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Abstract. Preserving the privacy of preferences (or rewards) of a
sequential decision-making agent when decisions are observable is
crucial in many physical and cybersecurity domains. For instance, in
wildlife monitoring, forest rangers must conduct surveillance without
revealing animal locations to poachers. This paper addresses privacy
preservation in planning over a sequence of actions in MDPs, where
the reward function represents the preference structure to be protected.
Observers can use Inverse RL (IRL) to learn these preferences, mak-
ing this a challenging task. Current research on Differential Privacy
(DP) in this setting fails to ensure a lower bound on the minimum
expected reward and offers theoretical guarantees that are inadequate
against IRL-based observers. To bridge this gap, we propose a novel
approach rooted in the theory of deception. Deception includes two
models: dissimulation (hiding the truth) and simulation (showing
the wrong). As our first contribution, we theoretically demonstrate
a significant privacy leak in the current dissimulation-based method.
Our second contribution is a novel RL-based planning algorithm that
uses simulation to effectively address these privacy concerns while
ensuring a guarantee on the expected reward. Through experimenta-
tion on multiple benchmark problems, we show that our proposed
approach outperforms existing methods in preserving the privacy
of reward functions. Code to reproduce the results can be found at:
https://github.com/shshnkreddy/DeceptiveRL

1 Introduction

In the realm of decision-making, particularly in situations involving
resource allocation in the context of security, agents face the complex
task of making choices that are potentially observable by external
entities. These choices can carry substantial implications, revealing
critical insights into the preferences (or significance) over different
targets (or states in general); which can be strategically harnessed
by observers in potentially harmful ways. The central challenge lies
in optimizing these decisions while safeguarding the privacy of the
agents’ underlying preferences. Our specific focus is on addressing
this challenge within the context of Reinforcement Learning (RL)
based planners where the reward function represents the preferences
that must be kept private. In such a case, it is crucial to recognize
that a significant portion of the reward is embedded in the agent’s
decision-making policy. Therefore the agent must take actions that
preserve the privacy of the reward while still achieving good perfor-
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mance. Take, for instance, green security games (GSGs) [7], where
forest rangers patrol to monitor various animal populations. Poachers
observing these patrols could exploit the information to locate and tar-
get animals. Thus, rangers must conduct effective surveillance while
simultaneously deceiving the poachers. Similarly, in urban policing,
cities are divided into regions, with each region assigned a reward
based on factors such as crime rates, wealth, etc [4, 8]. It is important
for law enforcement to keep this reward function private for enhanced
security.
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The potential of reverse-engineering the agent’s reward forms the
basis for the field of Inverse Reinforcement Learning (IRL) [19] which
poses a substantial privacy risk. IRL has demonstrated the remarkable
ability to reconstruct high-quality reward functions across various
environments [13, 9]. This concern underscores the importance of
developing robust mechanisms to shield the agent’s reward function,
ensuring the integrity of decision-making and preventing potential
privacy breaches. The problem of privacy preservation of the reward
function is illustrated in Figure 1. First, the user defines the reward
function r, which encodes their preferences. Next, a private RL algo-
rithm learns a policy that maximizes the reward while simultaneously
keeping the reward function private. An observer can then use an IRL
algorithm to recover a reward function r̃ by observing demonstrations
of the agent. If r̃ is of a high quality, it will have properties very simi-
lar to r making it feasible for an observer to estimate the preferences
of the user. An ill-intentioned observer can use this information about
the reward function to manipulate the agent to engage in undesired
behaviours [10]. IRL covers the entirety of methods for recovering
the reward function within our specific context, wherein the observer
lacks additional information such as the nature of the reward function,
domain knowledge, etc. However, a notable limitation of IRL lies
in its assumption that demonstrations are not deceptive. To address
this limitation, we introduce two modifications to IRL algorithms that
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account for deceptive demonstrations.

Figure 2. Expected Reward v/s Injected Noise of DQFN in the Four Rooms
environment averaged over 5 seeds. The shaded region represents the max and

min values. The large variance in the reward obtained underscores the
difficulty in managing the privacy-reward tradeoff when using DQFN.

