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Abstract. Analyzing brain signals and reconstructing visual stimuli
from the brain can facilitate further exploration on cognitive func-
tions of the human brain, which have attracted strong interest in neu-
roscience and artificial intelligence. However, due to defects such as
complex noises and the lack of alignment accuracy, efficient meth-
ods for extracting information from Electroencephalogram (EEG)
signals are still very limited, making it difficult to perform EEG vi-
sual decoding tasks. Our study shows a way to handle the issues
by proposing a new method for EEG representation learning and
visual decoding, thus completing end-to-end image reconstruction
tasks from EEG signals. We utilize the ability of semantic extrac-
tion and prediction of large language models (LLMs) to enhance
the performance of EEG feature extraction. For semantic represen-
tation learning, we align EEG signals with target semantic embed-
dings, which are obtained from hidden states of Large Language
Model Meta AI 2 (LLaMa-2) by inputting descriptions of images
into the model. We also extract visual features from EEG signals
to improve the quantity of the reconstructed images at low levels.
Then we fuse semantic features and visual features by applying a
pre-trained diffusion model and finally generate the corresponding
images. We are the first to incorporate the LLM into EEG visual
decoding tasks. Our method achieves the state-of-the-art result of
EEG classification accuracy and the quality of reconstructed images
on ImageNet-EEG datasets. In one word, our work is an important
step forward in the field of exploiting the relationship between lan-
guage models and human visual cognition. Our codes are available
at https://github.com/lay-atsa/llm4eeg.

1 Introduction

Rapid development of science and technology is making the artifi-
cial general intelligence realizable. The intersection of neuroscience
and computer science has brought unprecedented opportunities, par-
ticularly in understanding and simulating cognitive processes of the
human brain. As a non-invasive neurophysiological technique used
to record the neural activity of the brain, Electroencephalogram
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(EEG) has attracted many researchers. By capturing the potential
changes in brain electrical signals, EEG can provide high-temporal-
resolution information on brain activity, which reveals dynamic prop-
erties associated with various neurophysiological processes. These
characteristics make EEG an important tool to study the relation-
ship between neural activity and cognitive functions[20][13]. In re-
cent years, numerous researchers have successfully utilized deep
neural networks to decode visual information from brain signal
representations[37][28]. However, these studies are all facing com-
mon challenges and limitations. Firstly, the noise and sparsity col-
lections of EEG signals limit the precision of information extraction.
Secondly, the decoding capability of existing methods for seman-
tic information is relatively limited in complex contexts, especially
for the representation of abstract concepts. Moreover, a comprehen-
sive understanding of the dynamic changes in semantic information
within EEG signals is lacking, restricting adaptability to different
tasks and cognitive states.

Difficulties in semantic information extraction from EEG may
be alleviated by the current development of large language mod-
els (LLMs). Some key efforts focus on using pre-trained LLMs,
such as the generative pre-trained transformer(GPT) series[33][1],
BERT[10], etc., to extract semantic information from text and trans-
form it to perform other tasks. These models can capture associations
among words, phrases, and sentences, encoding rich semantic infor-
mation at the textual level, which can be also transferred to down-
stream tasks. Therefore, as an effective encoding result of textual
information, it may be further used in EEG semantic decoding tasks,
such as brain-to-text generation and brain-to-semantic recognition.

