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Abstract.

Theoretical studies on the representation power of GNNs have
been centered around understanding the equivalence of GNNs, using
WL-Tests for detecting graph isomorphism. In this paper, we argue
that such equivalence ignores the accompanying optimization issues
and does not provide a holistic view of the GNN learning process. We
illustrate these gaps between representation and optimization with
examples and experiments. We also explore the existence of an im-
plicit inductive bias (e.g. fully connected networks prefer to learn
low frequency functions in their input space) in GNNs, in the con-
text of graph classification tasks. We further prove theoretically that
the message-passing layers in the graph, have a tendency to search
for either discriminative subgraphs, or a collection of discriminative
nodes dispersed across the graph, depending on the different global
pooling layers used. We empirically verify this bias through experi-
ments over real-world and synthetic datasets. Finally, we show how
our work can help in incorporating domain knowledge via attention
based architectures, and can evince their capability to discriminate
coherent subgraphs.

1 Introduction

Graph Neural Network’s (GNNs) have enabled end-to-end learning
over relational data due to differentiable loss functions, that can
be trained with non-linear components like multi-layer perceptrons.
Several real world applications such as fake news detection [22],
physical simulation [2], traffic delay estimation [9], and fraudulent
transactions prediction[7] have GNNs as a crucial component.

Graph classification is one of the most common downstream graph
neural processing applications[11]. While different GNN operators
update node level features via message-passing, the graph level pre-
dictions are done by pooling the member nodes into a single unified
representation. This pooling is either done by coarsening functions
that gradually reduce the size of the graph [4], or with the help of
global pooling methods like average, max, sum [10].

The success of GNNs has also led to several attempts toward defin-
ing theoretical boundaries of what GNNs can and can not do. The
strengths and weaknesses of graph neural networks have been exten-
sively evaluated in terms of their representation capabilities. Most
studies have focused on the capability of message-passing networks
using Weisfeiler-Lehman test, which is constrained by its limitations
in distinguishing isomorphic graphs [14]. The proposed architec-
ture of Graph Isomorphism Network [32] implements an MLP to
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model injective function, and be as powerful as 1-WL test. Higher
order generalization of WL tests, using a combination of equivari-
ant and invariant functions, is shown to surpass limitations of simple
GNN s that use message-passing [24]. A disparity exists between the
theoretical understandings and optimization practices within GNNs.
For instance, previous works indicate that subgraph-based count-
ing/classification is inherently unattainable for subgraphs exceeding
a size of three [6]. However, there are empirical findings to chal-
lenge these constraints, primarily due to the relaxation of restrictive
assumptions, such as fixed-node features derived from a countable
set.

In this work, we introduce an implicit bias inherent in graph con-
volutional networks when integrated with self-attention-based global
pooling functions. To our knowledge, this marks the initial inves-
tigation characterizing the graph-classification task with a focus on
attention pooling layers. We empirically explore the full spectrum of
attention, ranging from average pooling (equivalent to no attention)
to max pooling (singular focus). Additionally, we substantiate our
empirical findings with theoretical insights and conduct an in-depth
analysis of attention-based global pooling. We summarize our main
contributions as follows:

e Develop an experimental setup to elicit GNN’s implicit bias:
We introduce a dataset with unique characteristics of occurrence
and connectedness, that underscores the ambiguity inherent in
GNN models for graph classification tasks. Our approach pro-
vides empirical insights into deducing the implicit bias of GNNs
by closely examining their nuanced behavior on synthetic grid-
graph world.

e Theoretically analyze of attention based global pooling: We
employ gradient-flow [8] to prove the existence and uniqueness of
final vector, towards which our learned model parameters align.
Our main result formalizes the biased nature of attention pooling,
and shows it is preferring to use closely-connected-substructures
as discriminative features, rather than collection of nodes that may
be dispersed across the graph.

o Empirical validation: We study realworld datasets with planted
ground-truth, to show the ambiguity caused by the inherent bias.
We isolate the effect of the linear classifier from the message-
passing layers. Lastly, our study underscores practical implica-
tions in tasks where domain knowledge informs graph classifica-
tion. It aids in discerning whether classification hinges on the pres-
ence of coherent subgraphs or on merely the presence of nodes,
irrespective of their neighbors.
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2 Subgraph Based Graph Classification Task

Graph Neural Networks learn to infer graph labeling functions by
leveraging latent representation of nodes, that extend to the entire
graph structure. A trained classifier (X, A) operates on both node
features and graph topology, producing a class label as output. How-
ever, the mechanisms driving classification are not fully understood.
It remains unclear whether classifications arise from the presence or
absence of specific structural components within the graph, such as
nodes belonging to distinct classes forming unique subgraphs, or if
predictions stem from numerical decision boundaries imposed over
aggregated graph representations. Recent efforts in explaining GNN
predictions aim to identify subgraphs or disjointed nodes that cause
maximal change to the specific predictions [28, 33, 1]. Despite these
endeavors, whether GNN architectures inherently learn to discern
specific graph traits for prediction purposes, remains an open ques-
tion. We aim to address such knowledge gaps through the subsequent
sections of this paper.