Existing Work tackles the problem in two ways:
(1) Through the use of Differential Privacy (DP) methods: DP-based
methods [22, 28, 30] and the Deep Q-learning with Functional Noise
(DQFN) algorithm [29] introduce noise to computations such as Q-
functions, Value functions, and Policy Gradients. This addition of
noise guarantees that reward functions within l∞-neighbourhood of
each other return the same policy, making it difficult for an observer
to reconstruct the exact reward function. In the context of reward
reconstruction, these guarantees are ill-suited as (a) there are infinitely
many reward functions that can explain the observed behaviour, (b)
the l∞ and lp norms are not good metrics to use when comparing re-
ward functions as two reward functions in the same l∞ neighbourhood
may possess several other properties that pose a privacy leak such as
ordering of polices (explained in Section 3). This leads to a privacy
leak in practice as highlighted in [22]. This is in addition to the fact
that these approaches lack built-in reward constraints make it difficult
for a user to balance the tradeoff between expected reward and privacy
without resorting to time-consuming hyper parameter searches. As
shown in Figure 2, it is difficult to achieve a good privacy/reward
trade-off due to high variance in expected reward as noise is increased.
As highlighted in [22], another drawback of these methods is that the
quality of the reward function recovered by an observer is indepen-
dent of the noise added, undermining their effectiveness as a private
algorithm.
(2) Through the use of deception: Deception involves the act of inten-
tionally creating or upholding false beliefs in the minds of others [3].
There are two primary approaches to deception: (a) "dissimulation"
that relates to "hiding" the truth, and (b) "simulation" which entails
providing false information to "mislead" the observer into believing
something that is not true. The Max Entropy Intentional Random-
ization (MEIR) [21] algorithm developed to preserve the privacy of
the reward function is an existing "dissimulation" based deception
algorithm (as shown later in this paper). Although the MEIR algo-
rithm satisfies constraints on the expected rewards, we show that it
leaks significant information about the reward function when faced
with IRL-based observers. Other deception-based planning algorithms
such as those discussed in [14, 15, 18, 20, 17, 16], are limited in their
ability to tackle this problem. This limitation arises from their focus on
optimizing deception for a singular trajectory, inadvertently disclosing
information about the reward function across multiple trajectories.
These methods also consider a different problem as discussed in the

Appendix [6].
Contributions: Our contributions are as follows:

• Theoretical Analysis of Privacy Leak for MEIR: We demonstrate
theoretically and intuitively the significant privacy vulnerabilities
of the MEIR algorithm when faced with an IRL observer.

• Novel Max Misinformation Algorithm: We introduce the inno-
vative Max Misinformation (MM) Algorithm, designed to address
the shortcomings of MEIR and DP-based methods. A key element
is the introduction of an anti-reward function, enabling a balanced
tradeoff between the expected value and the ability to deceive the
observer.

• Effectiveness Against IRL algorithms: We provide insights into
why MM can robustly counteract observers utilizing various IRL
algorithms, demonstrating its superiority in preserving privacy
of the reward function. In addition, we experiment against two
additional algorithms based on IRL that an observer might use if
they know they are being deceived, and demonstrate the robustness
of the proposed algorithm in this case as well.

• Comprehensive Evaluation: To gauge the effectiveness of our
algorithm, we rigorously evaluate it against IRL-based observers
across diverse benchmark environments. We measure the quality
of the recovered reward functions in comparison to the original
reward using the Rollout method [11], Pearson Correlation, and
the Equivalent-Policy Invariant Comparison (EPIC) distance [11].
Our conclusive findings highlight that the MM algorithm outper-
forms existing deception-based and DP-based algorithms, firmly
establishing its efficacy in maintaining the privacy of the reward.

2 Background

We provide a brief overview of the relevant decision-making models
(Markov Decision Process (MDP) and Deceptive RL), Max Casual
Entropy Inverse Reinforcement Learning (MCE-IRL) and Max En-
tropy Reinforcement Learning (MERL) which is the backbone for
MCE-IRL based algorithms as well as pre-existing Deceptive RL
formulations.

Markov Decision Process We consider environments that can be
expressed as Markov Decision Processes (MDP). An MDP M is
defined by the tuple (S,A, P, r, γ, μ), where S is the set of states, A
is the set of actions, P (s′|s, a) ∈ [0, 1] is the transition probability,
r(s, a) ∈ R is the reward function, γ ∈ [0, 1] is the discount factor
and μ is the initial state distribution. A policy π(.|s) is a probability
distribution over the set of valid actions for a given state. In this
paper, we base our results on the assumption that both S and A are
discrete, with every state reachable under μ and P . The cumulative
γ-discounted value, or expected value, of the reward obtained by
following π in M is denoted as Eπ[r(s, a)] = E[

∑∞
t=0 γ

tr(st, at)].
The occupancy measure ρπ : S ×A→ R of a policy π is defined as
ρ(s, a) = (1−γ)π(a|s)∑∞

t=0 γ
tP (s = st|π). The expected reward

can be expressed in terms of occupancy measures as Eπ[r(s, a)] =∑
s

∑
a ρπ(s, a)r(s, a). For brevity, we sometimes use ρ to denote

the occupancy measure of a policy π. It is worth mentioning that there
exists a one-one mapping between a policy and its corresponding
occupancy measure [26]. For rest of this paper, we rely on this result
to use π and ρ interchangeably.