However, beyond semantic information extraction, another chal-
lenge in this field is how to reconstruct stimuli from visual infor-
mation and enhance reconstruction performance. By combining the
obtained semantic information with generation models, researchers
attempt to generate images that match the textual descriptions, en-
suring consistency between the generated images and the provided
semantic features[2]. The advantages of these methods lie in their
ability to generate images from text in an end-to-end manner without
explicitly providing image samples. This provides a new pathway for
image generation tasks based on semantic information.
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Aiming to enhance the decoding performance of EEG signals, in
this study, we propose a method, introducing the LLM into EEG vi-
sual decoding and stimuli image reconstruction tasks. Based on the
similarity between the LLM and human cognitive representations,
we utilize the contextual understanding ability of LLMs to generate
the feature representations as the target semantic features of EEG to
extract semantic features from EEG signals. Specifically, we obtain
the representations from the hidden states of the pre-trained LLaMa-
2 by inputting text descriptions of images, and then perform con-
trastive learning to align the EEG representation and the LLaMa-2
embedding space. We also extract visual features from EEG signals
and subsequently apply a pre-trained diffusion model to generate im-
ages. By selecting images from the training dataset and mapping the
EEG semantic features to the textual embedding space, We effec-
tively fuse features from two modalities and thus reconstruct images
which are similar as stimuli images in both semantic and visual fea-
tures. The experimental results indicate that our method has achieved
optimal levels in both quantitative and qualitative evaluations of se-
mantic classification accuracy and image reconstruction metrics. The
overview of our framework is shown in Figure 1.

Our novel approach is designed to combine language models and
brain activity data, which overcomes some of the constraints ob-
served in previous studies, offering a new perspective for a more ac-
curate and comprehensive interpretation of information within EEG
signals. Overall, the integration of a pre-trained LLM effectively en-
hances the analysis and fitting of cognitive information, contributing
to the further development of general artificial intelligence.

In this study, our main contributions are as follows:

• We are the first to introduce the LLM into EEG visual decoding.
By incorporating the LLM, accurate semantic features can be ex-
tracted from EEG signals, demonstrating the possibility of apply-
ing language models in visual decoding tasks.

• Beyond semantic decoding and classification, we implement vi-
sual feature extraction and fuse the two features efficiently by ap-
plying the diffusion model, completing end-to-end image recon-
struction tasks from EEG signals.

• We validate the effectiveness of method on ImageNet-EEG
dataset. Our method achieves the state-of-the-art result of EEG
classification accuracy and the quality of reconstructed images,
which motivates further exploration on the relationship between
language models and human visual processing.

2 Related Works

2.1 Decoding Visual Stimuli from EEG

Decoding visual information from functional magnetic resonance
imaging (fMRI) and EEG involves extracting patterns of brain activ-
ity associated with visual stimuli or other corresponding information
and using machine learning techniques to predict or classify specific
visual properties or categories. fMRI measures changes in blood oxy-
gen level-dependent (BOLD) signals, which provides high spatial
resolution, allowing researchers to localize brain activity with pre-
cision. Reconstructing images from fMRI data has made significant
progress[46][16][31][8]. Compared with fMRI, EEG provides excel-
lent temporal resolution, capturing rapid changes in brain activity
with millisecond precision. It measures electrical potentials gener-
ated by neural activity in the brain by recording the electrical activity
of the brain using electrodes placed on the scalp. However, due to the
limited spatial resolution, high noises, rapid changes and the lack of

data, there are few effective methods for visual decoding, especially
reconstructing images from EEG signals.

To tackle these challenges, one approach involves using Long
Short-Term Memory (LSTM)[39] networks for EEG information
classification and feature embedding. Besides, variational auto-
encoders (VAEs) and generative adversarial networks (GANs) have
been applied to generate images from EEG features[17], but the
achieved results have not been sufficiently significant. Some re-
searchers have attempted to bind GANs with conditional progressive
growing for perceptual image generation[18]. Some researchers have
focused on cross-modal multi-mode processing, achieving coarse-
grained classification[4]. With the development of diffusion models,
aligning spatiotemporal information from EEG with image features
enables high-resolution image reconstruction.

