
The Role of Depth, Width, and Tree Size in
Expressiveness of Deep Forest

Shen-Huan Lyu1,2,3,†, Jin-Hui Wu3,4,†, Qin-Cheng Zheng3,4 and Baoliu Ye3,‡

1Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, China
2College of Computer Science and Software Engineering, Hohai University, China

3National Key Laboratory for Novel Software Technology, Nanjing University, China
4School of Artificial Intelligence, Nanjing University, China

lvsh@hhu.edu.cn {wujh,zhengqc}@lamda.nju.edu.cn yebl@nju.edu.cn

Abstract. Random forests are classical ensemble algorithms that
construct multiple randomized decision trees and aggregate their pre-
dictions using naive averaging. Zhou and Feng [51] further propose
a deep forest algorithm with multi-layer forests, which outperforms
random forests in various tasks. The performance of deep forests is
related to three hyperparameters in practice: depth, width, and tree
size, but little has been known about its theoretical explanation. This
work provides the first upper and lower bounds on the approximation
complexity of deep forests concerning the three hyperparameters.
Our results confirm the distinctive role of depth, which can expo-
nentially enhance the expressiveness of deep forests compared with
width and tree size. Experiments validate these theoretical findings.
The detailed proof and code are available in the full version [31].

1 Introduction

Random forests [8] and neural networks [2] are regarded as two con-
trasting approaches to learning. The former is considered more suit-
able for modeling categorical and mixed data, such as medical diag-
nosis analysis [4] and financial anomaly detection [1]. In contrast, the
latter is better suited for modeling numerical data, such as computer
vision [25] and natural language processing [15]. Random forests are
favored for the tree-based intuitive inference, which makes them eas-
ier for users to understand and utilize [8]. On the other hand, neural
networks are renowned for their distinguishing performance when
dealing with complex data, even though they are often perceived as
opaque black-box models that are difficult to comprehend [34].

Recently, deep learning [26] has significantly improved the ex-
pressiveness and performance of neural networks. Expressiveness of
a model implies its hypothesis class complexity, and higher expres-
siveness implies higher approximation efficiency. Numerous stud-
ies have demonstrated that, within the neural network architecture,
depth plays a crucial role in efficiently representing complex data,
surpassing width exponentially [13, 17, 22, 40]. Neural networks
rely on gradient propagation for training, but their performance on
many categorical datasets is often inferior to that of traditional tree-
based learning algorithms. Therefore, many real-world tasks require
algorithms composed of non-differentiable modules, such as random
forests [8, 19], GBDTs [10, 24], etc.

† Equal contribution.
‡ Corresponding author.

…
…w

id
th

…

~

ne
w

 fe
at

ur
es

depth

concatenate

in
pu

t f
ea

tu
re

s

fin
al

 p
re

di
ct

io
n

tree size: number of leaves

…
…

…
…

Figure 1: Illustration of the deep forest architecture.

By realizing that the essence of deep learning lies in layer-by-layer
processing, in-model feature transformation, and sufficient model
complexity, Zhou and Feng [51] propose the first non-differentiable
deep model based on decision trees, known as deep forest. In prac-
tice, deep forests outperform various ensemble algorithms based on
decision trees and have been involved in real applications such as
biomedicine [21], smart water management [27], and financial risk
assessment [48], etc. Various adaptations of deep forests have ex-
celled in diverse learning scenarios [39, 41, 46], and efforts are ongo-
ing to improve the learning efficiency and reduce the computational
cost for large-scale deep forests [29, 35, 50].

The success of deep forests in practice has attracted attention for
its theoretical analysis. Regarding layer-by-layer processing, Lyu
et al. [28] prove that deep forests can optimize sample margin dis-
tributions layer by layer, thereby alleviating the overfitting risk. The
axis-aligned structure of decision trees is considered to prove that
layer-by-layer processing significantly improves the consistency rate
of random forests [3, 30]. In terms of in-model feature transforma-
tion, a line of work shows that new features based on predictions can
easily cause overfitting risk, and propose a novel feature representa-
tion method based on decision rules [11, 29, 35]. However, there is
still a lack of theoretical explanation for sufficient model complexity.