Deceptive Reinforcement Learning Let R be the set of all re-
ward functions, then a deceptive reinforcement learning problem
is defined by the tuple, (S,A, P, r, γ, μ, Lπ

R), where S,A, P, r, γ, μ
are the same as defined for a regular MDP, and Lπ

R(s, a) stands for

S. Reddy Chirra et al. / Preserving the Privacy of Reward Functions in MDPs through Deception 2147



deception-inducted reward function [20] which combines the objec-
tive of reward maximization with deception.

A deceptive policy maximises the objective,

JD = Eπ[L
π
R(s, a)] (1)

We do not make any assumptions about the knowledge of the
observer similar to [21]. In such a case, Lπ

R is a weighted mixture of
the reward function and the deception level [17],

Lπ
R(s, a) = ωr(s, a) + dπR(s, a) (2)

where dπR(s, a) ∈ R is a measure of deception, and ω ∈ R controls
the trade-off between reward maximization and deception. For ex-
ample, dπR(s, a) could be the entropy of the policy, i.e, − log π(a|s),
leading to deception by dissimulation.

Maximum Entropy RL (MERL) The objective of Maximum En-
tropy Reinforcement Learning (MERL) [12] is to optimize both the
value function and the entropy of the agent’s policy. Formally,

RL(r) = argmax
π

{
Eπ [r(s, a)] +H(π)

}
(3)

where r is the reward function and H(π) � Eπ[− log(π(a|s))] is
the γ-discounted casual entropy. MERL is an important algorithm
in this paper as the MCE-IRL model (discussed below) is built on
MERL. In addition, we showcase in subsequent sections that the
MEIR algorithm (discussed below) is also an instance of MERL
making it a "dissimulation" based Deceptive RL algorithm.

Maximum Entropy Intentional Randomization (MEIR) The
MEIR algorithm is a private RL algorithm that is driven by the concept
that maximizing the entropy of the policy H will keep the reward
function private. MEIR solves the following optimization problem,

MEIR(r, Emin) = argmax
π

H(π)

subject to Eπ[r(s, a)] ≥ Emin (4)

where Emin ∈ [Ê, E∗] is the reward threshold. Ê = Eπ̂[r(s, a)]
and E∗ = Eπ∗ [r(s, a)] where π̂ and π∗ correspond to the uniform
random and optimal deterministic policies, respectively. The reward
threshold Emin is used to control the privacy/reward tradeoff.

Maximum Causal Entropy IRL (MCE-IRL) The Maximum
Causal Entropy Inverse Reinforcement Learning [31] model has
emerged as the most prominent method to infer an unknown reward
function from demonstrations. Given the occupancy measure ρ̃ of an
agent (calculated from demonstrations) MCE IRL recovers a reward
function based on the following formulation,

MCE-IRL(ρ̃) = argmax
r

min
ρ

Eρ̃[r]− Eρ[r]−H(ρ)

MCE-IRL is closely linked with MERL as the occupancy measures
of the agent is obtained from the recovered reward function r̃ as,

ρ̃ = RL(r̃) (5)

3 Assessing Learnt Reward, r̃, from IRL

Before we describe our contributions, we describe mechanisms to
evaluate whether the original preferences (reward) are captured by
the reward learnt by an observer (using IRL). It is challenging to
assess the quality of the recovered reward function due to the inherent

ambiguity in the Inverse RL problem. The ambiguity is on account
of multiple reward functions being able to explain the demonstrated
behaviour. To evaluate the quality of the recovered reward function,
we adopt the framework proposed in [25], which introduces three
quality standards.

The first standard implies the preservation of the "ordering" of
policies with respect to the true reward function, r in the recovered
reward function, r̃ as an indicator of the highest quality. A policy π1

is better (�) than a policy π2 if the expected value with policy π1 is
higher than the expected value of π2.

π1 � π2 ⇐⇒
Eπ1 [r(s, a)] ≥ Eπ2 [r(s, a)] ∧ Eπ1 [r̃(s, a)] ≥ Eπ2 [r̃(s, a)]

The second standard implies that the recovered reward function, r̃
shares the same set of optimal policies as the true reward function.

argmax
π

Eπ[r(., .)] = argmax
π

Eπ[r̃(., .)]

