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Abstract. This paper introduces a novel pruning method designed
for transfer-learning models in computer vision, leveraging XGBoost
to enhance model efficiency through simultaneous depth and width
pruning. Contemporary computer vision tasks often rely on transfer
learning due to its efficiency after short training periods. However,
these pre-trained architectures, while robust, are typically overpa-
rameterized, leading to inefficiencies when fine-tuning for simpler
problems. Our approach utilizes Parallel Tree Boosting as a surro-
gate neural classifier to evaluate and prune unnecessary convolu-
tional filters in these architectures effectively. This method addresses
the challenge of interference that is often present in transfer-learning
models and enables a significant reduction in the size of the model.
We demonstrate that it is feasible to achieve both depth and width
pruning concurrently, allowing for substantial reductions in model
complexity without compromising performance. Experimental re-
sults show that our proposed XGB-based Pruner not only reduces
the model size by nearly 50% but also improves the accuracy by up
to 9% in test data compared to conventional models. Moreover, it
can achieve a dramatic reduction in model size by over a hundred
times with minimal accuracy loss, proving its effectiveness across
various architectures and datasets. This approach marks a significant
advancement in optimizing transfer-learning models, promising en-
hanced performance in real-world applications.

1 Introduction

In recent years, transfer learning has dominated deep learning tasks
in natural language processing and computer vision. The transfer
learning approach in computer vision assumes that various tasks re-
quire similar low-level features, such as edges, along with higher-
level features, such as corners along triangles or circles and their
compositions. This assumption has been proven correct in multiple
problems, as transfer learning is widely applicable to various tasks. A
plethora of pre-trained models are available via TensorFlow [1], Hug-
gingFace, or Ultralytics [15], [16], and they are go-to solutions for
deep learning tasks, especially in the case when available problem-
specific training datasets are small.

An essential problem associated with deep learning and transfer
learning is overparametrization [7]. Analysis of this problem yields
Lottery Ticket Hypothesis [10], [11], which states that there exists a
subnetwork capable of achieving similar or sometimes better results
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than the original network. This hypothesis’s theoretical and experi-
mental analyses result in Neural Architecture Search [2], [27], and
approximate pruning algorithms.

Pruning algorithms may not change the overall model size or
can reduce its width. Recent pruning methods show that reducing
the depth of a model is also possible. However, pruning algorithms
bother to prune transfer-learning models efficiently due to their al-
ready well-trained architectures.

In this paper, we address the following issues:

• Transfer learning uses architectures trained to solve typically more
complex problems than the solved one, resulting in the possibility
of reducing some convolutional filters that are unnecessary - we
propose a heuristic for pruning transfer-learning backbones.

• Depth pruning was not used in parallel with width pruning yet -
we propose a method of doing it.

The second section provides an overview of related state-of-the-
art (SOTA) methods of pruning and eXtreme Gradient Boosting for
trees. The third section introduces our proposed XGB-based Pruner
algorithm. The fourth section focuses on the idea of depth pruning
using the XGB-based Pruner. The fifth section presents the results of
numerical experiments, while the sixth section compares the results
of the proposed algorithm with those of other SOTA approaches. The
last section provides general conclusions about the possibilities of the
proposed algorithm.

2 Related Works

Pruning algorithms aim to reduce the size of the model, the used
memory, and computational complexity by removing unnecessary
parameters. Pruning is especially applicable for ConvNets as most
model parameters are located in the convolutional backbones. Most
pruning methods require multiple fine-tuning stages of the model af-
ter pruning to achieve satisfactory results [8]. Considering the well-
chosen pruning rate, the entire process can result in a more effective
and smaller network than the baseline model before pruning [3].

2.1 Structured, unstructured and depth pruning

Usually, pruning methods are divided into structured and unstruc-
tured pruning. Unstructured pruning refers to methods that aim to
prune particular weights and thus reduce interference, i.e. redundant
signals that introduce noise in an inference process in a model by
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setting selected weights to 0. Unstructured pruning generally reduces
neither computational complexity nor memory consumption. Struc-
tured pruning aims to prune entire filters and respective channels
by removing them from the tensors. It also reduces the model size
by decreasing the convolutional tensor’s width (filter dimension),
i.e., structured pruning may be considered width pruning. Structured
pruning may be constrained when preserving specific layer shapes,
e.g. in residual connections.