2.2 Diffusion Models

For EEG visual decoding tasks, in addition to just obtaining the fea-
tures of the images, we would like to further reconstruct the images.
To solve this problem, generative models is an effective tool for im-
age reconstruction. As a class of generative models, diffusion models
have gained attention for their ability to model complex data distri-
butions, particularly in the realm of natural images and text. These
models operate by iteratively applying a series of transformations
to a random noise input, gradually generating samples that approxi-
mate the true data distribution[15]. Diffusion models have emerged
as a groundbreaking approach in multimodal content generation[43],
natural language processing[44], and decision-making[3]. Implicit
Diffusion Models (IDM)[12] were introduced in image generation,
where pre-trained autoencoders effectively addressed the pixel-wise
estimation shortcomings in the latent space, leading to a noticeable
improvement in the quality of generated images, which has been em-
ployed in visual decoding. MinD-Vis[8], has achieved high-quality
and credible results in fMRI image reconstruction by using IDM.
BrainCLIP[25] aligned fMRI data with visual and textual data to im-
plement the fMRI-to-image generation task by the fmri-guided dif-
fusion model. However, similar approaches have not been effectively
applied in the reconstruction of visual images from EEG signals.

Diffusion models can be used for image-to-image generation by
adding noises and removing noises.[35] Given an input sample image
as the initial image x0, noises ε are added to it step by step, and the
noised image can be estimated as follows:

xt =
√
αtx0 +

√
1− αtε, ε ∼ N (0, I), (1)

where x0 refers to the initial image, αt =
∏t

s=1(1 − βs), βt refers
to the variance schedule.

During the reverse process, the model predicts the added noise εθ
and the denoised image can be obtained by the following equation:

xt−1 =
1√

1− βt

(xt − βt√
1− αt

εθ). (2)

2.3 Large Language Models

Large language models (LLMs), which are trained on a large scale of
text datasets to predict the probability distribution of the next word
in a sequence, can perform various language-related tasks, such as
translation, text summarization, question answering, and more[45].
LLMs can capture rich semantic and syntactic information from
the text data and effectively learn a powerful language represen-
tation. Generative pre-trained transformer(GPT)[33] is one of the
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Figure 1. Overview of our architecture. First, we train two EEGNet models through contrastive learning to extract the semantic features and visual features
from EEG signals, respectively. Then, we apply the pre-trained diffusion model to generate images that match both semantic features and visual features.
most powerful LLM architectures, which employs multi-head self-
attention[42] to combine the representations of each word in a se-
quence with those of preceding words. Building upon the powerful
GPTs, researchers have proposed models such as LLaMa[41], and
Vicuna[9]. Multimodal LLMs are designed to handle diverse types
of inputs beyond text. Blip[24] utilizes Q-formers to project multi-
modal inputs into the text space, while others simply train a fully
connected layer as a projector.

The LLM can be used for extracting semantic features from lan-
guage stimuli. To successfully perform the next-word prediction task,
it learns to extract features that capture the meaning of the input
sequence. Large Language Model Meta AI 2 (LLaMa-2) is one of
the generative pre-trained models. It employs a neural network with
billions of variables, using the same transformer architecture as the
GPTs. However, unlike GPTs, it is an open-source LLM and the
pre-trained model is accessible online. LLaMa-2 outperforms open-
sourse models and is comparable to GPT-3.5 on several benchmarks.

It is observed that representations from language models share
similarities with cognitive representations. For example, semantic
knowledge can predict patterns of brain dynamics and thus discrim-
inate stimuli categories[27][29]. For LLMs, pre-trained on larger
datasets with a larger scale of parameters, there are more similari-
ties. Semantic representations can predict how well human subjects
understand the text[7]. Attention weights can predict brain activity
accurately[22]. Word embeddings help the annotation task of se-
mantic cognition[22]. Therefore, we hypothesize that incorporating
LLMs can improve the performance of EEG decoding tasks. Re-
searchers have applied LLMs to implement semantic decoding for
text comprehension tasks, generating corresponding text from brain
activity without markers[11][40]. However, the relationship between
LLMs and visual conceptual cognition has not been studied.

3 Method

3.1 Preliminary

Contrastive Language-Image Pre-training (CLIP). CLIP[34],
firstly proposed in the image-text pairing task, aims to learn to asso-
ciate images with their textual descriptions by constrastive learning.
For multimodal feature alignment, it is an efficient method that has
been used to align brain activities and the feature of stimuli in brain
decoding tasks. In our method, we utilize the loss function proposed
in CLIP, denoted as CLIP loss.