We establish a common notation and terminology used through-
out this paper. D denotes a dataset of attributed graphs with
N nodes in each graph. Each graph G € D is represented
by a tuple of its node-feature matrix and edge adjacency matrix
(X,A) € (RY*? {0,1}*N). For natural number K € N,
[K] denotes sequence {1,2,3...K}. S denote an ordered tu-
ple = (s1,82,...5m) € [K]M. Let G* = (X*,A%) ¢
(RM>4 £0,1}M*M) be a special graph with M nodes, where M <
N. In our graph classification problem, the set of graphs in D are la-
belled based on their relation to G*, and our goal is to learn a model
that can learn to map a graph to its correct label. Note that G* is part
of the data generation process, is not known to the learning algo-
rithm, and is not necessarily required to be recovered by the learned
graph classification model. We denote the node features and corre-
sponding adjacency matrix of subgraph G* by X(s . € RM*d and
Ais.s) € {0, 1}MXM . The matrix subscripts corresponds to rows
and columns of indices in the ordered tuple S.

To illustrate this concept via a simple example, let’s examine a
dataset D, that comprises of numerous graphs G € D. As per the law
of dichotomy, each graph can either contain or lack a subgraph repre-
senting an orange-blue-green (O-B-G) chain (T a 0), where colors
denote the respective node features. Let us define a labeling func-
tion y(G), such that y(G) = +1 if the O-B-G subgraph is present
in G, and y(G) = —1 otherwise. Consequently, the dataset D can
be partitioned into two disjoint subsets, D1 and D_1, based on their
respective class labels.

Can GNNs s detect presence and absence of subgraphs?

To ascertain the capability of GNNs in discerning graphs based upon
the existence or non-existence of a specified subgraph G*, we have
devised a simple yet informative experiment. We generated grid-
graphs measuring 12 x 12 and randomly assigned one-hot embed-
ding to its node features, corresponding to each node taking one of 4
colors. Subsequently, we delineated two distinct graph sets, denoted
as Dy and D_1, contingent upon the presence of a subgraph compris-
ing a special chain of length equal to three. The precise method used
to generate Dy and D_1, and to ensure the presence or absence of
this subgraph is detailed in Section 5.1. All graphs within D; were
assigned a ground-truth label of y = 1, while those in D_; were
labeled with y = 0.

After training GNN models on the datasets D, and D_, we tested
an independent set of grid-graphs, generated with dimensions 13 x 13

Table 1: Performance of GNN models that are trained on 12 x 12
with D1, D_1, and tested over unseen grid-graphs of varying sizes.
Results show that GNNs are capable of learning to distinguish graphs
based on presence/absence. (Sec.2)

Model Pooling | Training Train Test Acc | Test Acc
func Loss Accuracy 12x 12 13x 13
MAX 0.0766 0.987 0.979 0.991
GCN AVG 0.0451 1.000 0.998 0.517
ATTN 0.0948 0.978 0.923 0.986
MAX 0.0715 0.991 0.968 0.994
GAT AVG 0.1213 1.000 0.998 0.675
ATTN 0.0293 0.993 0.973 0.995

and 12 x 12. Table 1 presents the empirical results, demonstrating the
efficacy of popular GNN models, such as GCN and GAT, when cou-
pled with various global pooling mechanisms. Notably, these mod-
els showcase remarkable generalization capabilities over previously
unseen test data. Across all model-pooling combinations, the test ac-
curacy consistently surpass the 90% threshold for both grid-graph
sizes, except for the average pooling mechanism on the 13 x 13 grid.
Given that all models achieve high accuracy and are optimized until
attaining near-zero training loss (binary cross-entropy), we can say
that GNNs possess the empirical capacity to differentiate between
the presence and absence of the designated subgraph.

In the following sections, we will place this empirical observation
in the context of theoretical results and attempt to reconcile multiple
views.

3 Limits of Representation Power Arguments

There is an apparent difference in the theoretical representation per-
taining to power of neural networks and their practical implication
in real settings. For example, deeper neural networks have a def-
inite advantage over shallow networks. It is known that networks
with polynomial increase in depth can approximate functions that
exponentially growing width networks cannot [29]. Simple architec-
tures like deep feed-forward networks with piece-wise linear acti-
vation functions (like ReLU) can distinguish exponentially greater
input regions due to the increased depth [23]. However, the mere
ability of deeper networks to represent complex functions does not
guarantee that they will be learned by gradient descent. For exam-
ple, it has been observed that the number of distinct linear regions
in ReL.U based networks grows linearly along any single dimension.
It highlights the gap between theoretical possibilities and empirical
observations while training neural networks.