In [5], a novel pruning approach was proposed in which the au-
thors prune models by removing entire layers. It was achieved by
training the dense neural classifier on top of the n-first convolutional
layers and then assessing its performance. The best sub-model, which
consists of an optimal depth backbone, is then chosen as a final solu-
tion. Such an approach is computationally demanding due to the ne-
cessity of training multiple neural classifiers. Moreover, width prun-
ing cannot be performed in parallel.

2.2 Model-based and data-based pruning

Pruning methods differ in the heuristics on which the pruning deci-
sion is made. Thus, they can be divided into model-based pruning
heuristics and data-based heuristics. Common model-based pruning
heuristics utilize the magnitude of the weight or filter to determine
the utility of the weight or filter, respectively. This approach can be
implemented as unstructured [12] and structured [17] pruning. This
predicate assumes that the magnitude of useless filters is decreased
during training. These methods assume that the poorly formed filter
can only be identified by considering the filter itself. Their utility for
transfer-learning backbones is limited as they do not hold genuine
filters inside pre-trained models, which are well-formed due to long
training processes. Still, they may proceed with an inference based
on redundant features. It is not the filter itself that performs poorly,
but it does not match the problem to be solved.

Another class of heuristics may be described as data-based. Us-
ing data sets, it performs pruning. The recent proposition of such a
method was described in [20], which estimates the importance score
through an averaged gradient. However, these methods may be prob-
lematic in the case of massive datasets due to the long inference
times and the extensive use of memory. Although data-based prun-
ing utilizes the information available in the data, it may be unable
to proceed with pruning properly for pre-trained architectures as this
approach assumes that only filters that represent patterns absent in
training data are redundant. This statement may also not hold - con-
sider the problem of discriminating between cats and dogs: a filter
representing fur is present in both cases but has no meaning in the
inference process because it is not discriminative for these classes.
In fact, it is redundant indeed.

3 XGB-Based Pruner

The fundamental assumption of the proposed algorithm is that the
utility of a filter can be measured by its presence and utility in the
decision process for the solved problem defined by a given dataset.

We also assume that the neural classifier N can be mimicked by
a surrogate XGB classifier T . We take the importance of features,
calculated by one classifier, that reflect the nature of the problem in-
stead of the decision process of the algorithm itself, that is, if one
classifier C1 tends to assess one feature as important in the decision
process, another classifier C2 should similarly process the informa-
tion. Considering the exemplary problem of discriminating between

triangles and circles, the "sharpness" of the edges should be an es-
sential feature independent of the algorithm chosen to distinguish
between them instead of, e.g., the background color.

3.1 Extreme Gradient Boosting

XGBoost is a tree-based ensemble machine-learning algorithm that
uses gradient boosting to train decision trees. For simple classifica-
tion and regression tasks, XGBoost [4] has a strong track record of
producing high-quality results in various machine learning tasks, es-
pecially in Kaggle competitions, where it has been a popular choice
for winning solutions.

3.2 Modus operandi

Consider an image classification task with data D (1) consisting of
images X and respective labels Y . To solve this problem, we utilize
the neural network (2) consisting of L convolutional layers in the
feature extraction part N , defined as (3), followed by the reduction
layer R (4) and the neural classifier C (5). The reduction layer (4)
transforms the data tensor into a vector of features and can be per-
formed by the global max pooling layer or global average pooling.
The reduced feature must assess each filter scalar real value, which
makes the flattened layer unsuitable. Variable ϕ represents interme-
diate results for every layer (6) and ϕ0 = X .

D ⊂ X × Y (1)

C ◦ R ◦ N : X → Y (2)

N = N (L) ◦ ... ◦ N (1) (3)

R : IRw×h×c×n → IRn (4)

C : IRn → Y (5)

N (l) : ϕl−1 → ϕl (6)

The algorithm works as follows: for every layer l ∈ [1, L] in the
feature extractor N part, we create a submodel S(l) as described by
(7).

