For both environments, we created a dataset of synthetic users us-
ing Vicuna [52] with Guidance [25]. To generate user descriptions,
we condition the LLM with information such as the age, liked and
disliked genres, hobbies, and profession of the user (cf. Listing 1).
We generate the user age by sampling from the age distribution in
the United States [8],

We randomly select a hobby and a profession from predefined
lists (cf. Appendix G in [11]). These hobby lists are divided into
two categories: one tailored to children (aged 4-17) and another for
adults (aged 18-75). Users not of working age are assigned the pro-
fession “student," while those of retirement age are categorized as
“retired." For the movie dataset we use MovieLens (ml-latest-small)
[16] and collect the respective movie features from TMDB. For the
book dataset, we used a subset of the Amazon Book Dataset. For
more details, see Appendix A and Appendix B in [11].

2 https://www.themoviedb.org/
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Can you generate details for a person, you need to generate a name,
an age, a hobby, a job and a detailed, long and original description
that contains the persons interests and secondary hobbies. Please
outline the cinematic preferences of the individual, detailing their
favorite and least favorite genres. Kindly provide explanations for
each genre preference.
Name: Emily Johnson, Age: 37, Gender: F, Hobby: COMPACT
DISCS, Job: DETECTIVE
Genres liked: romance, horror, Genres diskliked: action, comedy
Description: she is a detective, she has a hobby of collecting
compact discs, she likes to watch romance and horror movies in her
free time, she dislikes action and comedy movies because she find
them too chaotic and not interesting, her secondary hobbies are
reading mystery novels and playing the piano.

Listing 1. User generation and characteristic assignment process example
by Vicuna with guidance. Black text shows the template and the instruction,
RED TEXT marks the sampled information from external distributions, blue

text indicates the content generated by LLM.

4.1 Setup

We implemented three different approaches for the retrieval compo-
nent: feature retrieval, recency retrieval, and similarity retrieval. The
feature-based approach retrieves items based on the Sorensen Coef-
ficient of movie genres, actors, director, and average rating, while
for books, we use book category, author, and average rating. The re-
cency algorithm retrieves the most recent interactions. The similarity
approach retrieves items from the history based on their similarity
to the query item. We generate item-description embeddings using
a Sentence-T5 model [29] and compute their similarities based on
the cosine distance. To select the item-rating pair to retrieve from
memory, we compute the similarity between the query item and all
items previously viewed by the current user, selecting the items with
the highest similarity. We use the items returned from the retrieval
component to construct a prompt to query the LLM. The LLM is
tasked with generating a rating of the queried item by the current
user, where the queried item corresponds to the item suggested by
the recommender system. We construct the prompt such that the user
description comes first, allowing us to leverage the key-value cache
[32], eliminating the need to recalculate all intermediate embeddings
within the layers of the LLM for already encountered prefixes, there-
fore, increasing execution speed. Furthermore, we experimented with
one-shot and two-shot prompting to improve model performance,
which has been shown to increase generation quality [7]. In addition
to the default system prompt , we created a custom system prompt
(see Listing 2 for movie and Appendix B in [11] for books).

You are a highly sophisticated movie rating assistant, equipped with
an advanced understanding of human behavior. Your mission is to

deliver personalized movie recommendations by carefully
considering the unique characteristics, tastes, and past−seen films of
each individual. When presented with information about a specific

movie, you will diligently analyze its plot, primary genres, actors,
and average rating. Using this comprehensive understanding, your
role is to provide thoughtful and accurate ratings for movies on a
scale of 1 to 10, ensuring they resonate with the person’s
preferences and cinematic inclinations. Remain impartial and
refrain from introducing any biases in your predictions. You are an
impartial and reliable source of movie rating predictions for the
given individual and film descriptions.

Listing 2. An advanced system prompt guiding the model to provide
personalized and unbiased movie ratings.

Tokenization ambiguity can become an issue when generating
numbers with LLMs. Since we are dealing with ratings on a scale
from one to ten, and because the number “10" can be tokenized in
two different ways, this can cause unwanted side effects. To tackle
this challenge, we tested two additional strategies for the movie set-
ting: shifting all rewards to the scale of 0-9, and using words for
numbers from “one" to “ten."