Given a batch of embeddings of data A = {ai|i = 0, ...,M} and
B = {bi|i = 0, ...,M} from two modalities, the contrastive loss is
given by

Con(A,B; τ) = − 1

M

M∑

i=0

log[
exp (cos (ai, bi)/τ)∑M
j=0 exp (cos ai, bj/τ)

], (3)

where M is the batch size, τ is a temperature hyper-parameter, and
the (Ai, Bi) denotes the matched embedding pair of data from two
modalities while other (Ai, Bj)j �=i denote unmatched pairs.

To perform bi-directional contrastive learning between two modal-
ities, the CLIP loss is as follows:

LC(A,B) =
1

2
(Con(A,B; τ) + Con(B,A; τ)). (4)

By minimizing the CLIP loss, the model will learn similar repre-
sentations on cosine measure between two samples from matched
meaning but different modalities in the common embedding space,
thus we could get an efficient representation from raw data.

Pre-trained models (LLaMa-2 & VGG-19) In our task, we aim
to use the large language model to process the semantic information
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of the description of the images. There are three different sizes of
LLaMa-2 model: 7b, 13b and 70b. Among these sizes, we chose the
LLaMa-2 7b, which is swift and suitable for basic tasks like sum-
maries or categorization.

Different latent image representations can affect the efficiency of
EEG decoding on visual stimuli. Those image models pre-trained
on supervised tasks may lead to good performance. For example,
the Visual Geometry Group (VGG) pre-trained model[38] refers to a
family of convolutional neural network (CNN) architectures. These
models are widely used in computer vision tasks, particularly in im-
age classification. Their simplicity and uniform architecture, which
consists of stacking multiple convolutional layers followed by max-
pooling layers allows the models to capture increasingly complex
features from the input image as information flows through the net-
work. Here, in order to extract the visual features of the images
more efficiently, we choose the pre-trained VGG-19 model, which
is proved to achieve high performance on image retrieval tasks on
brain visual decoding[6].

3.2 Task Definition
Our task is to decode visual stimuli from the brain activity recorded
when subjects are presented a set of images. Let the dataset of (EEG,
image) pairs be Ω = (Xi, Yi), Xi ∈ SC×T be the recorded piece
of EEG signals and Yi ∈ IH×W×3 be the presented images simul-
taneously, where C is the channel number of EEG signals, and T
is number of time points in a time window. EEG data are recorded
when subjects are watching the stimuli images. The target of our re-
search is to generate an image from the piece of EEG signals, aiming
to generate images that closely resemble the real images at both high
and low levels of features. The schematic of the EEG visual decoding
tasks is shown in Figure 2.

3.3 Multimodal Feature Extraction
Both low-level visual features (colors, shapes, structures) and high-
level semantic features (categories and content) can elicit corre-
sponding patterns in brain activities. Therefore, it is feasible to ex-
tract features at both levels from raw EEG signals to perform image
reconstruction. Here we use deep neural networks to accomplish au-
tomatic feature learning and extraction by training them.

The EEG encoder networks need to process the temporal and spa-
tial information on multi scales. EEGNet[23], a compact convolu-
tional neural network, which contains a convolutional block, a depth-
wise convolutional block and a separable convolutional block, shows
high accuracy in many EEG classification tasks without specifying
the paradigm of the tasks. There are fewer parameters in the depth-
wise block and the separable block compared with common convo-
lutional layers, which helps the model to learn a more efficient rep-
resentation and perform higher generalization. We modified the net-

Figure 2. The schematic of the EEG visual decoding tasks. EEG data are
recorded when subjects are watching the stimuli images. Then, merely by
analyzing the EEG recordings, the category labels of the images are decoded
and the images are reconstructed.

work structure of EEGNet by adding a convolutional block between
the temporal convolutional block and the depthwise block, in order
to integrate information from different channels. We adopt this ar-
chitecture on both the semantic encoder and the visual encoder, and
denote as ES and EV , respectively.

