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Abstract. In partial label learning, each training sample corre-
sponds to a set of candidate labels. The ground-truth label, hid-
den within this set, cannot be directly obtained during the train-
ing phase. The key to solving the partial label learning problem is
to obtain ground-truth labels through label disambiguation. Exist-
ing works often rely on the label averaging assumption and do not
fully investigate the class imbalance. Tail ground-truth labels are of-
ten overwhelmed by head pseudo-labels. The incorrectly identified
labels could have contagiously negative impacts on the final predic-
tions. In this paper, we propose a cost-guided retraining strategy,
which achieves guidance and correction of disambiguation results,
and provides instance-based class imbalance concerns for candidate
labels. This approach significantly enhances the algorithm’s ability
to handle class imbalance problems. The superiority of our method
is demonstrated using 8 real-world datasets and 5 evaluation metrics.
Code is available at https://github.com/DerrickZzyR/PL-CGR

1 Introduction

In supervised learning, each training sample is associated with an
exact label. In real-world tasks, the high-quality labels are expensive
and time-consuming. To solve the problem, Partial Label Learning
(PLL) [42, 29] has been proposed. In PLL, an instance is associated
with a set of candidate labels, among which only one is the ground-
truth label. Specifically, X = R

d is defined as the feature space with
dimension d, and Y = {0, 1}q represents the label space with q
labels. The PLL dataset is defined as D = {(xi, Yi) |1 ≤ i ≤ m},
where xi ∈ X is the i-th instance, Yi ⊆ Y is the corresponding set
of candidate labels and m is the number of training instances. The
PLL aims to learn a multi-class classifier f : X → Y that accurately
identifies ground-truth labels based on the data set D.

Label disambiguation, a crucial method for addressing PLL,
mainly includes average disambiguation strategy and identification
disambiguation strategy. Existing algorithms assume the same num-
ber of different labels. However real-world data often suffers from
class imbalance. Self-guided retraining has achieved good results
as the identification disambiguation strategy. As shown in Figure 1
(a), SURE [8] is based on label mutual exclusion and achieves label
disambiguation by continuously increasing the algorithm’s attention
to potentially ground-truth labels. However, due to class imbalance,
head labels naturally receive more attention, even if these labels may
be incorrect. When the tail samples are similar to the head samples
and have the same common candidate labels, the tail samples are eas-
ily misclassified. As shown in Figure 1 (b) and (c). The proportion
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of head samples predicted by SURE is higher than real and does not
perform as well on the tail labels.

The issue of multi-class imbalance [39, 32] has been extensively
explored. In the data-level, existing approaches employ under-/over-
sampling techniques [6] to modify the Imbalance Ratio (IR) [16].
At the algorithmic-level, cost sensitivity [33, 2] is embedded into the
classification model. By minimum cost loss, this approach effectively
reduces label misclassification and improves algorithm performance.
Existing approaches to multi-class imbalance problems rely on accu-
rate label information. It makes them unsuitable for PLL.

To address the aforementioned challenges, a novel approach
named PL-CGR, i.e. Partial Label Learning via Cost-Guided
Retraining is proposed. Specifically, we construct prototype sam-
ples by intra- and inter-class scatter, which serve as label prior in-
formation for establishing label thresholds and label attention mech-
anisms. Label thresholds are used to guide and correct label disam-
biguation. Additionally, label thresholds and label attention mech-
anisms achieve instance-based class imbalance attention. This ap-
proach aims to mitigate the negative impact of class imbalance lead-
ing to incorrect label identification on the final prediction. Our main
contributions are delineated across three domains: 1) We propose a
label disambiguation correction based on label thresholds to reduce
situations where the ground-truth label is overwhelmed by the head
label; 2) We improve the performance of the algorithm in solving
the class imbalance problem by utilizing label thresholds and label
attention mechanisms to provide instance-based class imbalance at-
tention; 3) We propose a cost-sensitive strategy for PLL that aims to
solve the class imbalance problems in self-guided retraining strate-
gies. Extensive experiments validate the effectiveness of the strategy.

2 Related work

Partial label learning is one of the important weakly supervised learn-
ing frameworks [28, 34]. In PLL, each instance is associated with a
set of candidate labels, among which only one is valid. PLL is al-
ready a challenge because the algorithms do not have direct access
to ground-truth label during the training phase. To overcome this,
the key approach is label disambiguation, which includes average-
based disambiguation [11, 4], identification-based disambiguation
[30, 24, 23]. In average-based disambiguation, each candidate la-
bel is treated equally by the algorithm, and model predictions are
generated by averaging the outcomes. This strategy is intuitive and
straightforward, but pseudo-labels easily overshadow the ground-
truth label. In Identification-based disambiguation, the ground-truth
label, considered as the latent variable, is identified by iterative opti-
mization.
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(b) Each label prior estimation on Lost (c) Each label classification accuracy on Lost(a) SURE and PL-CGR self-guided strategy

Figure 1. (a) Differences between SURE and PL-CGR self-guided strategies. PL-CGR gives different attention to candidate labels rather than focusing only
on the label with the highest confidence. Labels 1, 2, and 3 correspond to the head, mid-quantity, and tail labels, respectively. (b) The real/estimated label

distribution of the Lost dataset. (c) Comparison of the performance of SURE and PL-CGR on different labels of the Lost dataset.