Similar to feed-forward networks, graph neural networks are
shown to have restricted representation power, and their theoretical
limitations have been an area of active research [15]. Message pass-
ing neural networks (MPNNs), encompassing different convolution
operators for GNNs, are theoretically as powerful as 1-Weisfeiler
Lehmann test for distinguishing non-isomorphic graphs [32]. In sim-
ilar vein, higher order generalizations of k-WL test (for £ > 2) are
known to be strictly more powerful than 1-WL and capable of learn-
ing sub-graph patterns of maximally k-nodes [24]. In the context
of subgraph-counting, MPNNs can only count a given subgraph (or
induced-subgraph) if there are 3 or fewer nodes in the subgraph (bar-
ring exceptions of star-shaped subgraphs) [6]. As earlier, the higher
order GNNs based on k-WL are shown to be powerful enough to
count subgraphs of utmost k nodes.

The negative results from GNN’s representation-theory are not as
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Figure 1: Sample graphs from each partition of data D. (a) Subgraph
G* ©®® js present in all G € D;. (b) shows the presence of
all nodes of G* in G € D, but none of the nodes are mutually
adjacent to each other. (c) among graphs G € Dy, subgraph G* is
only partially present (of size 1 or 2).

(@G €D

discouraging as they seem on the surface. For example, the negative
result claiming that GNNs cannot detect presence/absence of a sub-
graph larger than size 4 [6], really corresponds to saying that there
exists a distribution over graphs and labels for which the best GNN
based classifier has low accuracy. We argue that such adversarial dis-
tributions are not indicative of real data. For example, as shown in
Table 1, GNNs are able to learn to classify graphs based on pres-
ence/absence of subgraphs.

Despite these theoretic limitations, GNNs have proven to be em-
pirically very successful in most graph based tasks, and achieved
state-of-the-art performance in many real-world applications [22, 2,
9, 7]. In this paper we argue that studying GNN based graph classifi-
cation algorithms in the context of optimisation and generalisation is
still an open and interesting objective.

4 Inductive Bias of GNNs Under Gradient Descent

Table 2: Characteristics of the partitions of dataset D with respect to
nodes/edges of a subgraph G*

Partition | Occurrence | Connected-ness
D1 v v
Do X X
D 1 v X

In this section, we explore if there exists a proclivity for the GNN
to learn a particular category of functions. We study one such char-
acteristic tendency of GNNs, where it exhibits distinct inclinations
towards learning specific function types, when convolution operator
is coupled with varied pooling mechanisms. Consider the graph clas-
sification task on dataset created around subgraph G™ as seen in the
previous sections. For the purpose of illustration, let G* be the O-B-
G orange-blue-green chain and embedded in graphs of a fixed-size
grid-graph dataset D. ' Let Dy be the partition of D where subgraph
G™ is present, for example Fig.la contains O-B-G. Similarly, let Do
be the set of all graphs within D where G™ is only partially present,
as in at least one node of G* is missing. For instance, Fig.1c does
not contain the green node. All the remaining graphs together form
D, which implies the graphs in D consist of all the nodes of G*,
(0,B,G), but do not contain all edge of G*, for example Fig.1b shows
that no two colored nodes are adjacent.

In the context of this example, let occurrence denote the pres-
ence of ‘all’ attributed-nodes of G* and connected-ness denote the
presence of ‘all’ edges of G™. Table 2 characterizes the mutually ex-
clusive partitions of D1, Dy and D along these two properties and

1 Arguments can trivially extend to graphs of varying sizes and multiple
classes classification. There is nothing sacrosanct about the given setting.
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Figure 2: Multiple legal decision-boundaries (dotted lines) that can
be learned while training GNNs on {D1 UDg }. D can be classified
along with either D; or Dy. We show that (i) the graph convolution
operator with global average pooling classifies D as D; and be-
haves as M family of functions denoted by the orange decision
regions, while (ii) GCN with attention based pooling classifies D
as Dy and learns M denoted by blue decision region.

highlights their commonalities and differences. While D shares its
occurrence and connected-ness property with both the other parti-
tions, it is not obvious whether it can be associated as more close
to either Dy or Dy. To verify this empirically, we experiment with a
GNN trained over {D; U Dy} and further analyze its behavior upon
D, . Say we assign label y = 1to D; and y = 0 to Dy, and train
a GNN over set {D; U Dy} to achieve perfect accuracy. It remains
non-obvious to predict whether graphs of D, will be classified as
labely = 1ory = 0.

4.1 Ambiguity in Graph Classification: Figure 2

A GNN that has not seen graphs from the set D while training on
{D1 U Dy} could very well assign it either label 1 or 0. However,
both these assignments indicate different inductive biases.

Case 1. (D, — Dy) Suppose, a trained GNN consistently classifies
D, to be same as Dy, instead of Dy, it shows that the model looks
for the occurrence of all nodes in G*.

Case 2. (D, — Dg) Conversely, if a trained GNN aligns D with
Do, it indicates that the model emphasizes on connected-ness of all
nodes in G™.