S(l) = T ◦ R ◦ N (l) ◦ ... ◦ N (1) (7)

Each of the n filters in the final convolutional layer results in a
scalar feature. These features are then used as training data in the
XGB classifier T . The trained surrogate classifier T can assess the
importance I of each feature, which is calculated for every filter n
after (8), i.e., the improvement in precision brought about by a feature
to model averaged over all trees. This refers to the default method of
estimating feature importances in XGBoost named "Gain".

∀j ∈ (1, n) I(ϕ(j)|T ) = Gain(ϕ(j)) (8)

The pruning predicate P with the threshold ρ is defined as (9). The
proposed method works structurally as the pruning predicate assesses
results per filter. Therefore, it can efficiently reduce the size of the
output model.

P ( i | ρ, T ) = I(ϕ(i)|T ) ≤ ρ (9)

The pseudocode for the proposed pruning algorithm can be found
in Algorithm 1. L refers to the number of convolutional layers in the
reference model N .
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Figure 1. Distribuiton of Λ across chosen architectures (VGG16 and
VGG19) and datasets (Flowers and Deep Weeds).

3.3 Feature importance analysis

Figure 1 shows the distribution of Λ defined as (10), that is, the nat-
ural logarithm (ln) of the importance of features normalized with

Algorithm 1 XGB Based Pruner
Parameters:

XGB parameters Q
threshold ρ
performance measure μ
algorithm mode MODE
Inputs:

training data D
reference ConvNet backbone N
Outputs:

pruned model N ∗

performance indices {μ(i) : i ∈ [1;L]}

X = images
Y = data labels
for i = 1 to L do

ϕ ← N (i)(X)
Create surrogate model T (i) given parameters Q
Train model T (i) using R(ϕtrain) and Ytrain

Find all indices satisfying the pruning predicate (9)
J(i) = {j : P ( j | ρ, T (Q))}
μ(i) = μ(T (i) | R(ϕval), Yval)
if MODE is LAYER-WISE then

Proceed pruning of layer i and ϕ according to J(i)
end if

X ← ϕ
end for

if MODE is ONE-SHOT then

Prune the entire model according to J
end if

ε > 0 used to ensure a positive argument of the logarithm. Different
layers are displayed for VGG19 on the Flowers dataset and VGG16
on the Deep Weeds [21] dataset. In deeper layers, the distribution of
Λ seems to follow a normal distribution. For these plots, ε was cho-
sen as 1e-16. The x-axis scales differ in each plot because the number
of convolutional filters varies across the layers.

Λ(i) = ln(I(ϕ(i)|T ) + ε) (10)

3.4 Hyperparameter selection

The algorithm parameters cover threshold ρ for the pruning predi-
cate, mode, and parameters for the XGB surrogate model, such as the
number of tree limits, the tree max depth, the function to measure the
feature importance, and the loss function. XGB-based Pruner works
quite robustly regarding parameter selection of the XGB surrogate.
However, challenging computer vision tasks may require parameter
adjustment. The authors find adjusting the number of trees and tree
max depth to be the most promising, where prior knowledge: the
harder the problem, the deeper trees can be utilized. Threshold ρ can
be adjusted by analyzing Λ histograms.

3.5 Mode selection

The proposed algorithm can work in different modes:

• One-Shot: Feature importance assessment is performed for every
layer, and then pruning is done for every layer. In this context,
one-shot refers to processing all layers simultaneously, not se-
quentially.

• Layer-Wise: Feature importance assessment followed by pruning
is done for each layer sequentially: layer l is assessed, then pruned,
after that layer l + 1 is assessed and pruned, etc.

The layer-wise mode should yield more aggressive pruning, as it
assumes the same data flow during inference as in the pruned model.
On the other hand, the One-Shot model can proceed with pruning
based on information that may no longer be available in the inference
of a model (as it may have been pruned). However, the experimen-
tal results presented in the following sections have shown that the
One-Shot mode may yield models that are larger but perform better
because of relatively mild pruning.