The multi-class imbalance problem has been well studied, and
some methods have been applied to address class imbalance in PLL.
Wang et al. proposed three resampling approaches to mitigate the ef-
fects of the class imbalance problem [32]. The method mitigates the
effects of class imbalance at the data level, but it does not deal well
with extreme class imbalance (IR ≥ 50). Wang et al. proposed So-
lar [31] to improve the performance of the algorithm on tail labels
by constraining the head labels. However, over-ignoring head labels
may lead to degradation of algorithm performance. Cost-sensitive
learning is one of the important algorithms for solving class im-
balance by minimizing the cost of classification errors rather than
minimizing the number of errors [27]. Cost-sensitive support vec-
tor machines introduce cost-sensitive coefficients to improve the
performance of the algorithm on tail label samples [9]. Zhou et
al. embedded the cost of misclassification into the logistic regres-
sion model and proposed a cost-sensitive logistic regression [43] for
multi-classification, which was successfully applied to the field of
face recognition.

In this paper, we employ cost sensitivity to solve class imbalance,
which is different from traditional cost-sensitive methods. In PLL,
accurate label information cannot be obtained, and the misclassifica-
tion cannot be accurately known during the training phase. Addition-
ally, the instance is considered as the positive sample for candidate
labels. To the best of our knowledge, our work is the first to employ
a cost-sensitive strategy in addressing class imbalance within a self-
guided retraining framework.

3 The proposed approach

Following the notations in the introduction, X =
[x1, x2, · · · , xm]� ∈ R

m×d is denoted as the instance matrix
and Y = [y1, y2, · · · , ym]� ∈ {0, 1}m×q is denoted as the partial
label matrix, where yij = 1 indicates that the j-th label is a
candidate label for the instance xi, while yij = 0 implies the j-th
label is a non-candidate label. P ∈ R

m×d is the prediction label
confidence matrix. cs and A are the cost-sensitive coefficients and
label attention coefficients.

3.1 Prototype-based cost coefficient construction

Existing methods for constructing cost coefficients rely on accurate
label information. However, the ground-truth label is hidden in the

candidate labels, which makes it more challenging. Inspired by [5,
40, 44], firstly each class is roughly divided into positive set P and
negative set N . For the Yj , the positive and negative sample sets are
divided as follows:

Pj =
{
xi| (xi, pj) ∈ D, pj ≥ yj

}
Nj =

{
xi| (xi, pj) ∈ D, pj < yj

}
.

(1)

where yj is the average confidence threshold for Yj , i.e. yj =
1/ |Y·j | × ∑m

i=1 pij . The head-label instances are typically richer
in feature information and therefore tend to be associated with
higher label confidence. In contrast, tail-label instances generally
have lower label confidence. The uniform confidence threshold can
incorrectly classify tail-label positive instances as negative. This ap-
proach helps to generate prototype instances more fairly and effec-
tively. Based on the set of positive instances, we propose a prototype
instances generation method that adapts to class imbalance. Specif-
ically, we divided each label positive sample set into multiple sub-
groups. The number of subgroups for the Yj is shown below:

kj = �r × |Pj |� , (1 ≤ j ≤ q) . (2)

where r is a hyperparameter controlling the number of subgroups
[5]. Since outlier instances are not representative, we construct proto-
type instances using k-means clustering [38, 21] and the cluster cen-
ters are denoted as prototype instances I = {I1, I2, · · · , Iq}, where

Ij =
(
i1j , i

2
j , · · · , ikj

j

)
∈ R

kj ,d (1 ≤ j ≤ q) is denoted the set of
prototype instances for Yj . Clustering, as an unsupervised learning
algorithm, is commonly used to discover natural groups. This method
has the following three advantages: 1) The prototype instances in-
herit the attributes of the sample space distribution; 2) Multiple pro-
totype instances can ensure the reliability of positive instances, while
more accurately reflecting the data distribution and facilitating the
construction of reliable cost coefficients; 3) Prototype instances are
considered as the prior knowledge, which can reduce the algorithm’s
dependence on a large number of precise labels. The cost of xi being
identified as Yj is the mean Euclidean distance between xi and Ij . It
can be expressed as follows:

csij =

⎧⎪⎨⎪⎩
∑kj

n=1

∑
x∈Pj

∥∥xi − inj
∥∥2

2

|Pj | , (i 	= j, 1 ≤ i, j ≤ q)