Lastly, the third criterion implies that the recovered reward function
fails to preserve any of these desirable properties, indicating a lower
level of quality in learning.

By applying these three quality standards, we can assess and com-
pare the effectiveness of the recovered reward function. Matching
optimal policies between the true and recovered reward functions sig-
nifies valuable insights into the agent’s optimal trajectories. If policy
ordering is preserved, the observer not only gains trajectory insights
but also learns their order, increasing the chances of unveiling the
agent’s encoded preferences in the reward function.

Formally, Let R be the set of all possible reward functions
r : S × A → R with state space S and action space A, and
M < S,A, P,, γ, μ > be an MDP without a reward function.
Let partitions OPTM and ORDM be defined on R as follows:
given two reward functions r1 an r2, we say that r1 ≡OPTM r2
if < S,A, P, r1, γ, μ > and < S,A, P, r2, γ, μ > have the same set
of optimal policies, and r1 ≡ORDM r2 if < S,A, P, r1, γ, μ > and
< S,A, P, r2, γ, μ > have the same ordering over policies 3.

If two reward functions have the same ordering of policies, then
they have the same set of optimal policies (Section 2.4 in [25]).

4 Privacy Leak in MEIR

We study the privacy leak of MEIR in two situations: (i) Observer has
access to the agent’s true occupancy measure; (ii) Observer obtains
a few demonstrations instead of the true occupancy measure. For (i),
we can theoretically prove that there exists a privacy leak. For (ii),
we provide a bound on the quality of the recovered reward function r̃
w.r.t r in terms of the distribution over policies they induce.

4.1 True Occupancy Measure: MEIR = MERL

We show this by hypothesizing that any policy that is a solution for
MEIR can be computed by solving the MERL problem, where the
rewards are multiplied by a positive scalar.

Lemma 1. Any policy π̄ that is the solution of a Max Entropy In-
tentional Randomization formulation MEIR(r, Emin) with a reward
constraint Emin ∈ [Ê, E∗], can be expressed as the solution of the
Maximum Entropy RL problem as,

π̄ = RL(λ∗r) (6)

for some λ∗ ≥ 0.
3 Notation: x ≡P y denotes x and y belong to the same partition P .
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Lemma 1 shows that MEIR algorithm implicitly solves the RL
objective with an additional temperature parameter λ (dual optimum)
to intentionally control the trade-off between reward and entropy max-
imization. The RL objective can also be viewed as a belief inducted
reward function Lπ

R of the form 2, where the measure of deception
dπR(s, a) = − log π(a|s). As limλ→0, the entropy term dominates
the reward term and we obtain a uniform random policy. Similarly,
as limλ→∞, reward dominates the entropy term and we obtain the
optimal deterministic policy. Proof for Lemma 1 is provided in the
Appendix [6]. We now prove that MEIR suffers a privacy leak when
used against an MCE-IRL-based observer.

Theorem 1. For an MDP M let π̄ = MEIR(r, Emin) for any reward
constraint Emin > Ê, and ρπ̄ be its corresponding occupancy mea-
sure. If r̃ = MCE-IRL(ρπ̄) is the reward function recovered by an
observer using Maximum Entropy IRL, then r ≡ORDM r̃.

Theorem 1 states that the observer will recover a reward function
that respects the ordering of policies in the true reward function
irrespective of the reward threshold. This indicates that r̃ and r share
the same set of optimal policies as well. The proof for theorem 1 is
built on the following lemma:

Lemma 2. (Based on Theorem 3.4 in [25]) For any two scalars,
λ1, λ2 ∈ R

+ and two reward functions r1, r2, if we have
RL(λ1r1) = RL(λ2r2), then r1 ≡ORD r2.

The proof for lemma 2 is given in Appendix [6]. Lemma 2 states
that if two reward functions yield the same policy when optimizing
the objective 3 with any positive weight assigned to the reward term,
then the two reward functions have the same ordering over policies.