How to Deduce Implicit Bias? Let’s understand this bias using
the example depicted in Figure 1, let us assume D to be the uni-
verse of all fixed-size grid-graphs and D1, Dy to exhaustively con-
tain all graphs satisfying the above discussed properties as in Table
2. Now, if a trained GNN classifies graph in dataP as D rather
than as Do, it implies that the GNN is looking for presence of all
the three (orange,blue,green) nodes in each graph. Otherwise, there
will exist G1, G2 € Dy such that their nodes together will contain
all {O, B, G} but separated among the two graphs G1 and G3. On
the other hand, if a GNN classifies D, as Dy instead of D1, it im-
plies the GNN is looking for connection between the three (O-B-G)
nodes. In other words, since Dy consists of all possible disintegrated
subparts of G*, the only reason D can be classified as Dy is due to
the lack of G* being present as such.

4.2 Grid-Graphs Dataset

To empirically validate the capability of GNNs to distinguish occur-
rence versus connectedness, we start with a simple and controllable
setting of grid-graphs with node-features, as discussed above. Each
node in the graph is assigned a random one-hot feature vector, re-
ferred to as ‘node-color’, from a finite set of vectors. We further de-
rive two partition sets, D1 and Dy, by selectively planting certain
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subgraph G™* within the grid-graph. We assume our universe of data
D restricted to the grid-graphs G of fixed size, and assign each node
a random feature from the standard basis-vector set C = {e;} for
i € [K] classes. We further create a three-node graph G*, and as-
sign each of its nodes distinct features, denoted by C’ = {e;}. The
partition D; is generated by planting the subgraph G* in grid-graphs
G € D. We randomly choose an anchor node v1 € G along with
its two other neighbors vz, v3 € N (v1), and then alter their features
such that G* is contained in G.

Similarly, graphs in partition Dy are generated by partially plant-

ing G*, that is by taking a strict subset C C C’ of size 1 or 2 and re-
placing node features of random nodes in G with C.The graphsin D
are generated by randomly choosing |é | number of mutually non-
adjacent nodes, and sequentially assigning them node features from
C. Note that the chosen universe of D is small enough for complete
enumeration and for exhaustive generation of D1, i.e., any graph that
satisfies the said characteristic properties will be present in D;. The
datasets size is restricted by number of nodes in the grid-graphs that
we sequentially choose as anchor nodes to plant G*. To remove any
class label-imbalance, we maintain parity between the sizes of D;
and Do.
Labeling function: The graphs in the two partitions are assigned bi-
nary labels for the supervised training of the GNNs. Without loss of
generality, D; are assigned label y = 1, and Dy graphs with par-
tially planted C are assigned label y = 0. Since D is never used for
training GNN models, it is not assigned any label. In case of 3-node
G™, after 1-step of propagation, the central node’s representation will
have a positive component along v*; the proof of its existence and
uniqueness follows.

4.3 Model Baselines

We study the behaviors of two prominent models, the graph convo-
lution network (GCN) [18] and the graph attention network (GAT)
[30, 5].

Along with these message-passing layers, we use common
global pooling functions, encompassing summation, averaging, and
attention-based aggregation. For any graph G = (X, A), GCN up-
dates are given by faon (X, A; W) = AXW, where A is the degree
normalized adjacency matrix. After one step of propagation, the up-
dated representation of node ¢ can be given by v; = W > SEN(i) Ti-
Further, all the nodes of the graph {vi,vs...vn} are pooled using
average, maximum or attention mechanism. For (A4, X) € RY*¥ x
RM** the end-to-end equation for graph classification using GCN
and average global-pooling can be written as

faontava. (X, A4; O,w) =17 - 0(AXO) - w (1)
where © € R**? is the linear-transform-parameter of GCN, 1 is
column of all 1’s, and w € R is the linear classifier. Similarly, the
end-to-end model equation for GCN with global attention pooling
can be written as

Fa(X, A; ©,a,w) = sftmx [<U(Axe),a>] o(AXO)-w (2)

where a € R parameter is used to calculate the attention scores by
taking softmax over the projection of nodes. Attention based global
pooling is a special case of the self-attention pooling mechanism
[21], where the representation of the entire graph is collapsed into
one single vector.

4.4  Empirical Evidence for Inductive Bias

We empirically show that there exists a clear bias in GNNs, while
classifying graphs from the above data partitions. We start with
the most popular GNN architectures, graph convolution networks
(GCN) and graph attention networks (GAT), along with most com-
mon global pooling methods like average, maximum and attention
based readout function. We use the dataset described in previous
Section 4.2, 12 x 12 grid graphs, partitioned into D1, Dy, D . All
models, based on GCN/GAT layers coupled with MAX/AVG/ATTN
global pooling layers, are trained to near perfect training accuracy
(greater than 99%). While training, only D; and Dy are exposed to
the models and D remains inaccessible. We then test each of these
trained models on test data D, to analyze what labels § € {0, 1}
are assigned to graphs G € D .