0, (i = j, 1 ≤ i, j ≤ q) ,

(3)
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The higher the cs value, the lower the probability that xi belongs
to Yj . Eq. (3) aims to construct cost coefficients that combine intra-
class scatter and inter-class scatter. To unify the cost coefficients
with label confidence sizes and address empty labels in real-world
tasks, we introduce the slack variable ε. Inspired by the max-min
normalization, the cost-sensitive coefficients are normalized and are
expressed as follows:

csij =
csij + ε

max (csi· + ε ∗ q) . (4)

In response to the inability to refine the misclassification, inspired
by [35], we transform q classification into q binary classification.
The model predictions are used to determine whether the sample is
positive. The specific transformation is shown in Figure 2 (a). The
j-th row of the cost matrix represents the cost c01 of the instance of
Yj being identified as another label, also known as a false negative
(FN). The j-th column of the cost matrix represents the cost c10 of
other label instances being identified as Yj , also called false positive
(FP). The cost matrix for the Yj is as follows:

Table 1. Cost matrix corresponding to Yj in partial label learning.

Actual positive Actual negative

Predicted positive cj11 = 0 cj01 =
∑q

j=1 cs·j
Predicted negative cj10 =

∑q
i=1 csi· cj00 = 0

The instance xi will be identified as a positive instance of Yj only
when the following conditions are satisfied [15]:

p
(
Y +
j |xi

)·cj11+p
(
Y −
j |xi

)·cj01 < p
(
Y +
j |xi

)·cj10+p
(
Y −
j |xi

)·cj00,
(5)

Here, p
(
Y +
j |xi

)
= fj (xi) is defined as the probability that xi be-

longs to Yj . The function fj (xi) is denoted by the label confidence
of the model in assigning Yj to xi. p

(
Y −
j |xi

)
=

∑
z �=jfz (xi) is

defined as the probability that xi does not belong to Yj . Given that∑
f(xi) = p

(
Y +
j |xi

)
+ p

(
Y −
j |xi

)
= 1, Eq. (5) can be reformu-

lated as follows:

p
(
Y +
j |xi

) · cj10 > p
(
Y −
j |xi

) · cj01
p
(
Y +
j |xi

)
> p∗j =

cj01
cj10 + cj01

.
(6)

P ∗ =
[
p∗1, p

∗
2, · · · , p∗q

] ∈ R
q is defined as the label threshold.

The label threshold determines the direction of the label update. The
label attention matrix, calculated as aij = 1 − csij , is calculated
from the cost matrix and determines the label update step size. The
smaller the csij , the more attention the algorithm pays to Yj when
misclassified. Similarly to the construction of the cost coefficient, the
update step size for Yj is specified as follows:

A+
j =

∑
z �=j ajz∑

z �=j ajz +
∑

z �=j azj
, iffj (xi) < p∗j , yj ∈ Yi

A−
j =

∑
z �=j azj∑

z �=j ajz +
∑

z �=j azj
, iffz (xi) < p∗j , yj /∈ Yi.

(7)

A+
j is defined as the label attention received in the case of a false

negative case, and A−
j is defined as the label attention received in the

case of a false positive case.
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Figure 2. (a) Showing the construction of the cost matrix for Yj . (b)
Showing the construction of the label attention coefficient for Yj . (c)
PL-CGR transductive accuracy of each tail label on Lost. (d) SURE

transductive accuracy of each tail label on Lost.

3.2 Cost-guided strategy

Inspired by [25, 36], the partial label cost-guided loss is specified as
follows:

R
(
xi, p

∗
j ,Aj

)
=

{
A+

j max
{
0, fj (xi)− p∗j

}
, yj ∈ Yi

A−
j max

{
0, p∗j − fj (xi)

}
, yj /∈ Yi,

(8)

In PLL, the non-candidate label confidence is 0. Each instance is
considered as the positive instance for candidate labels. We set the
parameter λ to refine the algorithm’s attention to labels, the loss func-
tion (8) can be transformed into:

R
(
xi, p

∗
j ,Aj

)
= λ× (A+

j � Yi �
(
pi − p∗j

))
= λ× ηi.

(9)

where ηi = A+ � Yi � (pi − p∗) ∈ R
q . � is the Hadamard

product operation. Eq. (9) implements instance-based class imbal-
ance attention via label thresholds and label attention coefficients.
When the label confidence exceeds the label threshold, the algorithm
distributes more attention to other labels, thus avoiding misidentifica-
tion and reducing the problem of tail labels being ignored. As shown
in Figure 2 (c) and (d), compared with the baseline method, PL-CGR
can pay more attention to the tail labels and mitigate the effect of
class imbalance on the algorithm.

3.3 PL-CGR

In this subsection, we introduce PL-CGR in detail. The specific form
is as follows:

min

m∑
i=1

(� (xi, pi, f)−R (pi, p
∗,A)) + μΩ (f) (10)

where � indicates label confidence loss, R denotes cost-guided
loss, and Ω avoids model overfitting. μ is a hyperparameter that ad-
justs the weight of two PL-CGR terms. We use the squared loss to fit
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Table 2. Details of the Real-world data sets.