As shown in Figure 1, a single decision tree serves as the unit of
a deep forest, then the number of parameters in a decision tree is
referred to as the ‘tree size’. Each layer of deep forests consists of a
certain number of decision trees. This is known as the ‘width’ of deep

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240721

2042

forests. Additionally, predictions from each layer are transmitted to
the next layer as augmented features. This iterative process continues
for a specified number of layers, which is referred to as the ‘depth’
of deep forests. These three hyperparameters impact the complexity
of deep forests in practice. Notably, the depth distinguishes the deep
forests from individual decision trees and random forests. However,
the theoretical advantage of depth remains unclear.

Contributions. In this paper, we show the advantages of depth over
width and tree size from the perspective of expressiveness (refer to
approximation complexity in Definition 1), focusing on the general-
ized parity functions and a simplified architecture of deep forest. The
main contributions can be summarized as follows:
• We show that depth is more powerful than tree size and width from

the aspect of expressiveness. Specifically, we prove the advantage
of depth over tree size by separation results of expressing parity
functions and the worst-case guarantees, as shown in Theorems 1
and 2, respectively. We show that depth can be more efficient than
width by separation results, as shown in Theorem 3.

• We further demonstrate the power of depth from the aspect of
learning in experiments. Specifically, we construct a product dis-
tribution to learn parity functions and verify our theoretical find-
ings via simulation. Real-world experiments also support the effi-
ciency of depth in deep forests.

Organization. The rest of this work is organized as follows: Sec-
tion 2 introduces related work. Section 3 provides basic notations and
definitions. Section 4 compares depth, width, and tree size in deep
forests via expressiveness. Section 5 presents experiments to confirm
the theoretical results. Section 6 concludes with future work.

2 Related work

Random forests aggregate multiple decision trees along the width di-
mension to improve performance. Therefore, theoretical properties
of width have attracted significant interest [5, 14]. Breiman [8] of-
fers an upper bound on the generalization error of random forests in
terms of correlation and accuracy of individual trees. In recent years,
various theoretical works [6, 5, 23, 18, 52] have been performed, ana-
lyzing the consistency of various simplified forests, and moving ever
closer to practice. Scornet et al. [37] prove the first L2

2-consistency
of Breiman’s original random forests with CART-split criterion [9].
Wang et al. [42] show that a larger width can enhance the stability of
random forests. Curth et al. [12] present the adaptive smoothing be-
havior of random forests over decision trees. Additionally, tree size
plays a crucial role in random forests. Scornet et al. [37] prove that
limiting the size of decision trees can lead to insufficient diversity,
which slows down the consistency rate.

Although deep forests achieve satisfactory performance in many
tasks, there lacks theoretical discussions on how the depth, width,
and tree size impact the capability of deep forests. Approximation
complexity reflects the capability of approximating certain func-
tion classes and is widely studied in neural networks to compare
the impact of different hyperparameters on approximation efficiency.
Many attractive conclusions are derived from analyzing approxima-
tion complexity of neural networks, such as depth is more powerful
than width and activation complexity [33, 17, 38, 13, 40, 20], and
complex-valued networks are more powerful than real-valued net-
works [47, 44]. This paper takes the first step towards investigating
approximation capability for tree-based models and proves that depth
can be more powerful than width and tree size in achieving sufficient
model complexity using fewer number of leaves.

3 Preliminaries

Let X = X1 × X2 × · · · × Xn denote the n-dimensional discrete
input space, where X1,X2, . . . ,Xn ⊂ R are finite sets. For sim-
plicity, these finite sets are supposed to share the same domain, i.e.,
X1 = · · · = Xn = [p] := {1, 2, . . . , p}. We consider the binary
classification problem in this paper, i.e., the target concept c is a map-
ping from the input space X to the output space Y = {−1,+1}. Let
vi indicate the i-the coordinate of the vector v, and dim(·) denotes
the dimension of a vector or a space.

This work focus on the expressiveness of decision trees, forests,
and deep trees, where trees in forests and deep trees have a re-
stricted number of leaves. These three models have one unrestricted
and two restricted hyperparameters, as shown in Table 1. We pro-
ceed to provide formal definitions for the size of the three men-
tioned models. Let PT denote the parameter space of binary deci-
sion trees, which satisfies the following requirements: i) Y ⊂ PT;
ii) (i;xi; ΘL; ΘR) ∈ PT holds for any i ∈ [dim(X)], xi ∈ Xi, and
ΘL,ΘR ∈ PT. Then any parameter Θ ∈ PT determines a decision
tree as follows

hΘ(x) =

⎧
⎨

⎩

Θ1, dim(Θ) = 1,
hΘL(x), dim(Θ) > 1 and xΘ1 � Θ2,
hΘR(x), dim(Θ) > 1 and xΘ1 > Θ2.