Inductive bias from observations in Table 1: We observe that
both GCN and GAT, with average pooling classify almost all unseen
graphs as label § = 1, while attention based pooling classify almost
all unseen graphs as § = 0. Assigning such skewed proportions of
nodes with selective label y = 1 or y = 0, is a clear indicator that
both models have preference to learn different functions. While this
distinctive behavior shows an interesting biased behavior, we will see
in later Section 5.1 that this behavior translates to model’s preference
of subgraph selection.

5 Analyzing Attention Based Global Pooling

We analyze the behavior of GCN based models with attention pool-
ing, and characterize it for grid-graph dataset. We start with formal-
izing notations for the three data partitions D1, Dy and D, below,
along with precise definitions for occurrence and connected-ness.

Definition 1 (Data Partitions). A graph dataset D can be partitioned
into three mutually exclusive sets on the basis of subgraph G* =
(X™, A™) as follows:

e D; isthe set of graphs {G € D |3S = (s1,52...5m) € [N]M},
such that Xs ;) = X and Ajs,s) > A” for some ordered tuple
S (here matrix comparison is element-wise)

e Dy is the set of graphs {G € D | Xs,. # X*, ¥S € [N]M}.

e D is the set of graphs {G € D | 3§ € [N]M st Xs,. =
X" and G ¢ D}

In other words, D1 contains G* as its subgraph, Dy subgraphs do not
contain at least one node from G, and lastly D subgraphs have all
the nodes of G*, but does not contain G* subgraph.

Definition 2 (Occurrence and Connection). A subgraph G* =
(X™, A% is said to occur in G = (X, A) iff there exists an ordered
tuple S = (s1,82...5Mm) € [N]M, such that X|s ) = X™. Also, G
with G* is said to be connected iff A(s,s) > A" for some tuple S.

Graph Convolutional Networks (GCN): Our theoretical analysis
is restricted to a simpler setting of GCN after one step of message-
propagation. GCN model updates the node-representations as x; =
\/T,T.W Z]EN(l)Ul xj, where W is its learnable parameter and

d;d; is a degree based normalizing coefficient. The summation of
neighboring nodes after one-hop message-passing can be denoted by
matrix product V' = AX. Ignoring the degree normalization, here
each row v; = V; . is the updated feature vector of node i.

GCN with Global Attention Pooling (ATTN): While the graph
convolution operator does the job of aggregating immediate neigh-
bors, the global pooling functions, also known as READOUT func-
tions, aggregate all node’s representation to get a single vector for
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the entire graph. We analyze the behavior of attention based global
pooling, which is calculated by the weighted summation over nodes
ashg = S0, agw( 2o ien() z;) = SN o = 9, with two
learnable parameters: a € R? and w € R,

The following lemma shows that for each graph G, there exists a
node s (with its node representation v*) that contains aggregated in-
formation from all the nodes of subgraph G* after one-step of GCN
aggregation.

Lemma 1 (Existence of v*). There exists v* € RY, such that for
any graph G = (X, A) € D, there is an ordered tuple S € [N
satisfying ((A- X)(s,:],v") > 0. Here, the matrix-subscript (A -
X)is,: ] denotes selecting the rows indexed by elements of the set S.

Since G* occurs in each graph of D1, we can set v* = ZjEG* Vj,
and the lemma holds naturally by construction. We further note that
there cannot exist any other node, apart from s, that contains aggre-
gated information from all the nodes of subgraph G*, after one-step
of GCN aggregation.

Lemma 2 (Uniqueness of v*). For all w € R? perpendicular to

¥, w - v* = 0, there exists a graph G = (X, A) € Dy such that
VS € [N]M, we have ((A - X)s,.1,w) < 0.

The above lemma highlights that G is the largest common-subgraph
in D1, because all the smaller subgraphs of G* are also present in
G € D, by the virtue of presence of G*. Any other subgraph, apart
from G*, will find its aggregated representation w also in some G €
Dy graph. G* being the largest common subgraph in D1, v* will not
have any component along w.

For G € D, let the neighborhood of node s comprise of nodes of
G* in the set S and other additional nodes {N(s)/S}. The aggre-
gated representation of s can be split into those coming from neigh-
bors in S and its complement set {N(s)/S}. After attention based
global pooling (readout), a graph G € D; can be represented as

N N
ha = E Qiv; + asvs = E @iv; + asws + a0 (3)
i#s, 1=1 i#s, 1=1

Only the asv™ term is independent of the graph, as it is present in all
graphs of Dy, hence it is the only vector to have largest dot-product
component along v™.