Proof of Theorem 1. Let π̄ = MEIR(r, Emin) be the randomized
policy for any reward threshold Emin > Ê. From Lemma 1, we
know that π̄ = RL(λ∗r), where λ∗ > 0. Let r̃ = MCE-IRL(ρπ̄) be
the reward function recovered by the observer using MCE-IRL. From
Equation 5, we know that π̄ = RL(r̃). Hence,
RL(λ∗r) = RL(r̃) =⇒ r ≡ORDM r̃ (Lemma 2)

4.2 Limited Demonstrations:

In section 4.1, we showed that the policy generated by the MEIR
algorithm can be represented as a solution to the MERL objective, i.e,
MEIR(r, Emin) = RL(λ∗r). The solution of the MERL objective
can also be interpreted as a mixture policy over the set of all stochastic
policies Π, with the weight given to each policy proportional its
value. Formally, a mixture policy πmix contains a set of policies
{π1, ..., πn}, and a distribution w over these policies. Before each
episode, a policy is sampled according to w and executed for the
entire trajectory. The probability of a sampling policy π ∈ Π is given
by [31],

PMERL(π|r) ∝ Eπ[r] (7)

Thus, learning this distribution (or a reward function that induces
this distribution over policies) will give an observer insight into the
ordering over policies in r. During execution however, from Lemma 1,
we know that the agent samples a policy according to the distribution,

PMERL(π|λ∗r) ∝ Eπ[λ
∗r]

where λ ≥ 0 which the observer learns via maximum likelihood
(MCE-IRL). This distribution preserves the same ordering of policies
in r and hence the accurate estimation of this distribution by an
observer poses a significant privacy leak.

The quality of the distribution learned (Total Variation (TV) dis-
tance from the true distribution) is highlighted in Proposition 1.

Proposition 1. For any MDP M , let π̄ = MEIR(r, Emin) for any
reward constraint Emin > Ê, i.e, π̄ = RL(λr) for some λ > 0
(Lemma 1) and let ρπ̄ be the empirical occupancy measure of n
demonstrations obtained by executing π in M . If r̃ = MCE-IRL(ρπ̃),
then,

Pr(TV (PMERL(π|λ∗r), PMERL(π|r̃)) > ε) ≤ δ (8)

where, δ = Θ(e|Π|−nε2)

Proposition 1 directly follows from [2] given that P (π|r̃) is the
maximum likelihood estimator of P (π|λr).

5 The Max Misinformation Algorithm

To address the privacy leak of MEIR, we introduce a novel algorithm
referred to as the Max Misinformation (MM) algorithm. MM uses a
deceptive measure called an anti-reward to incentivize the agent to stay
away from the optimal trajectories. That is to say, MM intentionally
leads the agent to take sub-optimal trajectories, in a bid to fool the
observer into believing that these trajectories are highly rewarding.
This makes MM a simulation based Deceptive RL algorithm.

Formally, let r−(s, a) be an anti-reward that induces the agent
to take sub-optimal trajectories, then the MM algorithm solves the
following constrained optimization problem,

MM(r, r−, Emin) = argmax
π

Eπ[r
−(s, a)]

s.t. Eπ[r(s, a)] ≥ Emin (9)

where Emin ∈ [E−, E∗] is the reward threshold that is used to
control the privacy-expected reward tradeoff. E− = Eπ− [r(s, a)]
and E∗ = Eπ∗ [r(s, a)] where π− and π∗ correspond to the optimal
policies with respect to the anti-reward, r− and actual reward, r. We
describe mechanisms for computing anti-reward in Section 5.2.

The MM formulation is a linear program (Appendix [6]) and hence
the primal optimum π̄ can be uniquely recovered from the dual opti-
mum λ∗ [1, Section 5.5.5] as,

π̄ = argmax
π

Eπ[λ
∗r(s, a) + r−(s, a)] (10)

Equation 10 is a form of the Deceptive RL objective 2, where
dπR(s, a) = r−(s, a) and the dual variable λ∗ acts as a tempera-
ture parameter controlling the trade-off between reward and deception
maximization. As limλ∗→0, the anti-reward dominates the reward
resulting in π−, and as limλ∗→+∞ the reward dominates the anti-
reward resulting in π∗ as the solution to Equation 10.

The linear program formulation of MM presented in Appendix [6]
relies on known model dynamics. However, this assumption is often
impractical in real-world scenarios. To address this limitation, we
introduce Algorithm 1, which demonstrates how to solve Equation
9 using primal-dual descent without requiring explicit knowledge of
the model dynamics. This formulation is particularly useful in the
context of large MDPs with continuous state and (or) action spaces.
In such scenarios, solving the primal problem to convergence (Line 4
of Algorithm 1) can be very time-consuming. Instead, one could take
a few steps towards maximizing the objective function: Line 4 and
then incrementally optimize λ and so on.

In the case of discrete MDPs, where solving the primal problem is
much faster, we can use binary search to speed up the optimization
procedure significantly as highlighted in Appendix [6].
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Figure 3. Occupancy measures of different private policies satisfying the same reward constraint in the Four Rooms environment. The MM algorithm leads to
policies that visit a diverse mix of high reward and low reward states.