The output feature dimension is set to the same as the target rep-
resentations, which are obtained from the pre-trained models. After
training, the encoder networks project the EEG signals to the target
embedding space and predict the corresponding features from EEG
signals. The setting details of convolutional layers in the networks
are shown in Table 1.

Table 1. Setting details of four convolutional layers in the two encoder net-
works. Top: semantic encoder network. Bottom: visual encoder network.

Location Channels Kernel Size Padding Groups

Semantic
Encoder
Network

1 1 → 64 (1,41) (0,20) 1
2 64 → 2048 (128,1) 0 64
3 2048 → 2048 (1,15) (0,7) 2048
4 2048 → 64 (1,1) 0 1

Visual
Encoder
Network

1 1 → 16 (1,41) (0,20) 1
2 16 → 64 (14,1) 0 1
3 64 → 64 (1,15) (0,7) 64
4 64 → 16 (1,1) 0 1

We train these two networks on the training dataset and choose the
epoch according to the validation dataset as the final encoders.

3.3.1 Semantic Features

As a language model, when LLaMa-2 is given the input text, the
model will be activated and the hidden states can reflect the seman-
tic features of the input text. Previous studies have shown that the
best semantic features can be extracted from the middle layers of
the language models[40]. Among the 33 layers in the LLaMa-2 7b
model, we select the twentieth layer and record the hidden states of
that layer. For each stimuli image, we put the description from the
ImageNet dataset to the model and take the mean value of the hid-
den states on the first dimension as the semantic representation of the
image stimuli.

The width of the hidden layer in the LLaMa model is 4096. To im-
prove the efficiency of the learned semantic representation, we map
the average of the hidden layer output by a fully connected network
into a 160-dimension embedding space. Accordingly, we also set the
output dimension of the EEG semantic encoder to 160. Suppose the
textual description of an image t, the final semantic feature of the im-
age is denoted as SE(t), and the EEG signal is denoted as xi. Then
we optimize the weights of the semantic encoder network and the
fully connected network by the following loss function:

LossS(θS) =λ1LC(SE(t), ES(xi))

+ (1− λ1)MSE(SE(t), ES(xi)),
(5)

where xi denotes an EEG signal sample.
The loss function consists of two parts, the CLIP loss LC(·, ·) and

the MSE loss MSE(·, ·). The CLIP loss is used to make the cosine
distance between the semantic features of the image labels within a
batch and the encoding result of the EEG data collected under the
corresponding visual stimulus as small as possible, and to make the
cosine distance of the mismatched features as large as possible, while
the MSE loss is used to make the absolute distance between the en-
coding result of the EEG data and the semantic features as close as
possible. In details, we set the hyperparameter λ1 = 0.8. We use the
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AdamW[26] optimizer to train the networks and the weight decay is
set to 0.0001. The batch size is 16, the learning rate is 0.001, and the
number of training epochs is set to 150.

3.3.2 Visual Features

The output dimension of the VGG-19 pre-trained model is 1000. By
feeding all the images of the training set into the network, we obtain
the visual features of the training images. Before training the visual
encoder network, We implement principal component analysis(PCA)
and extract the top 20 features, which contribute to 80.01% variance
of the original features.

The structure of the visual encoder model and the loss function are
similar to the semantic encoder. Suppose an image i, the latent fea-
tures of the image after PCA are denoted as IE(i). The loss function
is as follows:

LossV (θV ) =λ2LC(IE(i), EV (xi))

+ (1− λ2)MSE(IE(i), EV (xi)).
(6)

And we also set the hyperparameter λ2 = 0.8. We use the Adam[19]
optimizer to train the network. The batch size is 32, the learning rate
is 0.001 and the number of training epochs is set to 200.

3.3.3 Feature Prediction from EEG

After training two encoder networks, we can predict the semantic
features and the visual features from the EEG signals.