5.1 Loss Function and Gradient Flow of Parameters

The final GCN model’s prediction p € [0, 1] for the graph label
is calculated as p = o(wT0), where o(z) is the sigmoid activation
function. We characterize the evolution of the model parameters and
their behavior by calculating their gradient flow [8]. For two class
graph-classification, the model employs the binary cross entropy loss
function L: — [y log(p) + (1 — y)log(1 — p)], where y € {0,1} is
the true label and p € [0, 1] is the model’s predicted score. The bi-
nary cross entropy loss function is given by

L

—|ylog(p) + (1 — y) log(1 — p)
[ ]

log (1 +exp(w'?)) —yw'd

Assumptions: In our theoretical analysis, we consider G* as a sub-
graph chain of radius one and derive results for a single-layer prop-
agation of GCN, with attention based global pooling. During the
course of optimization, we assume that the two partitions, D; and
Do, are of approximately similar size and we are able to maintain

mutual label parity to avoid the class-imbalance problem. For ease
of notation, we assume that the grid-graphs have orthogonal node
features x;, which get mixed after a single-step of message propa-
gation and give v;. Due to the symmetry of grid-graphs, we upper
bound dot-product of nodes v}vi by 6. For bounded max-degree of
the graphs, we represent v]v; = 04. By orthogonality among initial
x;, the relation 84 > 6 follows. By construction, partitions D1, Dy
are exhaustive datasets that contain all the grid-graphs satisfying the
requisite property.

Over the course of optimization on the training data {D1UD }, we
will next show that the weight parameter w, as well as the attention
parameter a are most closely aligned along the direction of v™. Proofs
for the following results are deferred to the Appendix [19].

Lemma 3 (Orientation of w parameter). There exists a vector v* €
RY, such that the component of ‘1—‘;’ during optimization is always
aligned along v* and the weight parameter w moves in the direction
of v,

dw

*T
v — >0

dt
We further characterize the gradient flow of attention parameter a,
and show that a moves most along the direction v* after O(D) up-
date iterations, where D is an upper bound on the maximum degree
of graphs.

Lemma 4 (Orientation of a parameter). There exists a vector v* €
R?, such that the component of % during optimization is always
positive along v*. After sufficient optimizer updates, the attention
parameter a moves most along the direction of v*

da
*Ti 0
v ai >

Based on the above lemmas, we can now state our main result regard-
ing the biased behavior of graph convolution networks with attention
based global pooling.

Theorem 5 (Implicit Bias of Global Attention Pooling Networks).
Consider the setting and assumptions of Section 5.1, and a I-layer
GCN coupled with attention based global pooling trained on D1 and
Do. The parameters {a, w} at time t iterations of gradient descent,
satisfy

(a,v") >0 and (w,v")>0

for some v* per Lemma 1 ((A- X)(s,.},v*) >0, V(A4, X) € Ds.

Proof sketch. 1t follows from Lemma 3 and 4 that parameters a and
w are poised to align with v* during optimization. Ensuring the ex-
istence of such v* using Lemma 1 for training datasets Dy and Dy
that are closed under completeness, it is easy to see that both the
parameters will definitely have their component along v*. O

This is the main result of our work: it lays out an important prop-
erty of GNN architectures that differentiate graphs based on the prox-
imity of discriminative nodes found within the graph. Theorem 5 for-
malizes the biased nature of attention pooling and shows its prefer-
ence to learn v™, i.e. use closely-connected-substructures as discrim-
inative features. Consequently, average pooling, which corresponds
to uniform attention across all nodes, lacks the ability to selectively
focus on specific nodes, thereby depending on aggregating nodes that
may be distributed across the graph.
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6 Experiments

To investigate the presence of inductive bias in diverse Graph Neural
Network (GNN) architectures during gradient descent optimization,
we pose the following pivotal question: Can two GNNs trained to
achieve comparable accuracy on identical datasets ultimately learn
characteristically different functions? We show this distinction by
examining their behaviors on unseen data, which the models have
not come across while training. Focusing specifically on graph clas-
sification, we narrow our scope to ascertain if GNNs develop clas-
sification capabilities based on the presence/absence of a designated
subgraph G*. To address this, we create both synthetic and semi-
synthetic datasets, by embedding G* within real-world datasets.

6.1 Datasets and Model Setting

Synthetic: The setting of grid-graphs, as seen in Section 4.2, pro-
vides a structured framework for investigating implicit biases within
a controlled domain. The options for substituting and embedding
G™ are inherently limited in this framework, due to the size of the
grid that allows more control over its characteristics, including the
balance between the positive and the negative graph instances. To
elucidate the scenarios of extreme bias, it is imperative that the as-
sumptions outlined in Section 5.1 remain valid, a condition readily
attainable through these grid-graph datasets.

From Section 4.2 we know that the binary ground-truth labels for
each partition are defined as y¢ = 1,if G € D; and yg = 0 if
G € Dy.