We experimented with various quantized versions of Llama, Vi-
cuna, Mistral, using LLMs that could run within a 24GB memory
limit. A list of the models used in our experiments can be found in
Appendix D in [11]. All models were quantized using GPTQ. Since
different LLMs influence the simulation of human behavior in differ-
ent ways, it is important to highlight the inherent trade-off between
model size and processing speed. In particular, during training of an
RL model, a fast environment is desirable to acquire more samples
in a shorter time span. However, smaller LLMs may not adequately
emulate the desired human behavior of our synthetic users.

For the reward perturbation experiment, we compared Gaussian
noise and greedy noise. Greedy noise alters the LLM rating by 1 with
a probability of q, while it remains unchanged with a probability of
1− q.

Our implementation of reward shaping operates on the following
premise: as a user engages with an item more frequently, their interest
in revisiting it diminishes. In contrast, as time passes, the likelihood
that the user interacts with the item increases again [35]. Given this
insight, let us consider a user u from the set U and an item i with
which the user has interacted nui times. When a time span of Δt has
passed since the last interaction with the item, the reward r undergoes
a reshaping process, characterized by the following equation:

r ← max(1, �r · qnui/Δt�), (2)

where q ∈ [0, 1]. This adjustment takes into account both the fre-
quency of user interaction with the item and the time elapsed since
their last interaction, resulting in the modified reward r.

4.2 Ablations

To determine the effect of each component in our environment, we
performed ablations across four different test cases. In this section,
we present the high-level idea; for more details, see Appendix C in
the supplementary material [11].

Genres/Categories. We assess the environment’s ability to recog-
nize movie and book genres and its ability to correlate those genres
with user preferences to accurately predict ratings. User profiles were
manually created for each movie genre, ensuring that they expressed
a preference for the selected genre while disliking all others. After-
wards, we queried the environment with users and movies from both
their favored and disliked genres. The accuracy of rating predictions
is used to measure performance. A similar process is used for the
book environment, replacing movie genres with book categories.

High/Low Rating. We assess whether the environment can ac-
curately infer high ratings for users who provide positive-leaning
descriptions, while inferring low ratings for users whose descrip-
tions are negative-leaning. We give each user a set of items and test
whether the environment is able to generate high or low ratings, de-
pending on the description of the user.

Collection of Items. We evaluate the ability of the environment
to leverage the historical item ratings of a user to predict their fu-
ture ratings. We conduct this test by manually selecting a set of item
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Table 2. Ablation results for the movie setting using Mistral 7B as our environment. We test the LLM on coherency and realistic ratings for user-movie
interactions. We achieve best performance with 0-9 digit rating scale, 2-shot prompting, and our custom system prompt.

Prompt component

Rating scale N-shot System
prompt Genres ↑ High/Low ↑ Collection

of movies ↑
Similarity
to ML ↑ Agg. score ↑

0-9 0-shot default 0.80±0.00 1.00±0.00 0.67±0.02 0.54±0.00 0.75±0.01
0-9 0-shot custom 0.87±0.00 1.00±0.00 0.68±0.02 0.70±0.00 0.81±0.01
0-9 1-shot default 0.72±0.00 0.96±0.00 0.71±0.03 0.73±0.01 0.78±0.01
0-9 1-shot custom 0.81±0.00 1.00±0.00 0.71±0.02 0.78±0.00 0.82±0.01

0-9 2-shot default 0.78±0.00 0.99±0.00 0.69±0.01 0.80±0.00 0.82±0.00

0-9 2-shot custom 0.79±0.00 1.00±0.00 0.67±0.03 0.78±0.00 0.81±0.01
1-10 2-shot custom 0.50±0.0 0.50±0.00 0.50±0.00 0.51±0.00 0.50±0.00
one-ten 2-shot custom 0.79±0.00 1.00±0.00 0.66±0.01 0.72±0.00 0.79±0.00

Table 3. Ablation results for the book environment using Mistral 7B as our environment. We test the performance of the LLM to give coherent and realistic
ratings for user-book interactions. We achieve best overall performance when using 2-shot prompting and our custom system prompt.