For semantic features, the EEG signals are fed into the seman-
tic encoder network to obtain the corresponding semantic features
for two purposes. On the one hand, mapping to the glide embedding
space serves as textual guidance information for the diffusion pro-
cess, allowing the diffusion model to generate images that match the
semantic input. On the other hand, by training a linear mapping layer
as a classifier, we can predict the category of the original stimulus
image from semantic features.

At the same time, EEG signals are input to the visual encoder net-
work to obtain the corresponding visual features for the subsequent
selection of images as the initial condition for the diffusion process.

3.4 Generating Images by Diffusion Models

To perform generalized visual decoding tasks, we use diffusion mod-
els to generate images, which is a step further than just decoding the
categories. Based on the feature extraction and prediction from the
EEG signal, a pre-trained glide model[30] is used for image genera-
tion. The number of time steps is 100 and the guidance scale is 7.0.

The predicted image category is obtained from the semantic fea-
tures of EEG, and all images in the training set corresponding to this
category are used as candidate images. The visual encoder network
of EEG has been optimized by contrastive learning, so the learned
features can be used to measure the similarity with the target fea-
tures. The vector cosine similarity between the visual features and
all the candidate image features is computed and the one with the
largest result is selected as the initial image. We add noise to the
initial image for 80 time steps as the initial noise for the diffusion
process and subsequently execute the reverse diffusion process for
80 time steps.

Images in the dataset are all photos of objects. In order to make
the generated images closer to the images in the dataset, we set the
prompts with the prefix "a photo of" to input the diffusion model.
Then the prompts will be transformed into glide embedding spaces

and generate the text-conditioned images. The prefix "a photo of
" corresponds to a tensor of dimension [3,512] in the text embed-
ding space. The largest corresponding dimension of all labels in the
dataset is [6,512], so we convert all labels to [6,512] shape by adding
padding tokens. Then we train a fully connected network to map the
EEG semantic representations into the label embeddings and then
concatenate them with the tensors of prefixes to obtain the glide text
embeddings. They are fed into the glide model as the condition dur-
ing the reverse process to perform classifier-free guidance.

4 Experiments

4.1 Dataset and Implementation

The EEG dataset was collected from six subjects when they are
watching visual stimuli images.[39] The images used in the exper-
iments include 2000 images from ImageNet dataset[21] (40 classes
of objects and 50 images for each class). Images were shown in se-
quence for 0.5 seconds each. Each class of images lasted for 25 sec-
onds and a black image was presented for 10 seconds between every
two classes. The EEG signals contain 128 channels. Following the
previous works, we choose the high frequency of gamma band (from
55Hz to 95 Hz), which is related to perceptual processes in visual
tasks and achieved the highest performance[32].

During the 500ms of the recording EEG signals, we dropped out
the first 40ms and the last 20ms parts. We intercepted consecutive
160ms records from the remained 440ms as the input data for the
training and decoding process.

Data from all channels are used in semantic extraction. To extract
the visual feature more efficiently, we select 14 channels in the oc-
cipital region (PO7, PO3, POz, PO4, PO8, POO9, POO1, POO2,
POO10, O1, Oz, O2, Ol1h, Ol2h). These channels are close to the
V1 visual cortex, which is associated with low-level visual features.
The distribution of electrodes on the EEG cap and the name and lo-
cation of selected channels are shown in Figure 3.

The dataset is split into three sets by images, 80% for training,
10% for validation and 10% for testing, ensuring that images from
different sets do not overlap each other across subjects.

4.2 Experiment Details

Our architecture takes 2 encoders, where the visual encoder has 19K
parameters, and the semantic encoder has 523K parameters. The
mapping model has 1.6M parameters. The diffusion model has 385M
parameters, with total time steps of 160.

Figure 3. Among the 128 channels, 14 of them are selected and they are
highlighted, which are close to the V1 visual cortex.

A. Liu et al. / Hidden States in LLMs Improve EEG Representation Learning and Visual Decoding2134



Figure 4. Examples for image reconstruction results. Ground-truth labels are at the first row. Ground-truth images are at the second row. And the remaining
rows are different generated image samples.