Realworld (semi-synthetic): Due to the absence of precise ground
truth node-information pertaining to the subgraph G*, we resort to
augmenting some of the well-established graph datasets, such as
ZINC [13], Tox21 from MoleculeNet [31], and PROTEINS from TU
Dataset [25], with G* to create semi-synthetic datasets. This partial
or complete planting of G yields distinct partitions D1, Do, and
D . Our full-version [19] shows some of the samples of real-world-
derived graphs underscoring their random structural compositions.
Importantly, this diversity serves to mitigate any unintended influ-
ences stemming from the inherent symmetry in the grid graphs. Fur-
thermore, these datasets will help identify the presence of implicit
biases within GNNs when applied to real-world graph data.

Planting G* in realworld data D: We adopt a parallel approach for
realworld datasets akin to our treatment of grid-graphs, and embed
the G* subgraph either fully, partially, or sparsely. Details are de-
ferred to the Appendix [19]. Our code is available [20].

Model baselines: In this study, we analyze GCN and GAT with
standard global pooling (MAX,AVG,ATTN). Our focus lies in high-
lighting the phenomenon wherein GNNss that are trained on identical
datasets, converge to different functional representations. We sub-
stantiate this bias through concrete examples showcasing divergent
behaviors, achieved with minimal adjustments made to the architec-
ture or training paradigms.

Table 3: Real datasets used to create partitions D1, Do, D1

Dataset Average | Average | Random | # Train
#nodes #edges colors graphs
ZINC [13] 23.2 49.8 24 10,000
Tox21 [31] 18.6 38.6 9 7,831
Proteins [25] 39.1 145.6 9 1,113

6.2 Performance on Real Datasets

To verify if the observations from Section 4.2 transcend to realworld
scenarios, we perform experiments on four graph collection datasets,
as described in Table 3. Appendix shows sample graphs used from
these datasets while training [19]. The skewed proportions of label
assignment is also seen in real datasets. Table 4 shows GCN with
ATTN pooling assigns majority of the labels as 1, thus classifies on
the basis of connections. This proportion is not as pronounced in
AVG pooling because the classification is based on the presence of
nodes as well. MAX pooling also has varied schemes of labeling
among the three datasets. It is essential to acknowledge that these
proportions are not as extreme as those observed in our toy dataset,
owing to potential violations of assumptions such as data partition
completeness. Nevertheless, the overarching trends persist, under-
scoring the robustness of our findings.

Table 4: Real world dataset results, GCN 1 layer, trained to 100%
accuracy, averaged over multiple runs (standard deviation is order of
magnitude smaller and so ignored)

MAX AVG ATTN
Dataset — — — — = =
y:l y:O y:l y:O y:l y:O
ZINC 0 10000 | 8561 1439 3 9997
Protein | 5531 34 1665 3900 6 5559
Tox21 0 23493 | 7576 15917 | 6 23487

6.3 Covering the Entire Attention-Spectrum

Table 5: Classification behavior of 1-layer GCN and ATTN pooling,
with varying temperature coefficient of softmax operator. All base-
lines are uniformly run for 100 epochs of optimization with learning
rate of 0.001, test data is of size 10k.

8 Temperature | Train Accu. | y =0 | g=1
1 0.9991 9806 194

4 0.9982 9704 296

10 0.993 9560 440

300 1.0000 3 9997

Attention pooling utilizes softmax to compute the weights for
weighted summation. The softmax function can be modulated by a
temperature coefficient, which governsTthe sharpness of the result-
ing distribution. softmaxs = % For 3 set to 1, the
original softmax function is recovered. However, for smaller values
of B approaching 0, the softmax tends towards behaving like a MAX
pooling function. Conversely, as 5 tends towards infinity, the soft-
max function becomes increasingly smoothed out and resembles an
AVG pooling, akin to 1/N (3" v;). We investigate different values of
[ to see the temperature point at which the inductive bias behavior
switches. Table 5 shows that the flip in ATTN’s behavior happens at
£ = 300. Until then, ATTN pooling behaves much the same. Intu-
itively, this reinforces the separation between zero-attention (AVG)
and non-zero attention (ATTN).

6.4 Delineating the Effect of Linear Layer

Equation.2 provides the formulation for end-to-end graph classifica-
tion, employing attention-based global pooling within a single-layer
GCN. It can appear that the biases discussed in preceding sections
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Table 6: Effect of pruning out linear classifier and still observing con-
sistent label assignment trends (Sec.6.4)

Pooling | With Linear Layer | Without Linear Layer

Method | =0 g=1 y=0 yg=1
MAX 9988 12 9585 415
AVG 0 10000 2248 7752
ATTN 9940 60 9465 535

stem from the presence of the linear layer. While the GCN convolu-
tion layer facilitates message passing, the subsequent pooling layer
condenses all nodes into a unified graph representation, followed by
the linear layer assigning a logic for classification. To disentangle
the influence of the linear layer from the GCN, we opt to prune out
the linear classifier and allow the GCN to perform the necessary di-
mension reduction, resulting in © € RY X!, Subsequently, we look
into the alterations in graph classification behavior resulting from the
removal of the linear classifier.