Algorithm 1 Max Misinformation via Primal-Dual Descent

1: Input: Anti-reward r−, Emin ∈ [E−, E∗]
2: Initialize temperature parameter λ >= 0, learning rate α
3: for t in {0, 1, 2, . . .} do

4: π̄ = max Eπ[λtr(s, a) + r−(s, a)]
5: λt+1 ← λt − α∇λ [λ[Eπ̄r(s, a)− Emin]]

5.1 Security of the Max Misinformation Algorithm

In Section 4, we highlighted that the privacy leakage in the MEIR
algorithm was due to the fact that MEIR is an instance of MERL,
which preserves the ordering of policies which can be learnt efficiently
by the observer. The proposed MM algorithm addresses this privacy
leakage as the addition of an anti-reward does not preserve the order-
ing over policies as it assigns a high value to sub-optimal trajectories.
Consequently, it does not preserve the set of optimal policies either.

The difference between the occupancy measures of the MEIR and
the MM algorithms are highlighted in Figure 3. Despite the MEIR
policy exhibiting higher entropy, it readily reveals locations with high
rewards. In contrast, the MM policy visits a nuanced mix of high and
low reward states, making it more challenging to discern important
locations.

5.2 Generating anti-reward functions

We now describe mechanisms for generating anti-reward functions
that maximize deception by steering an agent away from the optimal
trajectories.

Ideally, we would like to maximize the distance between the true
reward function and the recovered reward function, but this would
make the deceptive policy specific to an IRL algorithm (as recovered
reward function is dependent on the algorithm). Instead, to ensure
robustness against the observer reward recovery methods (IRL or
some other mechanism), we propose a mechanism that is agnostic to
the specific algorithm utilized to recover the reward function.

Intuitively, we compute an anti-reward that maximizes the distance
between a distribution/statistic corresponding to the optimal policy for
the original reward and optimal policy for the anti-reward. This will
ensure that observer receives minimal information about the optimal
policy for the original reward. Let o be a distribution/statistic that
can be computed from the agent’s reward function r. Two examples
of o would be the policy computed or occupancy distribution corre-
sponding to the reward function r. We can generate an anti-reward
function r− by maximizing the distance between o∗ and o−, where
o∗ is observed when behaving optimally according to r and o− is
observed when behaving optimally according to r−. The algorithm
for computing the anti-reward is provided in Algorithm 2. Let C be

the function that maps from r to o. We iteratively do the following
steps by starting from a randomly initialised o−: (1) Set r− as the
anti-reward function that maximises the distance between o∗ and o−

(2) Compute the new o− from the new value of r−. We repeat this
process for a set number of iterations. An intuition behind why this
approach works is highlighted in Appendix [6].

Algorithm 2 Generating Anti-Reward functions
1: Input: Distance Metric D, c, o∗

2: Initialize o−

3: for t in {0, 1, 2, . . .} do

4: r− = argmax
r

D(o∗, o−)

5: o− = C(r−)

We will now outline the various forms of o (occupancy measures
and trajectory distributions) and the corresponding distance measures,
denoted as D, applied in each case.

Occupancy Measures Since IRL algorithms try to match occupancy
measures, one could try to directly maximize the distance between the
occupancy measures of the optimal policy of r, i.e, ρ∗ and ρ−. Hence,
in this case, o = ρ. We use f -divergences and Integral Probability
Metrics (IPMs) to measure the distance between ρ∗ and ρ−.

The f -divergence between ρ and ρ∗ is defined using the convex
conjugate f∗ as,

Df (ρ
∗||ρ−) = sup

g:D→R
Eρ∗ [g(s, a)]− Eρ− [f∗(g(s, a))]

setting g = −r− and φ(u) = −f∗(−u), so that Eρ− is maximized,

Df (ρ
∗||ρ−) = sup

r−:D→R

Eρ− [φ(r−(s, a))]]− Eρ∗ [r
−(s, a)]

(11)

IPMs that are parameterized by a family of functions F are defined,

γF (ρ−, ρ∗) = sup
f∈F

|Eρ− [f(s, a)]− Eρ∗ [f(s, a)]| (12)

We can see that in both IPMs (Equation 12) and f-divergences
(Equation 11), the anti-reward function gives a high reward to the
state-action pairs visited by π− (due to the sup and expectation over
ρ− being the first term) and a low reward to the ones visited by π∗.
In both these cases, the anti-reward function can be represented using
a function approximator and solved using gradient ascent, or in the
case of discrete environments, Equation 11 can be solved using the
closed form solution (described in the Appendix [6]).
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Figure 4. MM and MEIR against IQ-Learn given 10 demonstrations. Figures correspond to (a) Cyber security domain, (b) Frozen Lake and (c) Random MDPs.