Dataset #instance #features #label #Avg-Las #IR Data Domain

FG-NET 1002 262 78 7.48 47.00 Facial age estimation
Lost 1122 108 16 2.23 11.33 Automatic face naming

Mirflicker 2780 1536 14 2.76 392.00 Web image classification
MSRCv2 1758 48 23 3.16 85.00 Object classification

Soccer Player 17472 279 171 2.09 954.33 Automatic face naming
Yahoo! News 22991 163 219 1.91 308.79 Automatic face naming

Italian 21878 519 90 1.6 3544.00 POS Tagging
Malagasy 5303 384 44 8.35 278.50 POS Tagging

the label confidence, i.e. � (xi, pi, f) =
∥∥xiW + b� − pi

∥∥2

2
, where

W and b are classifier parameters. To control the model complexity,
we use the squared Frobenius norm, i.e. Ω (f) = ‖W‖22. To sum up,
the optimisation problem (10) can be transformed into:

min
m∑
i=1

(∥∥∥xiW + b� − pi

∥∥∥2

2
− ληi � pi

)
+ μ ‖W‖2F

s.t. 0 ≤ pij ≤ Yij (1 ≤ i ≤ m, 1 ≤ j ≤ q) ,

q∑
j=1

pij = 1.

(11)

The first constraint term guarantees that the ground-truth label
must be in the candidate label set, while the non-candidate label con-
fidence must be 0. The second constraint term normalizes the candi-
date label confidence. It is convenient to distinguish the probability
of different candidate labels as ground-truth labels, i.e. selecting the
label with the highest probability.

4 Optimization

In the previous section, we proposed the problem (11) with the con-
vex property [12]. We solve this optimization problem by the al-
ternating method. Specifically, the classifier parameters are updated
with the candidate label confidence fixed, and the candidate label
confidence is updated with the classifier fixed.

4.1 Updating classifier parameters

Fixing the label confidence, problem (11) can be expressed as:

min
W,b

∥∥∥XW + 1b� − P
∥∥∥2

2
+ μ ‖W‖2F , (12)

where 1 ∈ R
m is the vector with all components 1. Closed solu-

tions can be easily obtained by setting the gradients of W and b to
zero:

W =

(
X�X + μI − X�11�X

m

)−1 (
X�P − X�11�P

m

)
b =

1

m

(
P�1−W�X�1

)
,

(13)
To handle the nonlinear case, the linear learning model can be

easily extended to a kernel-based nonlinear model. We achieve this
by using the feature mapping φ (·) : R

d → R
H to map the orig-

inal feature space to some higher-dimensional Hilbert space. Ac-
cording to the representation theorem, W can be represented as a
linear combination of the input variables, i.e. W = φ (X)� A,
where the combination weights of the stored instances in A ∈

R
m×q . Hence φ (X)W = KA where K ∈ φ (X)φ (X)� is

defined as kernel matrix, with each element denotes by kij =
φ (xi)

� φ (xi) = k (xi, xj). In PL-CGR, we use Gaussian kernel
function k (xi, xj) = exp

(−‖xi − xj‖22 /
(
2σ2

))
, where σ is set

to the average pairwise distance among the instances. By kernel ex-
tension, the optimisation problem (13) can be expressed as follows:

min
∥∥∥KA+ 1b� − P

∥∥∥2

2
+ μtr

(
A�KA

)
, (14)

where tr (·) is the trace operator. By setting the gradient of A and
b to 0, the closed-form solutions are expressed as follows:

A =

(
K + μI − 11�K

m

)−1 (
P − 11�P

m

)
b =

1

m

(
P�1−A�K�1

)
.

(15)

4.2 Label confidence updates

With A and b fixed, the model prediction label confidence Q =
[q1, q2, . . . , qm] ∈ R

m×q is denoted as Q = KA+ 1�b. The prob-
lem (11) can be expressed as:

min
m∑
i=1

(‖pi − qi‖22 − ληi � pi
)

s.t.0 ≤ pij ≤ yij (1 ≤ i ≤ m, 1 ≤ j ≤ q) ,

q∑
j=1

pij = 1,

(16)

Problem (16) can be expressed in detail as

OP (P ) =
m∑
i=1

q∑
j=1

(
(pij − qij)

2 − ληijpij
)

=
m∑
i=1

q∑
j=1

((
p2ij + q2ij − 2pij × qij

)− ληijpij
)

=
m∑
i=1

q∑
j=1

(
p2ij − 2pij × qij − (2qij − ληijpij)