Prompt component
Rating
scale N-shot System

prompt Category ↑ High/low ↑ Collection
of books ↑ Agg. score ↑

1-5 0-shot default 0.68±0.00 1.00±0.00 0.65±0.01 0.77±0.00
1-5 0-shot custom 0.83±0.00 1.00±0.00 0.68±0.02 0.83±0.01
1-5 1-shot default 0.87±0.00 1.00±0.00 0.81±0.04 0.89±0.01
1-5 1-shot custom 0.89±0.00 1.00±0.00 0.82±0.02 0.90±0.01

1-5 2-shot default 0.83±0.00 0.98±0.00 0.73±0.02 0.85±0.01
1-5 2-shot custom 0.85±0.00 1.00±0.00 0.76±0.02 0.87±0.01

collections belonging to a series (e.g., James Bond, Toy Story, etc.).
Subsequently, we randomly select a sample of users from our syn-
thetic dataset and fill their history with items from our collection as
well as random items. We assign a high rating to all items in the col-
lection history, and the corresponding average rating to the remaining
random items. Success is measured by a high rating for the queried
item that is part of the collection. The experiment is repeated by as-
signing low ratings to the collection items to test the ability of the
environment to predict low ratings.

Similarity to Real Rating Distribution. We evaluate whether the
rating distribution obtained from our movie environment accurately
reflects human behavior by comparing it to the rating distribution
from MovieLens, which are representative samples of human rat-
ings. We sample with replacement from both our environment and
the MovieLens dataset. We then compute the empirical distribution
across the dataset and use the total variation distance as a metric to
measure similarity. For the book environment, see Appendix C in
[11]. The aggregated score is the mean of all test cases. All ablations,
except where defined otherwise, were performed using the follow-
ing configurations. We used the 2-shot prompting, a custom system
prompt, three item retrievial via T5-similarity, and no reward pertur-
bation. For movies, we used Mistral 7B with rating scale 0-9, and for
books we use Mistral 7B with scale 1-5.

Results. In the movie environment, we observe that different
prompt strategies generally do not differ significantly from each other
in the case of Mistral, with the only two exceptions being the 0-
shot prompt with the default system prompt, which performs slightly
worse, and the weak performance of the 1-10 rating scale due to to-
kenization ambiguity. Vicuna, on the other hand, is more affected
by different prompt strategies, as shown in Appendix D in [11]. Ta-
ble 2 shows the general trend on how the environment can capture
human concepts such as genres and movie franchises. For the book
environment (cf. Table 3) it can be observed that the use of few-shot
prompting, as well as the custom system prompt, has a positive im-

pact on the different test cases. Additionally, similar to the movie
environment, the model is also able to understand human concepts in
the book domain. In general, we observe that larger models perform
better across model families (cf. Figure 3). In addition, we can see
how Mistral performs best among open-source models.

Our ablation of the retrieval component demonstrates that this
component plays a crucial role in understanding user interests (cf.
Tables 8 and 12 in the supplementary material [11]) . Furthermore,
the recency approach proves inadequate, while the best-performing
retrieval approach is predicated on the similarity of item features.

4.3 Human Evaluation

We conducted a case study to better evaluate the quality of different
LLMs in the rating simulation task. For the study, we sampled ten
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Figure 3. Aggregated score across LLM families for the movie
environment (top), and for the book environment (bottom) by varying only

the LLM component. For details see Appendix D in [11].
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Table 4. Performance Metrics of RL Models Trained on SUBER: Mean Average Precision (MAP@10), Mean Reciprocal Rank (MRR@10), Personalization
of the top ten recommendations (Pers.@10). “Liked genres” indicates the proportion of movies in the top ten recommendations aligned with user-preferred

genres (see Appendix F in the supplementary material [11] for details).

Algorithm Average
reward MAP@10 ↑ MRR@10 ↑ Pers.@10 ↑ % Liked

genres ↑
% Disliked
genres ↓

DQN 6.79±0.06 0.53±0.06 0.85±0.06 0.00±0.00 0.42±0.01 0.15±0.01
PPO 6.91±0.03 0.59±0.01 0.84±0.01 0.99±0.00 0.44±0.01 0.15±0.00
TRPO 7.25±0.08 0.67±0.06 0.91±0.02 0.35±0.06 0.45±0.02 0.14±0.01
A2C 7.93±0.07 0.88±0.01 0.96±0.01 0.91±0.03 0.49±0.02 0.11±0.01

Table 5. Human evaluation scores for various LLMs.