Trajectory Distributions We can observe from Equation 7 and
Figure 3 that the MEIR algorithm suffers from the problem of prefer-
ring highly rewarding trajectories (policies in the case of stochastic
dynamics). To avoid this, we can generate an anti-reward function
that maximizes the distance between the trajectory distributions of
π∗ and π−. Consider the objective of maximizing the KL-divergence,
between the distribution over trajectories induced by a policy π and
the optimal policy π∗,

J− = argmax
π

KL (p(τ)||p(τ∗))

= argmax
π

∫
p(τ) log

( ∏
t p(st+1|st, at)π(at|st)∏
t p(st+1|st, at)π∗(at|st)

)
dτ

= argmax
π

−H(π) + Eτ∼π[
T∑

t=0

− log π∗(at|st)]

= argmax
π

Eτ∼π[r
−
KL(st, at)]

(13)
This formulation is the standard RL objective with the anti-reward
function rKL

− � − log(π∗(a|s)) 4. We can drop the entropy term as
the formulation calls for entropy minimization given that an MDP has
an optimal deterministic solution, i.e., a policy with 0 entropy.

6 Experiments and Results

In this section, we intend to answer the following key questions: (1)
Does the MEIR algorithm as described in Section 4 suffer a significant
privacy leak in the case of limited demonstrations, and how does
the MM algorithm perform in comparison? (2) How does the MM
algorithm fare in comparison to the MEIR and DQFN algorithms in
preserving the privacy of the reward function when the observer has
access to the true occupancy measures of the agent? (3) How does
MM perform against observers that know they are being deceived?

6.1 Environments and Evaluations Metrics

We conduct our experiments in the following environments: Cyber
Security which is based on Moving Target Defence [24], Frozen Lake
[27], Four Rooms [5] and randomly generated MDPs. In the Cyber
Security [24] environment, the state space consists of network config-
urations generated by the CyberBattleSim library [23] that emulates

4 If π∗ is deterministic log(π∗(a|s)) is not defined when π∗(a|s) = 0. This
can be avoided by setting π∗ as the a solution of MERL which ensures all
actions have non-zero support.

real-world active directory networks. The value associated with a
network configuration corresponds to the ease with which malicious
actors could compromise and gain control over the network. Agent’s
objective is to dynamically switch between network configurations
to bolster security. The intention behind using Frozen Lake [27] and
Four Rooms [5] from the standard Gym environment draws inspi-
ration from tangible real-world security challenges such as Police
Patrolling [4] and Green Security Games (GSGs) [7]. Randomly
generated MDPs can be representative of a broad set of domains in
general. A more detailed description is provided in Appendix [6]. The
reward function in the above domains reflects the user’s preferences,
encompassing critical aspects such as the valuation of patrol locations,
density of animals in various regions, and significance of distinct
network configurations, all of which must be kept private.

We consider Inverse Reinforcement Learning (IRL) as the main
method for reward function reconstruction due to two primary con-
siderations: (a) Observer does not know that they are being deceived,
which is the assumption made in the prior deception based methods
as well [17, 16] (b) Recovering the reward function from deceptive
demonstrations is not a trivial task. Consider the example in Figure
3 - the agent visits multiple diverse locations and deducing the high
reward states from them is not easy for the observer. In addition, there
does not exist any prior work in this space to benchmark our algo-
rithms against. In such a case, irrespective of whether the observer
knows that they are being deceived, learning a reward function that
maximises the likelihood of the demonstrations is a strong strategy
for the observer given that they are guaranteed at least Emin reward.

In the IRL space, MCE-IRL based methods have demonstrated
superior performance in recent times for reward reconstruction [13, 9]
and hence we use MCE-IRL and IQ-learn [9] (a variant of MCE-
IRL that performs well in the limited demonstrations setting) in our
experiments. Furthermore, we introduce two additional baselines that
try to account for observers that are aware that they are being deceived
by the usage of the MM algorithm. Given that the observer knows
that the agent is intentionally visiting sub-optimal states along with
the optimal states, the observer can cluster the occupancy measures
of the agent and selectively recover a reward function that matches
just one (or more) of them. See Figure 3 - each cluster either contains
the optimal states or the misleading states intentionally visited by the
agent. Based on how we select the cluster(s), we split these methods
into: (a) IRLrandom that picks a cluster at random and (b) IRLmax that
greedily picks the cluster that has the highest occupancy measure.