)
+ C,

(17)
where C =

∑m
i=1

∑q
j=1 q

2
ij is a constant. To reduce the com-

plexity of the algorithm, let q̃ = vec (q) ∈ R
mq×d, where vec (·)

is the vectorisation operator. Likewise, p̃ = vec (P ) ∈ [0, 1]mq×d,
ỹ = vec (Y ) ∈ {0, 1}mq×d and η̃ = vec (η) ∈ [0, 1]mq×d. Then
minimizing function (17) is equivalent to solving the following func-
tion:

OP (p̃) =
1

2
p̃�Hp̃− (2q̃ − λη̃) p̃, (18)
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Table 3. Accuracy (mean±std) and Precision (mean±std) of each comparing algorithm on the real-world partial label data sets. Note: •/◦ indicates if
PL-CGR’s performance on each data set is statistically superior or inferior to the comparative algorithm (pairwise Wilcoxon Signed-Rank Test at 0.05

significance level).

Accuracy

PL-CGR PLCL PL-AGGD SURE IPAL LALO PL-KNN

Lost 0.813±0.041 0.775±0.049• 0.778±0.053• 0.785±0.057 0.720±0.027• 0.750±0.046• 0.595±0.036•
MSRCv2 0.590±0.052 0.503±0.054• 0.502±0.057• 0.480±0.058• 0.527±0.059• 0.481±0.062• 0.449±0.047•
FG-NET 0.091±0.014 0.083±0.014 0.088±0.027 0.079±0.018• 0.067±0.011• 0.080±0.012• 0.057±0.017•
Mirflicker 0.670±0.022 0.658±0.024• 0.669±0.025 0.669±0.025 0.533±0.024• 0.664±0.020• 0.549±0.022•
Malagasy 0.720±0.026 0.652±0.027• 0.655±0.040• 0.645±0.049• 0.633±0.020• 0.659±0.032• 0.610±0.031•
Soccer Player 0.567±0.013 0.553±0.013• 0.544±0.012• 0.534±0.011• 0.548±0.011• 0.540±0.010• 0.518±0.012•
Yahoo! News 0.667±0.006 0.653±0.008• 0.652±0.008• 0.635±0.010• 0.667±0.008 0.639±0.011• 0.587±0.011•
Italian 0.671±0.008 0.680±0.012 0.681±0.011 0.636±0.011• 0.582±0.013• 0.674±0.010 0.474±0.008•

Precision

PL-CGR PLCL PL-AGGD SURE IPAL LALO PL-KNN

Lost 0.663±0.058 0.566±0.078• 0.555±0.071• 0.535±0.073• 0.560±0.064• 0.520±0.078• 0.477±0.092•
MSRCv2 0.422±0.063 0.349±0.054• 0.350±0.060• 0.318±0.098• 0.428±0.058 0.302±0.084• 0.320±0.067•
FG-NET 0.026±0.014 0.025±0.015• 0.025±0.013• 0.020±0.007• 0.033±0.010 0.023±0.013 0.021±0.014•
Mirflicker 0.506±0.016 0.462±0.026• 0.457±0.017• 0.458±0.015• 0.451±0.019• 0.467±0.029• 0.548±0.023◦
Malagasy 0.332±0.018 0.299±0.029• 0.278±0.023• 0.262±0.020• 0.298±0.018• 0.265±0.020• 0.242±0.015•
Soccer Player 0.410±0.039 0.361±0.025• 0.318±0.011• 0.267±0.023• 0.370±0.031• 0.004±0.001• 0.217±0.023•
Yahoo! News 0.659±0.024 0.635±0.017• 0.606±0.016• 0.573±0.022• 0.665±0.024 0.598±0.016• 0.549±0.024•
Italian 0.272±0.011 0.258±0.019• 0.269±0.017 0.267±0.009• 0.239±0.010• 0.282±0.015◦ 0.209±0.010•

where H ∈ R
mq×mq is defined as follows:

H =

⎡⎢⎢⎢⎣
T 0q×q · · · 0q×q

0q×q T · · · 0q×q

...
...

. . .
...

0q×q 0q×q · · · T

⎤⎥⎥⎥⎦ , (19)

where T ∈ R
q×q is denoted the unit matrix with all 2 diagonal

elements. 0q×q is denoted the all-zero matrix. The problem (16) is
equivalent to the following equation:

min
1

2
p̃Hp̃− (2q̃ − λη̃) p̃

s.t.0mq ≤ p̃ ≤ ỹ,

mq∑
j=1,j/m=i

p̃j = 1 (∀0 ≤ i ≤ m− 1) .
(20)

Obviously, the optimization problem (20) is a standard quadratic
programming problem that can be solved by any off-the-shelf QP
toolbox. After the optimization process is complete, the ground-truth
labels for unknown instances are determined via the following equa-
tion:

ỹ = argmax
j

m∑
i=1

aijk (x
∗, xi) + bj . (21)

For label initialization, we initially train the mode based on the
partial label matrix. Labels with the highest confidence within the
candidate set are considered potential ground-truth labels and are as-
signed an additional attention weight of 0.2. The model prediction
confidence is considered as the result of label initialization. Details
can be found in [8]. The maximum number of iterations is 30.