All such trees form the hypothesis space of decision trees

HT(X ,Y) = {hΘ : X → Y | Θ ∈ PT}.
Table 1: Hyperparameters of tree-based models.

Tree Size Width Depth

Tree Unrestricted Restricted Restricted
Forest Restricted Unrestricted Restricted

Deep Tree Restricted Restricted Unrestricted

Define dim(hΘ) = dim(Θ) as the size of a tree hΘ ∈ HT. A
decision tree with m parent nodes satisfies dim(hΘ) = 3m+ 1. We
are also interested in decision trees of restricted size. More specially,
the maximal number of parent nodes is set as twice the input size for
simplicity, or equivalently,

HT◦(X ,Y) = {hΘ ∈ HT | dim(hΘ) � 6 dim(X) + 1}.
Let M(v) represent the mode (or majority vote) of the vector v.
When the mode is not unique, we set M(v) by uniformly randomly
choosing one from all modes. We focus on the forests composed of
trees with restricted size, whose hypothesis space is

HF(X ,Y) = {h | ∃ N ∈ N
+, hΘ1 , . . . , hΘN ∈ HT◦(X ,Y),

s.t. h(x) = M(hΘ1(x), . . . , hΘN (x))},
and dim(h) = dim(hΘ1) + · · · + dim(hΘN) is the size of a forest
h ∈ HF. Let f : X → Y and g : X × Y → Z be two mappings.
Define the cascade composition of g and f as g ⊕ f = g(x, f(x)).
Then the hypothesis space of restricted-tree-size deep trees is

HDT(X ,Y) = {h | ∃D ∈ N
+, hΘ1 ∈ HT◦(X ,Y),

hΘ2 , . . . , hΘD ∈ HT◦(X × Y,Y),
s.t. h = hΘD ⊕ · · · ⊕ hΘ1},

and dim(h) = dim(hΘ1) + · · · + dim(hΘD) is the size of a deep
tree h ∈ HDT. We then introduce approximation complexity, which
is used to compare the expressiveness of different models.

S.-H. Lyu et al. / The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest 2043

Definition 1. LetH denote a hypothesis space, c represents a target
concept, ε ∈ [0, 1] indicates the approximation error, andD is a dis-
tribution on the input space X . Define the approximation complexity
C(H, c,D, ε) as

C(H, c,D, ε) = min
h∈H

{dim(h) | Pr
x∼D

[h(x) �= c(x)] � ε}.

The approximation complexity C(H, c,D, ε) measures the num-
ber of parameters required to express target concept c using models
from the hypothesis spaceH, under the distribution D and within an
error tolerance ε. It shows the expression capability of the hypothesis
space, which is the premise of promising performance. A summary
of mathematical symbols is provided in full version [31].

4 Main results

In this section, we demonstrate theoretical advantages of depth over
tree size and width from the perspective of approximation complex-
ity. In Section 4.1, we provide the definition and several useful prop-
erties of generalized parity functions. Sections 4.2 and 4.3 show the
advantage of depth over tree size and width, respectively, when ap-
proximating generalized parity functions.

4.1 Generalized parity functions

We first define the generalized parity functions

c(x) = (−1)‖x‖1 for x ∈ [p]n,

which degenerates to the parity function when p = 2. We proceed to
introduce the notion of label-connected sets, which is used to char-
acterize the complexity of parity functions.

Definition 2. Let x,y ∈ X denote two input vectors, r > 0 is
a positive real number, and f : X → {−1, 1} represents a clas-
sification mapping. Vectors x and y are (r, f)-label-connected if
there exist n input vectors z1 = x, z2, . . . , zn = y ∈ X , such
that ‖zi+1 − zi‖1 � r and f(zi+1) = f(zi) holds for any
i ∈ [n − 1]. The (r, f)-label-connected set of vector x is defined
as Cr,f (x) = {y ∈ X | x and y are (r, f)-label connected}.

We mostly focus on the (1, f)-label-connected sets throughout
this paper. When the input dimension is 2, imagine the input space
X as a chess board, the points with the same label to x as pools,
and the other points as mountains. Two adjacent pools are connected
and otherwise severed. Then the (1, f)-label-connected set of x de-
picts the water area containing x. From this intuitive explanation, it
is observed that either two points share the same water area (label-
connected set) or their water areas are disjoint. We formally claim
this property for general label-connected sets in the following lemma
and provide rigorous proof in the full version [31].