3.6 Optimization target

The proposed method can be used to reduce size and improve per-
formance. Different modes usually yield a different model. This pa-
per considers two targets: model size, that is, several parameters in a
model that we aim to minimize and simultaneously maximize model
performance, measured as accuracy over test datasets.

The proposed solution optimization target is defined utilizing
Pareto optimality, i.e., getting a better solution measured in one cri-
terion is impossible without worsening the second one. We aim to
dominate the reference backbone solution (Transfer learning model
before pruning), i.e., exclude the reference model from Pareto Fron-
tier. We strive to achieve comparable performance for the pruned
models as for the unpruned models, minimizing the model size and
the number of parameters.
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4 Accelerated depth pruning

4.1 Motivation

For multiple SOTA architectures, the number of parameters in a layer
is expected to grow as one moves from input to output of a ConvNet
backbone. The comparison of the cumulative weight density for the
VGG19, ResNet50 [13], ResNet101v2 [14], and InceptionV2 [25]
backbones is shown in Figure 2. The steep incline of the posts on
their right part indicates that most of the model weights are located
in deeper layers of the models. None of the models presented at half
their depth has more than 36% of their weights.

Figure 2. Comparison of cumulative parameter densities for the chosen
ConvNet backbones. Most weights in SOTA architectures are located at the
end of the convolutional backbone.

[19] has shown via the activation maximization method that the
first layers depict simple patterns, while the deeper convolutional
layers depict more abstract features. We conclude that for some prob-
lems, there is no need for such complex features to be utilized and
that a more straightforward representation is sufficient for solving a
task correctly. This allows us to reduce the size of the model signif-
icantly by pruning entire deeper layers where the pruning is more
efficient than in other layers as they contain the major part of all
trainable parameters.

4.2 Heuristic

Each sub-model is assessed by the performance measure μ(l) defined
as (11). Sub-model S(l) is assessed over data D. This paper uses the
accuracy score as a reference performance score μ.

μ(l) = μ(S(l) | D) (11)

Depending on the depth heuristics HD , one may expect μ to sat-
isfy certain constraints. Here we assume that normalized measure
μ∗, defined as (12), satisfies (13), i.e., the normalized performance
of the XGB model T is comparable to the normalized performance
achieved by the neural classifier.

μ∗(l) =
μ(l)

maxi∈[1;L] μ(i)
(12)

μ∗(l | C) = μ∗(l | T ) (13)

4.3 Analyses of Experiments

The results of the validation of (13) are shown in Figure 3, where
the neural classifier has been trained on the same backbone sub-
models as the surrogate XGB classifier. The reference model was

chosen as VGG19 [24] in two classes (roses and tulips) of the Ten-
sorFlow Flowers Dataset [26] and the VGG16 model [24] over the
full TensorFlow Flowers Dataset. Both models were pre-trained on
the ImageNet dataset [6]. Values of μ∗(l) are close to each other, and
the general trend is preserved for both classifiers.

Figure 3. Comparison of μ∗ for experimental data for the commonly used
VGG19 transfer learning architectures.

The equality (13) does not always hold, and it is not trivial to de-
fine the conditions under which it has. However, as shown in the
following sections, the proposed constraint does not need to hold to
work sufficiently well. It is sufficient that the values of the neural
classifier and its surrogate are approximately the same.

Heuristics HD to estimate the optimal depth of the backbone is
defined as (14). Such an approach focuses only on the performance
of the model.

HD : l∗ = arg max
l∈(1,L)

μ∗(l) (14)

As the XGB-based Pruner algorithm defined in Section 1 already
gives a set of performance indices mapping {μ(i) : i ∈ [1;L]}, it is
not necessary to rerun the calculations. This is a significant improve-
ment over existing methods for depth pruning of ConvNets.

Depth pruning cannot result in a larger model than pruning in a
depth-preserving manner. This makes depth pruning the go-to solu-
tion for applications where the model size is critical for optimization.

5 Results of Experiments

5.1 Experimental setup

The general training scheme for XGB-based Pruner has been de-
scribed in Algorithm 2. The accuracy of a model refers to the maxi-
mum value of accuracy in the test dataset achieved during the training
process. The entire source code, experimental setup details and de-
fault parameters, together with the README materials, have been
attached to the paper in the supplementary materials [23] for com-
plete reproducibility.