LLM Score ↑
Random rating 2.87±1.51
Vicuna 13B 3.22±1.32
Llama-2-Chat 13B 3.42±1.22
Mistral 7B 3.80±1.27
GPT-4 4.47±0.77

user-movie interactions, for each interaction we queried four differ-
ent LLMs. The random rating in Table 5 serves as a baseline com-
parison, allowing us to compare the quality of our proposed approach
with a random signal. The answer is constructed by sampling a rating
uniformly at random between 1 and 10, and having the LLM (Vicuna
13B) generate the explanation for the rating. We then asked partic-
ipants to rate the quality of the LLM’s response on a scale of 1 to
5.

Participants in this study were recruited from among our col-
leagues and provided informed consent to participate. The study was
designed with strict adherence to randomized double-blind proce-
dures to ensure impartiality and reliability of the results. As this user
study did not involve ongoing follow-up or monitoring of the partic-
ipants, our institutional review board (IRB) determined that formal
approval was not required. From the survey (cf. Table 5), we find
that users agree more with GPT-4, outperforming all other models.
Furthermore, we find that Mistral 7B is the best LLM among open-
source models despite only having 7B parameters. More information
on the study setting is provided in Appendix E in [11].

4.4 Benchmarks

We demonstrate the viability of our environment to train an RL rec-
ommender system. The architecture of the RL model is inspired by
the principles of Low-Rank Approximations in collaborative filter-
ing [2]. We implemented four different agents based on A2C [27],
PPO [37], TRPO [36], and DQN [26]. We train all models for 1.6M
steps on SUBER. Due to space constraints, a more detailed discus-
sion on the training of reinforcement learning models is deferred to
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Figure 4. Training plot of various RL models. The y-axis displays the
average reward from evaluation samples.

Appendix F in the supplementary material [11]. In addition to using
classical RecSys metrics, like MAP@10, MRR@10, and personaliza-
tion, we introduce two additional metrics to assess the alignment of
the agent’s recommendations with user preferences (See Appendix
F in [11] for detail metric definitions). Each user in the training
dataset has both preferred and disliked movie genres. Based on these
data, the trained RL model generates a list of top-5 movie recom-
mendations for each user: percentage liked genres and percentage
disliked genres . The recommendations are classified into three cat-
egories: liked (movies matching preferred genres and excluding dis-
liked ones), disliked (movies with disliked genres and without pre-
ferred ones), and neutral (remaining recommendations).

Our evaluation indicates that the A2C algorithm demonstrates the
best overall performance in our case study (cf. Table 4). Although the
PPO algorithm registers a higher personalization score, indicative of
its ability to tailor recommendations, it is less effective than A2C
in aligning recommendations with user interests, as reflected in the
percentage of liked genres metric. This suggests that A2C is more
adept at discerning and catering to user preferences.

5 Future Work

One promising direction is to fine-tune the LLM with human feed-
back to improve the simulated user behavior. This can be achieved
using datasets like MovieLens, which provide a natural reward func-
tion for RL methods. For instance, the negative squared difference
between the LLM rating and the actual rating can be used as a re-
ward. Currently, the setup considers only static users. Future work
could model user evolution over time to reflect changing interests,
making synthetic users more realistic and dynamic. Additionally, ex-
ploring ways to enrich the feature space of the LLM could be valu-
able. By incorporating complex features such as item seasonality and
user context, RL models could better capture user behavior, leading
to more accurate simulations.

6 Conclusion

Our research offers a possible avenue to address the persistent chal-
lenge of training recommender systems in the absence of real user
interactions. Conventional approaches that depend on user-item in-
teraction histories or synthetic data have often failed to replicate
real-world usage scenarios accurately. By introducing SUBER, a
novel RL environment designed specifically for recommender sys-
tem training, and incorporating recent advances in LLMs to emulate
human behavior in the training environment, we have proposed a po-
tential solution to this long-standing issue. Our results, as demon-
strated through a series of ablation studies, experiments, and human
evaluation, underscore the efficacy of our approach. We believe that
this work marks a step toward achieving more realistic and practical
training environments for recommender systems, even when direct
user interactions are unavailable.
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