Lemma 1. Let x,y ∈ X denote two input vectors, r > 0 is a pos-
itive real number, and f ∈ FX represents a classification mapping.
Then either Cr,f (x) = Cr,f (y) or Cr,f (x) ∩ Cr,f (y) = ∅.

Lemma 1 shows that the label-connected sets of two inputs are ei-
ther the same or disjoint. Then label-connected sets of all inputs form
a partition of the input space by the connectivity of labels. The car-
dinality of the partition reflects the complexity of the function since
each element of the partition corresponds to a constant piece of the
function. For the simplest constant function, the cardinality equals 1.

(a) Step 1. Split the plane into
strips, where the same pattern have
the same pseudo label.

(b) Step 2. Assign final labels af-
ter gathering strips with the same
pattern using the pseudo labels.

Figure 2: A 2-dimensional demonstration of the construction of the
deep tree expressing the parity function. Circles and crosses at inte-
gral points are positive and negative classes, respectively. Rectangles
indicate tree leaves.

For parity functions, the function values are different on any two ad-
jacent inputs, leading to an exponential cardinality when considering
(1, f)-label-connected sets. The following lemma formally presents
the cardinality for parity functions and is proved in the full version
[31].

Lemma 2. Let X = [p]n be the input space, and c(x) = (−1)‖x‖1

is the generalized parity function with x ∈ X . Then we have
1. |{C1,c(x)}| = pn.
2.

∣∣|{C1,c(x) | c(x) = 1}| − |{C1,c(x) | c(x) = −1}|
∣∣ � 1.

Lemma 2 demonstrates two properties of parity functions. The first
one implies that the cardinality of all label-connected sets is expo-
nential of input dimension n, and the second one shows that the car-
dinality of positive label-connected sets is almost the same as that of
negative ones. Thus, a parity function is a piecewise constant func-
tion with exponential pieces, and both positive and negative pieces
are exponential. This makes parity functions hard to approximate us-
ing piecewise constant functions with polynomial pieces, including
decision trees with polynomial leaves. We formally present the hard-
ness of approximation in the following lemma and provide detailed
proof in the full version [31].

Lemma 3. Let hT ∈ HT represent a decision tree with L leaves, c
denotes the parity function. Define E(hT, c) = {x ∈ X | hT(x) �=
c(x)} and P(hT, c) = {x ∈ X | hT(x) = c(x)} as the error set
and proper set of the decision tree hT, respectively. Then we have
|E(hT, c)| � (pn − L)/2 and |P(hT, c)| � (pn + L)/2.

Lemma 3 provides a lower bound of the cardinality of misclassi-
fied inputs when approximating parity functions using decision trees.
As long as the number of leaves in a decision tree is polynomial
with respect to the input dimension, the lower bound is dominated by
Ω(pn). Thus, decision trees suffer an Ω(1) classification error under
the uniform distribution unless the number of leaves is exponential.

4.2 Depth is more powerful than tree size

In this subsection, we compare the efficiency of depth and tree size,
beginning with the advantage of depth.

Theorem 1. For any input space X , there exist a concept c and a
distribution D over X , such that

C(HDT, c,D, ε) � 10pn and C(HT, c,D, ε) � pn/2

holds for any ε ∈ [0, 1/4].

S.-H. Lyu et al. / The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest2044

(a) Case 1: One more correct
point than mistaken points.

(b) Case 2: The same number of cor-
rect points as mistaken points.

Figure 3: A 2-dimensional demonstration of the relationship between
the number of correct points and the number of mistaken points in a
tree leaf, where rectangles, circles, and crosses represent tree leaves,
correct points, and mistaken points, respectively.

Theorem 1 shows that there exists a classification mapping such
that restricting the depth requires increasing the tree size polynomi-
ally (with respect to the feature complexity p) or exponentially (with
respect to the input dimension n). This indicates the efficiency advan-
tage of depth over tree size in approximating particular functions.

The key observation of proof is that each leaf of a decision tree
corresponds to a continuous area with the same labels, while each
leaf of a deep tree may assign the same label to many disjoint areas.
This phenomenon motivates us to construct the parity function, i.e.,
c(x) = (−1)‖x‖1 , which maximizes the number of disjoint areas
since any two points with the same label are not connected.