5 Experiments

In this section, we evaluate PL-CGR on 8 real-world partial label
datasets with 5 evaluation metrics on a total of 40 tasks. Firstly, we

introduce the experimental setup. Secondly, we report detailed ex-
perimental results and statistical performance comparisons.

5.1 Experimental setup

Datasets. The 8 real-world partial label datasets1 include FG-NET
[26] for facial age estimation, Lost [3], Soccer Player [37] and Ya-
hoo! News [13] for automatic face naming, MSRCv2 [22] for object
classification, Mirflickr [17] for web image classification, Italian [20]
and Malagasy [10] for POS tagging. In the automatic face naming
task, faces cropped from images are treated as instances, with names
extracted from associated descriptions or subtitles as corresponding
candidate labels. In the object classification task, image segmentation
is considered as instances and other objects appearing in the same
image are the corresponding candidate labels. In the task of facial
age estimation, each face is an instance, with ages annotated by ten
crowdsourced labelers and the ground-truth age as candidate labels.
For web image classification, images are represented as instances,
and labels extracted from web pages are considered as candidate la-
bels. For the POS label task, each word with contextual information
can be considered as an instance and all possible POS labels are can-
didate labels. Table 2 records the details of each real-world partial
label dataset, including the average number of candidate labels (Avg-
Las), the imbalance ratio (IR), and other metrics. In experiments, we
keep empty labels and extreme imbalance labels. All algorithms are
compared under the condition that the training sets and test sets are
randomly divided.
Comparing Methods. To prove the effectiveness of PL-CGR,
we compared it with 6 partial label learning algorithms. Each com-
parison algorithm is set up according to the suggested parameters
in the literature. The compared state-of-the-art PLL algorithms in-
clude: PLCL [19]: A partial label learning algorithm based on com-
plementary classification. (Suggest configuration: k = 10, λ = 0.03
γ, μ, α, β ∈ {0.001, 0.01, 0.1, 0.2, 0.5, 1, 1.5, 2, 4} ); PL-AGGD

1 These datasets are publicly available at: https://palm.seu.edu.cn/zhangml
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Table 4. Recall (mean±std) and F-measure (mean±std) of each comparing algorithm on the real-world partial label data sets. Note: •/◦ indicates if PL-CGR’s
performance on each data set is statistically superior or inferior to the comparative algorithm (pairwise Wilcoxon Signed-Rank Test at 0.05 significance level).

Recall

PL-CGR PLCL PL-AGGD SURE IPAL LALO PL-KNN

Lost 0.617±0.063 0.507±0.050• 0.504±0.053• 0.510±0.064• 0.520±0.056• 0.477±0.040• 0.393±0.060•
MSRCv2 0.407±0.051 0.325±0.045• 0.322±0.043• 0.290±0.046• 0.388±0.059 0.303±0.053• 0.311±0.046•
FG-NET 0.035±0.014 0.030±0.016 0.033±0.017 0.031±0.012• 0.027±0.011• 0.031±0.013• 0.021±0.010•
Mirflicker 0.543±0.018 0.452±0.024• 0.453±0.025• 0.444±0.019• 0.454±0.016• 0.451±0.019• 0.414±0.020•
Malagasy 0.329±0.019 0.257±0.017• 0.240±0.019• 0.237±0.022• 0.301±0.011• 0.235±0.021• 0.241±0.012•
Soccer Player 0.167±0.013 0.115±0.010• 0.098±0.007• 0.077±0.007• 0.152±0.010• 0.005±0.001• 0.070±0.009•
Yahoo! News 0.493±0.021 0.456±0.014• 0.429±0.016• 0.390±0.022• 0.540±0.026 0.419±0.020• 0.472±0.026•
Italian 0.263±0.012 0.240±0.015• 0.230±0.010• 0.234±0.011• 0.240±0.010• 0.236±0.010• 0.159±0.010•

F-measure

PL-CGR PLCL PL-AGGD SURE IPAL LALO PL-KNN

Lost 0.619±0.054 0.512±0.059• 0.507±0.061• 0.504±0.066• 0.521±0.056• 0.475±0.051• 0.406±0.066•
MSRCv2 0.379±0.056 0.300±0.050• 0.296±0.053• 0.268±0.062• 0.372±0.054 0.271±0.060• 0.276±0.050•
FG-NET 0.023±0.008 0.023±0.013 0.024±0.012 0.019±0.006• 0.026±0.008 0.022±0.011• 0.018±0.009•
Mirflicker 0.511±0.015 0.439±0.017• 0.442±0.018• 0.437±0.015• 0.436±0.016• 0.441±0.015• 0.404±0.017•
Malagasy 0.318±0.016 0.265±0.020• 0.244±0.021• 0.240±0.022• 0.290±0.014• 0.239±0.021• 0.231±0.014•
Soccer Player 0.216±0.016 0.159±0.013• 0.137±0.006• 0.109±0.009• 0.197±0.015 0.004±0.001• 0.070±0.009•
Yahoo! News 0.541±0.021 0.508±0.014• 0.408±0.016• 0.442±0.022• 0.570±0.022◦ 0.471±0.019• 0.479±0.026•
Italian 0.246±0.009 0.233±0.013• 0.229±0.010• 0.231±0.009• 0.221±0.008• 0.240±0.009• 0.170±0.009•