5.2 Tests for common architectures

Experiments have been conducted for Flowers [26], Cats vs Dogs [9],
and eye diseases classification datasets: Diabetic Retinopathy binary
classification (DR Eye) and Eye diseases dataset for three different
diseases (Diabetic Retinopathy, Cataract, Glaucoma) and healthy ref-
erence. The results of the numerical experiments are covered in Table
1. However, the proposed algorithm allows the VGG architectures to
achieve similar or better results than ResNet50. For majority of the
datasets, the proposed algorithm removed up to 50% of all weights
while maintaining nearly the same level of accuracy. For Diabetic
Retinopathy dataset pruned model with 27% of reference model pa-
rameters gained 2% better accuracy on the test dataset.
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Algorithm 2 Training Scheme
Parameters:

Pruner parameters Params
Flag indicating depth pruning DEPTH-PRUNING
Number of epochs for freeze training ef
Number of epochs for unfreezing training eu
Inputs:

training data D
reference ConvNet backbone N
Outputs:

finetuned model C ◦ R ◦ N ∗

l ← L
get N ∗ through XGB-based Pruner according to Params
if DEPTH-PRUNING then

infer optimal depth l∗ according to (14)
remove layers after l∗th layer from N ∗ model
l ← l∗

end if

freeze entire convolutional backbone
add reduction layer R and neural classifier C
train model C ◦ R ◦ N ∗ for ef epochs
for i = 1 to l do

train model C ◦ R ◦ N ∗ for eu epochs
unfreeze the last frozen convolutional layer

end for

Table 1. Comparisons of the model sizes and performances μ across differ-
ent architectures and datasets with the reference models.

DATASET VGG16 VGG19 RESNET50

BINARY FLOWERS
REFERENCE SIZE 1.5E7 2E7 2.3E7

μ 82% 84% 91%
PROPOSED SIZE 6.6E6 9.9E6 1.2E7

μ 93% 95% 92%
FLOWERS

REFERENCE SIZE 1.5E7 2E7 2.3E7
μ 75% 67% 90%

PROPOSED SIZE 1.2E7 1.6E7 2.2E7
μ 92% 91% 91%

CATS VS DOGS
REFERENCE SIZE 1.5E7 2E7 2.3E7

μ 74% 81% 98%
PROPOSED SIZE 7.4E6 1.1E7 7.9E6

μ 97% 97% 96%
DR EYES

REFERENCE SIZE 1.5E7 2E7 2.3E7
μ 95% 95% 96%

PROPOSED SIZE 4.1E6 9.3E6 8.2E6
μ 97% 98% 95%

EYE DISEASES
REFERENCE SIZE 1.5E7 2E7 2.3E7

μ 87% 88% 90%
PROPOSED SIZE 7.9E6 1E7 1.2E7

μ 93% 92% 90%

5.3 Mode selection

The proposed pruning algorithm has been applied to multiple ref-
erence backbones and datasets. Figure 4 presents one model (one
shot depth) that spans the Pareto Frontier for the VGG16 model and

the Eye diseases dataset. Figure 5 shows three models spanning the
Pareto Frontier for the VGG19 model for the same dataset - depend-
ing on the objective, one can select a model with half of the parameter
(stepwise depth mode), one with +4% accuracy score (stepwise) or
intermediate solution (one shot depth).

Notably, for both experiments, every proposed model excludes the
reference backbone model from Pareto Frontier; the proposed solu-
tion is always better than the reference model, independent of the
mode choice. Usually, the proposed depth pruning approach yields
the best results.

Figure 4. Comparison of the different modes of the algorithm for the
VGG16 model over the Eye diseases dataset.

Figure 5. Comparison of the different modes of the proposed XGB-based
Pruner for the VGG19 model over the Eye diseases dataset.