The recommended hardware environment is the one we used for
training and testing, with Intel Xeon Gold 5115 as CPU, NVIDIA
GeForce RTX 2080Ti as GPU, and 32GB DDR4 as RAM.

4.3 Image Reconstruction Visualization

Through our framework, the end-to-end reconstruction from EEG
signals to images can be accomplished. Some examples for the gen-
erated images are shown in Figure 4. It can be seen that, by extracting
the semantic features and the visual features from EEG signals, the
images reconstructed with our method reproduce the stimulus images
in both semantic and visual features. For the same ground-truth im-
age, different samples are generated, showing that images generated
by our framework are of high diversity rather than simply repeating
the same result.

Certainly, there are some failure results. Besides extracting the
wrong features from EEG, limited pre-trained generative models can
also lead to failure reconstruction. Figure 5 shows some examples.
Since we use a pre-trained diffusion model as a generative model, it
sometimes fails to generate right images even with the direct input
of ground-truth labels. These failure results demonstrate the short-
comings of pre-trained diffusion models, which may influence the
accuracy of image reconstruction.

Figure 5. Some failure reconstruction results caused by the pre-trained dif-
fusion model. The four rows from top to bottom are: ground-truth labels from
the ImageNet description, ground-truth images of the visual stimuli, images
generated by inputting the ground-truth labels directly, and images generated
by inputting features predicted from EEG signals.

4.4 Comparison

4.4.1 Semantic Classification

In order to evaluate the effectiveness of representation learning, we
calculate the accuracy of the category classification of semantic fea-
tures. The results for classification compared with other methods are
shown in Table 2.

Table 2. Result comparison with other methods on the classification accu-
racy and the length of the time window used for decoding.

Methods Accuracy Time window

EEGChannelNet[32] 60.40% 480ms
DreamDiffusion[4] 45.80% 500ms

Ours 70.31% 160ms

The results show that our method has a great improvement in clas-
sification accuracy compared to other methods while reducing the
length of the time window used to decode EEG signals. By intro-
ducing hidden states of a large language model, the efficiency of se-
mantic representation learning can be facilitated. And by intercepting
continuous EEG signals at different time points, the amount of train-
ing data is expanded and it also helps the model to learn the temporal
invariance of the signal under the same condition. So our method is
more effective and more responsive to time for the real-time EEG
classification tasks.

4.4.2 Image Reconstruction

The following three metrics were used to evaluate the quality of re-
constructed images.

Inception Score. The Inception Score is a metric used to evalu-
ate the quality and the diversity of images generated by generative
models[36]. The higher score indicates the more specific object and
the higher diversity of images from different classes[5].

SSIM. The structure similarity index measure (SSIM) is a metric
used to quantify the similarity between two images. It compares the
structural information of the images by considering local patterns of
pixel intensities and their relationships.

CLIP Score. CLIP Score is a metric to measure the semantic sim-
ilarity between images and text, which can also be used to evaluating
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the semantic correlation between images by computing the cosine
similarity of the CLIP embeddings of two images[14].

We compute the CLIP scores and the SSIM between generated
images and ground-truth images, and compute the average inception
score of each category. Table 3 shows the metrics of our method and
the quantitative results compared with other methods.

Table 3. Results comparison with other methods. IS represents the incep-
tion score, CS represents the CLIP score, and SSIM represents the structure
similarity index measure.

Metrics IS CS SSIM

Brain2Image[17] 5.07 / /
NeuroVision[18] 5.15 / /

Ours 7.20 0.6230 0.1849

To further demonstrate our quality of image reconstruction, we se-
lected images from the reconstruction results in the same categories
as the results presented in other methods. The visualization results
are shown in Figure 6. It can be seen that the clarity, realism and
diversity of the reconstructed images are greater by our method.

As the results show, our method outperforms other methods on
both low-level and high-level metrics.