[30]: A Graph-Based disambiguation method by using adaptive
graph construction to generate label confidence for label disambigua-
tion. (Suggest configuration: k = 10. T = 20, λ = 1, μ = 1, γ = 0.05);
SURE [8]: Self-guided retraining baseline. (Suggest configuration:
λ, β ∈ {0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 1}); LALO [7]: A disam-
biguation method by utilizing the latent label distribution for label
identification (Suggest configuration: k = 10, λ = 0.05, μ = 0.005);
IPAL [41]: A Graph-Based disambiguation method by considering
the instance similarity. (Suggest configuration: α=0.95, k = 10, T
= 100); PL-KNN [18]: K-nearest neighbour PLL method based on
average disambiguation strategy. (Suggest configuration: k = 10).

For each dataset, the validity of the algorithm is checked by a ten-
fold cross-check and the average prediction accuracy and standard
deviation are recorded. Furthermore, to determine whether PL-CGR
is superior/inferior (win/loss) to comparing algorithms in all exper-
iments, we used a Wilcoxon Signed-Rank test at 0.05 significance
level for two independent samples.

5.2 Experimental results

The Classification accuracy. The performance of PL-CGR and
the comparison methods are evaluated on eight real datasets, the de-
tails of which are shown in Tables 3. The average number of can-
didate labels in FG-NET is quite large, which could cause the ex-
tremely low classification accuracy of all algorithms. The following
conclusions can be obtained from the performance indicators:

• When compared to the self-guided retraining baseline SURE, PL-
CGR significantly outperforms the comparison algorithm in 75%
of the cases. And PL-CGR outperforms SURE in all real-world
tasks in terms of accuracy.

• When compared to other approaches, PL-CGR achieved better
performance than PLCL, PL-AGGD, IPAL, LALO and PL-KNN
in 75%, 63%, 88%, 88% and 100% of the cases respectively.

• In ten-fold cross-validation experiments on eight real-world tasks,
PL-CGR achieved the best accuracy on seven datasets. Perfor-
mance on the Italian dataset was slightly lower than PL-AGGD.

Performance results on the Lost, MSRCv2 and Malagasy datasets
are impressive.

The class imbalance indicator. To more accurately assess the
performance of PL-CGR in addressing class imbalance issues, we
employed 4 class imbalance evaluation metrics [32], including Aver-
age Precision, Average Recall, Average F-measure, and MAUC, for
algorithm validation.

• Average Precision: AvgP = 1
q

∑q
j=1 Pj = 1

q

∑q
j=1

cjj∑q
k=1

ckj

• Average Recall: AvgR = 1
q

∑q
j=1 Rj = 1

q

∑q
j=1

cjj

nj

• Average F-measure: AvgF = 1
q

∑q
j=1 Fj = 1

q

∑q
j=1

2Pj×Rj

Pj+Rj

• MAUC: MAUC = 2
(q(q−1))

∑
1≤j<k≤q

Ajk+Akj

2

Here, nj denotes the number of instances belonging to yj . C =
[cjk] ∈ R

q×q is the count matrix, where cjk represents the number
of instances misclassified as yj by the classifier , but whose ground-
truth labels are yk. The main diagonal element of C shows the num-
ber of correctly classified for each label. Ajk is defined as the area
under the ROC curve [14, 1] between yj and yk calculated from F·j .
Table 3-5 show the results of ten-fold cross-validation for each algo-
rithm across 4 evaluation metrics and 8 datasets. Table 6 shows the
counts of wins/ties/losses for each partial label learning algorithm
under 32 statistical tests. The excellence of the PL-CGR algorithm
can be shown in the following three points:

• When compared to the self-guided retraining baseline SURE, PL-
CGR significantly outperforms the comparison algorithm in 97%
of the cases.

• When compared to other approaches, PL-CGR achieved better
performance than PLCL, PL-AGGD, IPAL, LALO and PL-KNN
in 91%, 84%, 53%, 91% and 91% of the cases respectively.

• On the Lost dataset, PL-CGR outperforms the comparison algo-
rithm in all cases. On the Malagasy, Mirflickr and Soccer Player
datasets, PL-CGR outperforms the comparison algorithms in 96%
of the cases.
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Table 5. MAUC (mean±std) of each comparing algorithm on the real-world partial label data sets. Note: •/◦ indicates if PL-CGR’s performance on each data
set is statistically superior or inferior to the comparative algorithm (pairwise Wilcoxon Signed-Rank Test at 0.05 significance level).