5.4 Model size and problem complexity

The definition of the complexity γ of computer vision tasks can be
challenging to express formally. Therefore, we assume that complex-
ity is monotonous in the mean of inclusion; that is, if for two sets of
classes (and thus their instances) A and B, the formula A ⊂ B is sat-
isfied. The complexity of a sub-problem of discriminating between
sub-classes A is lower than or equal to the complexity of distinguish-
ing between sub-classes B. This is formally stated by (15).

γ : A ⊂ B =⇒ γ(A) ≤ γ(B) (15)

Given the constraint for relative complexity (15), we expect an eas-
ier problem to require a smaller model than a more complex problem.

Table 1 shows the model sizes measured as the number of param-
eters for the Flowers Dataset [26] and the Binary Flowers, i.e., the
images that depict Tulips and Roses from the same dataset as well
as for the DR Eyes and Eye diseases datasets. All models achieve
accuracies greater than 90%. For simpler sub-problems, model sizes
are reduced compared to the base problems for all common architec-
tures.
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5.5 Parameter choice

Figure 6 shows the threshold ρ’s impact on the output model size
and accuracy. The reference model for this experiment is VGG16,
and the DR Eyes dataset. All the pruning was performed in a depth
pruning manner, too. The higher the threshold ρ, the smaller the out-
put pruned model, where the differences in the resulting models are
negligible for low thresholds. The reference VGG16 model achieves
95% accuracy and 14,714,688 parameters. The most miniature archi-
tecture possible reached 71,165 total parameters (which is less than
0.5% of the total parameter count of the reference model) and a val-
idation set accuracy of 76%. At the same time, the best-performing
one has 6,934,695 real parameters (47% of the total parameter count
of the reference model) and 97 % accuracy on the validation dataset.

Figure 7 shows the threshold ρ’s impact on the output model size
and accuracy. The reference model for this experiment is VGG19 and
the Cats vs. Dogs dataset. All the pruning was performed in a depth
pruning manner, too. The higher the threshold ρ, the smaller the out-
put pruned model, where the differences in the resulting models are
negligible for lower thresholds. For higher thresholds, lack of sub-
tlety in the pruning process, i.e., inference with the wrong assump-
tion of data availability, results in a model just above the entirely
random classifier. Lower thresholds result in models with compara-
ble accuracy.

5.6 Discussion

The results may vary due to the threshold ρ choice. Although ρ
may be poorly chosen, the proposed pruning algorithm still deliv-
ers Pareto-optimal solutions due to the significant influence of depth
pruning. The results of the chosen architectures across different
datasets show that the proposed method can perform pruning effi-
ciently. It may be surprising that transfer learning architectures can
achieve much better results with proper pruning. Such gains are pos-
sible as even properly formed filters across model layers may intro-
duce interference because they do not represent any feature crucial
for a decision process. Such features introduce noise to an inference
process and reduce the efficiency of a model.

6 Comparisons

6.1 Performance comparison

For comparisons with the proposed method, we have chosen the pop-
ular Magnitude-based Pruner, i.e., unstructured pruning, which sets
all weights with a magnitude lower than the given threshold to 0.
We use it due to its popularity in frameworks like PyTorch [22]. We
focused on comparing the ability of interference reduction between

Figure 6. Comparison of different thresholds ρ for layer-wise mode on
VGG16 model for DR Eyes dataset.

Figure 7. Comparison of the different ρ thresholds for the one-shot mode
on the VGG19 model for the Cats vs Dogs dataset.

these two pruning methods, as the second one, due to its unstruc-
tured approach, is not restricted to removing entire filters, just par-
ticular weights. Comparisons were conducted for multiple pruning
thresholds of the Magnitude-based Pruner. The comparison for the
VGG16 model and Binary Flowers dataset is depicted in Figure 8.
Every mode of the proposed method is better in size and accuracy
than even the best Magnitude-based Pruner. The same holds for the
comparisons on the entire Flowers dataset shown in Figure 9.

Figure 8. Comparison of the proposed XGB-based Pruner and the
Magnitude-based Pruner over the Binary Flowers dataset with the VGG16
as a reference architecture.