4.5 Ablation Study
For the EEG representation learning and the image reconstruction
task, we further conduct several ablation studies. We evaluate the
effectiveness of the modules in our framework by calculating the
inception scores, CLIP scores, and structure similarity index mea-
sures for different models. Furthermore, as shown in Figure 5, some
semantic reconstruction results differed significantly from the orig-
inal images. To better measure the semantic similarity, we compute
the CLIP scores between images generated from EEG signals and
ground-truth labels.

Visual features. By selecting the images from the training dataset,
we fuse the visual features into the image reconstruction stage, which
can help to improve the quality of reconstructed images at low levels.
To validate the effectiveness of the visual features, we conduct abla-
tions by inputting the pure noise as initial images into the diffusion
model and performing the denoising processing.

Semantic features. The semantic features are used in the image
reconstruction stage to generate images that are similar to stimuli
images on semantic levels. To validate the effectiveness of semantic
features, we also conduct ablation studies. First, we perform the ab-
lation on the semantic features used in the diffusion process. We take
the unconditional generation by inputting the initial images. For the
ablation of the two modules, the diffusion model will generate com-
pletely stochastic images. So we replace the contrastive learning of
the semantic encoder network by optimizing it with the MSE loss, in-
stead. The output features are also mapped into the glide embedding
spaces by training a fully-connected network and used to generate
images as the guidance information.

Figure 6. Qualitative results compared with other methods. The three rows
from top to bottom are images reconstructed by Brain2Image, DreamDiffu-
sion and our method, respectively.

We perform ablation studies on visual features, semantic features
and both of them, respectively. Table 4 shows the results for abla-
tion studies. IS, CS and SSIM represent the same meaning as Table
3. CLIP scores with images generated by ground-truth labels are de-
noted by CSwLabels

Table 4. Results for ablation studies. SEM represents incorporating seman-
tic features as guidance information. CL represents optimizing the semantic
encoder network through contrastive learning. VIS represents generating im-
ages by incorporating visual features.

Model SEM CL VIS IS CS CSwLabels SSIM

1 � � � 6.16 0.5547 0.7352 0.1576
2 � � � 8.26 0.5540 0.7213 0.1847
3 � � � 7.10 0.6098 0.7975 0.1586
4 � � � 7.20 0.6230 0.7992 0.1849

It can be seen that the inclusion of semantic features for guidance
leads to a lower IS and reduces the diversity of the generated images.
Contrastive learning of semantics enables the semantic encoder to
learn a more effective representation of the semantic information of
the image so that the semantic similarity between the reconstructed
image and the original image increases. Introducing visual features
by retrieving images in the training set will lead to an increase in
image similarity at the low level, and can also increase the similarity
metrics with original images at the high level.

5 Conclusion

In this work, we propose a method for EEG representation learning
and visual decoding and complete end-to-end image reconstruction
tasks from EEG signals with high performance. To alleviate the dif-
ficulty faced in EEG visual decoding tasks such as the complex pat-
terns and low signal-to-noise, we explore the possible application of
LLMs in these tasks. We incorporate the hidden states in pre-trained
LLaMa-2 as extra knowledge to enhance the performance of EEG
representation learning and visual decoding. We align the represen-
tation of EEG signals with the stimuli images on both semantic fea-
tures and visual features by contrastive learning, extract information
from brain activity efficiently, and finally reconstruct the correspond-
ing stimuli images. To generate images similar to real images both
on low levels and high levels, we fuse the semantic features and vi-
sual features at the image generation stage by applying a pre-trained
diffusion model, selecting images from the training dataset accord-
ing to the extracted features as initial input, and performing diffusion
processes. Our method achieves the state-of-the-art result of EEG se-
mantic classification and image reconstruction on the ImageNet-EEG
dataset.

Also, there are some limitations in our work, such as the gener-
alization to other datasets is unclear, the method depends heavily on
the pre-trained models, and well-annotated datasets are needed. They
need to be further explored in EEG visual decoding tasks.

In short, our work shows the potential applicability of hidden state
representations from language models, validates the relationship be-
tween large language models and human visual perception tasks, and
can be further studied on more complex cognition tasks in the future.
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