Table 6 illustrates that the proportion of nodes classified as Y =0
remains consistent irrespective of the presence or absence of the
linear layer. Upon closer examination, it becomes evident that the
absence of the linear layer leads to elevated training loss, poten-
tially indicating that the dimension of parameters © € RY*! might
be insufficient to effectively capture meaningful graph representa-
tions. Nonetheless, the initial bias persists in the distribution of nodes
across each label. This observation underscores the intrinsic bias in-
herent in the layers of GNNSs, even after pruning the linear classifier.

6.5 Effect of Hierarchical Pooling

Table 7: Classification behavior with hierarchical ASAP pooling.

Hierarchical Global | Training | . 0l a=1
Pooling Pool Accu. v= v=
ATTN | 0.9875 8736 1264
SOCOIE; ASAP AVG 0.9825 8519 1481
& MAX | 09725 8491 1509

Global pooling methods operate simultaneously on all the nodes
within a graph, thereby failing to encode its structural nuances. While
this aggregation process condenses all nodes into a singular represen-
tation within one single time-step, in contrast, Hierarchical pooling
methods progressively coarsen the graph across multiple iterations,
thereby preserving its hierarchical structure. We scrutinize the be-
haviors of select hierarchical pooling operators, such as ASAP [27].
Intuitively, these operators are expected to identify and prioritize sig-
nificant subgraphs for classification purposes. Table 7 shows a strik-
ing resemblance in the behaviors of hierarchical pooling operators
to that of attention-based global pooling. A plausible explanation for
this similarity lies in their shared objective of discerning connected
patterns to effectively aggregate graph information, thereby exhibit-
ing analogous behaviors.

6.6 Discussion

Our work has practical implications in tasks where domain knowl-
edge guides graph classification. It can help distinguish whether clas-
sification depends on coherent subgraph presence or merely node
presence, regardless of neighbors. For instance, in chemistry, chem-
ical reaction likelihood may hinge on specific node configurations,
while compound toxicity could relate to certain heavy metal atoms.

Thus, attention-based global pooling suits chemical reactions, while
average pooling may be apt for detecting poisonous heavy metals.

We opted to analyze Attention pooling since it can be parameter-
ized by adjusting the temperature coefficient of the sigmoid oper-
ator, Attention pooling can be analyzed across a spectrum ranging
from MAX to AVG, with ATTN lying in between. The theoretical
results hold for any graph G* with diameter 2 (i.e., star-graphs). We
have depicted using 3-node graphs for simpler illustrations, but the
conclusions remain unchanged for larger star-graphs. Empirically we
find that the same trends and conclusions hold for G* with a larger
diameter.

7 Related Works

Inductive biases are common in machine learning, and they shape
the learned functions. Architecture-induced biases stem from de-
sign choices, enhancing performance on specific data types [15].
For instance, convolutional neural networks with max-pooling ex-
hibit translation invariance over images, while graph neural networks
are permutation invariant in node ordering over graphs [16, 17].
Optimizer-induced biases can arise in learned models due to factors
such as the loss function’s nature, parameter initialization, and reg-
ularization [26]. In this work we characterize the nature of pooling
mechanisms in learning different kinds of subgraph patterns.

Graph global pooling operators implement functions to incorpo-
rate node’s information into concise and reduced graph represen-
tation. After sufficient layers of message-passing, there are simple
single-step operations such as max, sum, avg that take all nodes
at once to derive graph’s representation [10, 3]. In similar spirit,
global attention pooling can lay emphasis on certain important nodes
and arrive at graph’s representation by asymmetric weighted addition
[21]. There are other stepwise pooling methods, such as ASAP, Top-k
[27, 12], that coarsen the graph structure in several steps. In our work,
we focus on characterizing the implicit bias of single step global
pooling mechanisms. To the best of our knowledge, there aren’t any
previous works that evaluate implicit inductive bias of GNNs to pref-
erentially learn certain functions for graph classification tasks. There
is a large gap to be filled with practical considerations of optimization
and learnability. MPNNs can count a context of subgraph-counting,
for 3 or fewer nodes in the subgraph (except star-shaped subgraphs)
[6]. While there is a great body of work on representation power of
GNNe, there is a large gap with its practical optimization and learn-
ability property.

8 Conclusion

We highlighted some of the gaps between the representation the-
ory and optimization aspect of GNNs. We showed the existence of
implicit inductive bias in GNNs, specifically we proved the bias
of graph convolution networks with attention based global pooling.
We showed theoretically and empirically the preference of attention
based architectures, to look for a closely-connected patterns for graph
classification. We discussed the implications of our work in incorpo-
rating domain knowledge.

The implicit bias herein represents just one facet, namely, the pref-
erential treatment of nodes occurring together or dispersed across
the graph. Other biases may exist, such as propensity to assign dif-
ferent labels to homophilic/heterophilic graphs versus treating them
uniformly. Investigating these nuanced relationships between GNNss,
optimizers, and real-world applications are avenues for future explo-
ration.
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