For the adequately chosen parameters and modes, the resulting ar-
chitecture of the XGB-based Pruner is much smaller than the one
produced by Magnitude-based Pruner. Moreover, the proposed algo-
rithm for all modes performs better than the Magnitude-based Pruner,
as presented in Figures 10 and 11. XGB-based Pruner eliminates
filters, i.e., reduces interference in the model more efficiently than
Magnitude-based Pruner eliminates weights. This may be considered
as a step toward solving the Lottery Ticket Hypothesis problem.

6.2 Speed comparison

For speed comparison solution, we utilize the depth pruning pro-
posed by De Leon and Atienza [5]. For tests, XGB has been se-
lected. For comparison, neural networks were trained for 10 epochs,
which is usually not sufficient to achieve convergence. As the lit-
erature lacks theoretical analysis of the time complexity of neural
networks and XGB training, the explicit time is compared. Table 2
shows the comparison of the training speed for multiple datasets.
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Figure 9. Comparison of the proposed XGB-based Pruner and the
Magnitude-based Pruner over the Flowers dataset with the VGG16 as a refer-
ence architecture.

Figure 10. Comparison of the proposed XGB-based Pruner and the
Magnitude-based Pruner over the Binary Flowers dataset with the VGG19
as a reference architecture.

Figure 11. Comparison of the proposed XGB-based Pruner and the
Magnitude-based Pruner over the Flowers dataset with the VGG19 as a refer-
ence architecture.

Gradient boosted trees are much faster to train, although neural
surrogate was trained only for 10 epochs. For neural surrogates, the
JIT compilation takes up most of the time.

Table 2. Speed comparison of the trained XGB and the neural surrogates
for the VGG16 architecture.

DATASET TRAIN TIME TIME TIME
SAMPLES NN[S] XGB[S]

BINARY FLOWERS 1152 465 73 -84%
FLOWERS 2936 1117 521 -53%
DEEP WEEDS 2431 1139 646 -43%
CATS VS DOGS 2000 770 114 -85%
DR EYES 2076 776 64 -91%
EYE DISEASES 3374 1256 471 -62%

7 Limitations

The proposed algorithm has been introduced for pruning convolu-
tional backbones used in classification tasks 1 as they are the most
popular tasks in computer vision based on transfer-learning architec-
tures. This is because most ConvNet parameters are located in the
convolutional backbones.

The XGBoost algorithm also supports regression tasks, so the
XGB pruner may be applied to such problems, as well. However,
regression tasks in computer vision are not very common, so we do
not provide such experiments in this paper. Although the proposed
algorithm utilizes XGBoost as a surrogate classifier, the proposed
approach allows for the use of other surrogates, too.

The proposed algorithm especially aims to reduce the complexity
of transfer-learning architectures to improve their efficiency. XGB
Pruner aims to remove filters that do not represent meaningful fea-
tures in certain datasets. Therefore, it is not expected to introduce sig-
nificantly better results for datasets comparable to datasets like Ima-
geNet [6] or COCO [18], which are used for training these transfer-
learning architectures.

Further work is required for the adaptation of the proposed meth-
ods for detection tasks (composition of classification and bounding
box regression) and segmentation tasks (per-pixel classification).

8 Conclusions

We proposed the XGB-based Pruner, which can efficiently address
the problem of pruning transfer-learning architectures. Moreover, the
XGB-based Pruner approach allows the estimation of optimal depth
for depth pruning simultaneously proceeding with width pruning,
which significantly enlarges the pruning ratio even with poorly cho-
sen parameters for width pruning. In detail, we have:

• proposed a fast pruning method that solves the pruning problem
for the different transfer learning models;

• analyzed the depth pruning mode and showed that it can be per-
formed with no additional computational overhead;

• shown that the proposed pruning method is pretty robust and
works well for different model architectures and computer vision
datasets;

• explored the proposed method experimentally and showed its su-
perior results to other common pruning methods.

Finally, we have demonstrated that we can reduce the model size
by nearly 50% while increasing the accuracy on the test dataset by
11% or reduce the model size by nearly 75%, increasing the accuracy
on the test dataset by 2%. Alternatively, we can reduce the model
size by more than two hundred times, slightly reducing the model
accuracy. The selection of the final reduction rate depends on the
application and the computing resources of the system.
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