MAUC

PL-CGR PLCL PL-AGGD SURE IPAL LALO PL-KNN

Lost 0.609±0.083 0.442±0.088• 0.425±0.082• 0.409±0.090• 0.558±0.140• 0.407±0.079• 0.443±0.098•
MSRCv2 0.515±0.067 0.374±0.075• 0.352±0.059• 0.321±0.080• 0.669±0.064◦ 0.328±0.076• 0.440±0.064•
FG-NET 0.088±0.015 0.078±0.008 0.079±0.010 0.057±0.010 0.205±0.032 0.087±0.011 0.124±0.022
Mirflicker 0.721±0.001 0.434±0.071• 0.393±0.001• 0.414±0.042• 0.725±0.001◦ 0.431±0.051• 0.587±0.001•
Malagasy 0.222±0.014 0.186±0.022• 0.172±0.021• 0.145±0.021• 0.246±0.013 0.155±0.015• 0.179±0.019•
Soccer Player 0.343±0.042 0.204±0.017• 0.160±0.015• 0.122±0.014• 0.373±0.043 0.087±0.003• 0.128±0.015•
Yahoo! News 0.500±0.032 0.451±0.020• 0.408±0.019• 0.360±0.027• 0.621±0.036◦ 0.396±0.021• 0.597±0.043◦
Italian 0.246±0.016 0.198±0.024• 0.187±0.020• 0.215±0.019• 0.389±0.024◦ 0.226±0.015• 0.172±0.011•

(a) Vary         on Accuracy/� � (b) Vary         on Precision/� � (c) Vary         on Recall/� � (e) Vary         on MAUC/� �(d) Vary         on F-measure/� �

Figure 3. Experiments on parameter analysis in the PL-CGR on Lost. (a) Experiment on parameter analysis of λ/μ on Accuracy; (b) Experiment on
parameter analysis of λ/μ on Precision; (c) Experiment on parameter analysis of λ/μ on Recall; (d) Experiment on parameter analysis of λ/μ on F-measure;

(e) Experiment on parameter analysis of λ/μ on MAUC.

Table 6. Win/tie/loss Counts of PL-CGR’s classification performance
against each compared method on controlled Real-word data sets (pairwise

Wilcoxon Signed-Rank Test at 0.05 significance level).

PL-CGR against
PLCL PL-AGGD SURE IPAL LALO PL-KNN

Precision 8/0/0 6/2/0 8/0/0 5/3/0 6/1/1 7/0/1
Recall 7/1/0 7/1/0 8/0 /0 6/2/0 8/0/0 8/0/0
f-measure 7/1/0 7/1/0 8/0/0 5/2/1 8/0/0 8/0/0
MAUC 7/1/0 7/1/0 7/1/0 1/2/5 7/1/0 6/1/1
sum 29/3/0 27/5/0 31/1/0 17/9/6 29/2/1 29/1/2

The Soccer Player dataset has only one head label, so the algo-
rithm performs poorly on this dataset with the class imbalance met-
rics.

5.3 Further analysis

The two PL-CGR parameters λ and μ are also worth investigat-
ing. The performance of PL-CGR on the Lost dataset, across var-
ious evaluation metrics and parameter configurations, is shown in
Figure 3. The algorithm performs better under Accuracy, Preci-
sion, and F-measure evaluation metrics when λ ∈ {0.4, 0.5},μ ∈
{0.04, 0.05, 0.06}. The algorithm performs best in Recall perfor-
mance when λ ∈ {0.3, 0.4}. The algorithm performs sub-optimally
on MAUC when λ = 0, 4 and μ = 0.5. Therefore, for PL-CGR,
we set λ ∈ {0.4, 0.5} and μ ∈ {0.04, 0.05, 0.06}. And we demon-
strate PL-CGR’s convergence by analyzing changes in the optimiza-
tion variable P between iterations (�P =

∥∥P t+1 − P t
∥∥2

2
). Figure 4

(a) and (d) present the convergence curves for the Lost and MSRCv2
datasets, respectively. It illustrates the algorithm’s convergence.

(a) Convergence on Lost (b) Convergence on MSRCv2

Figure 4. (a) Convergence analysis on Lost. (b) Convergence analysis on
MSRCv2.

6 Conclusion

In this paper, we propose a novel cost-guided method PL-CGR to
solve the class imbalance in the self-guided retraining strategy. Un-
like previous work, it guides label disambiguation by label thresh-
olds and determines the step size of label disambiguation by label
attention coefficients. The efficacy of PL-CGR is comprehensively
validated under 8 real-world datasets and 5 evaluation metrics. In
the future, we will investigate further research on refining label mis-
classification cases, improving the accuracy of label thresholds, and
enhancing the reliability of prototype instances.
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