We use three metrics to evaluate the quality of the reward function
learned by the IRL algorithms, namely: (1) Pearson Correlation: high
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Table 1. MM and the DQFN algorithms against an MCE IRL based
observer with access to the true occupancy measure.

Env Algorithm Avg. Pearson Avg. EPIC

Random MDP
DQFN 0.31 0.58
MM (τ -based) 0.30 0.58

MM (ρ-based) 0.67 0.39

Four Rooms
DQFN 0.09 0.67
MM (τ -based) 0.03 0.69

MM (ρ-based) 0.22 0.62

Frozen Lake
DQFN 0.11 0.67
MM (τ -based) 0.05 0.72

MM (ρ-based) 0.34 0.57

value indicates better learning; (2) EPIC distance [11]: low value
indicates better learning); and (3) Evaluation of the optimal policy of
the recovered reward function in the original reward function: higher
expected reward implies better learning.

6.2 Analysis of Results

Privacy Leak in MEIR and the efficacy of MM Figures 4, 5 and 6
can be interpreted as follows: for a given private RL algorithm. First,
we specify a reward constraint Emin that is represented on the x-axis.
Next, the algorithms return a private policy with a return ≥ Emin

that is plotted on the y-axis. The Reward Threshold line indicates the
return of the generated policy. Next, an observer takes the occupancy
measure of the private policy as input and recovers a reward function
r̃. The return of the optimal policy π∗

r̃ of r̃ when evaluated in r is
represented using the IRL line.

From Figure 4, we can infer that the reward recovered by π∗
r̃ is very

high, almost the same as the optimal policy π∗
r , even when Emin is

very low and when the observer is given just 10 trajectories to learn
from. Therefore validating the insights presented in Section 4.2. MM
algorithm does a much better job in preserving the reward privacy in
this case. Figure 5 shows that MM significantly outperforms MEIR in
the worst case, i.e when an observer has access to the true occupancy
measures of the agent. A quantitative analysis for this case is present
in the Appendix [6].

Figure 5. MM and MEIR against MCE IRL with true occupancy measures.
Figures correspond to (a) Four Rooms (b) Frozen Lake (c) Random MDPs (d)

Cyber Security domain.

Figure 6. MM against IRLmax in (a) Four Rooms (b) Frozen Lake and
IRLrandom in (c) Random MDP (d) Cyber Security domain.

Advantage over DP-based methods The quantitative comparison
between the Deep Q-learning with Functional Noise (DQFN) [29], a
state-of-the art algorithm in DP-based privacy methods and the MM
algorithm in Table 1 demonstrates that the MM algorithm with a
trajectory-based anti-reward outperforms the DQFN algorithm. Ad-
ditionally, a qualitative comparison (Figure 3) shows that the MM
algorithm visits a significantly more diverse set of misleading states
compared to the DQFN algorithm. In addition, as discussed in Section
1, the MM algorithm has an advantage over existing DP-based meth-
ods based on the following: (1) There is a direct relationship between
the privacy budget Emin and the reward obtained by the correspond-
ing policy. The noise parameter in DQFN has no such relationship
(Figure 2), making it challenging to control the privacy/reward tradeoff
and (2) The quality of the recovered reward function is proportional to
the privacy budget Emin as seen in Figures 4 and 5, another important
property that DP-based algorithms do not posses [22].

Effectiveness against observers who are aware of the use of decep-

tion by the agent Figure 6 contains evaluations of MM against an
observer that is aware of the use of deception and subsequently uses
IRLmax / IRLrandom to recover the reward function. From Figure 6, we
can infer (1) robustness of the MM algorithm in preserving the pri-
vacy of the reward function in this scenario and (2) weakness of these
reward recovery mechanisms as compared to IRL indicating the diffi-
culty of reward recovery when faced with deceptive demonstrations
and the dominance of IRL as a strategy for the observer.

7 Conclusion and Future Work

RL-based planning algorithms have found applications in many do-
mains including security related where protection of the reward func-
tion from potential observers becomes critical. Our study identifies
vulnerabilities and limitations in existing methodologies and proposes
the Max Misinformation (MM) algorithm as a solution. While our ex-
periments are limited to discrete state/action spaces, MM can be used
in continuous settings, making for future research endeavors. Further-
more, our research underscores the limitations of Inverse Reinforce-
ment Learning (IRL) when confronted with deceptive demonstrations,
prompting further exploration into Deceptive IRL.
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