For deep trees, the upper bound is proven by construction. Take
the 2-dimensional case as an example. As shown in Figure 2a, the
first part of the deep tree splits the plane into strips using the first co-
ordinate of input. There are only two patterns among all strips since
the target concept c is the parity function. The leaves of the first part
assign pseudo labels to these strips according to their patterns. Then
as shown in Figure 2b, the second part utilizes the pseudo labels to
gather strips with the same pattern and assigns the final labels. Since
strips are gathered according to their patterns, each leaf of the sec-
ond part can label half a line of points, which reduces the complexity
dramatically. This intuitive construction can be directly extended to
arbitrary input dimension and feature complexity, which leads to a
deep tree with n parts and O(p) leaves in each part, i.e., the approx-
imation complexity is O(pn).

For decision trees expressing the parity function, a basic obser-
vation is that the number of correctly labeled points cannot exceed
that of mistakenly labeled in any leaf plus 1. As shown in Figure 3a,
the number of correctly labeled points is one more than that of mis-
takenly labeled points when all widths of the leaf are odd numbers
and the leaf receives the dominant label. In the other case as shown
in Figure 3b, the number of correctly labeled points equals that of
mistakenly labeled points when some width of the leaf is an even
number. Thus, a decision tree must grow one more leaf to increase
the number of correctly labeled points by 1, which only promotes the
accuracy by 1/pn. Therefore, a decision tree requires at least Ω(pn)
leaves to enhance the accuracy by a constant.

We then study the dual problem of Theorem 1, i.e., does deci-
sion tree possess an exponential efficiency advantage over deep trees
when expressing suitable concepts? The next theorem provides a
negative answer for this question.

Theorem 2. For any input space X , any concept c, any distribution
D over X , and any ε ∈ [0, 1], one has

C(HDT, c,D, ε) � (4n+ 1)C(HT, c,D, ε).
Theorem 2 provides the worst-case guarantee for deep trees by

(a) Output of a decision tree. (b) The first layer of the deep tree.

(c) Splitting after the root node of
the second layer of the deep tree.

(d) The second layer of the con-
structed deep tree.

Figure 4: A demonstration of expressing a decision tree using a deep
tree. Circles, crosses, and triangles represent positive, negative, and
unlabeled points, respectively. Rectangles indicate tree leaves.
showing that for all classification mappings, the approximation com-
plexity of deep trees is no more than that of decision trees multiply-
ing a factor linear in the input dimension n. Although decision trees
might prevail over deep trees, the advantage of decision trees cannot
transcend an upper bound linear in n, which is exponentially smaller
than the superiority of deep trees over decision trees as demonstrated
in Theorem 1. This tremendous gap between exponentiality and lin-
earity indicates that deep trees outperform decision trees consistently
from the perspective of approximation complexity.

The main idea of the proof is that a deep tree can represent a de-
cision tree leaf by leaf, i.e., each layer of the deep tree depicts a leaf
of the decision tree and the cascade structure gathers these leaves to-
gether. Take a 2-dimensional case as an example. Figure 4a exhibits
the output of a decision tree and we aim to find a deep tree with the
same pattern as the given decision tree. It is observed that the deci-
sion tree assigns negative labels to two leaves, which motivates us to
build a 2-layer deep tree. As shown in Figure 4b, the first layer of
the deep tree simply divides the input space along the boundary of a
positive leaf. Then this positive leaf obtains a positive pseudo label,
and the other leaves receive negative ones. Figure 4c illustrates the
root node of the second layer of the deep tree, which utilizes the cas-
caded dimension to provide positive labels for points with positive
pseudo labels and remains the rest points unlabeled. Then as pic-
tured by Figure 4d, the rest nodes of the second layer directly isolate
the input space along the frontier of the other positive leaf, label-
ing this leaf as a positive leaf and the rest ones as negative ones. One
can immediately extend this construction to general input dimensions
and decision trees. The number of layers of the constructed deep tree
does not surpass the number of leaves of the decision tree, which pos-
sesses the same order of the approximation complexity as deep trees.
Meanwhile, each layer of the deep tree just separates a hyperrectan-
gle from the input space, which requires O(n) parameters. Thus, the
approximation complexity of deep trees is at most of order n times
the approximation complexity of decision trees.

S.-H. Lyu et al. / The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest 2045

4.3 Depth can be more powerful than width

In this subsection, we compare the efficiency of depth and width.

Theorem 3. For any input space X , there exist a concept c and a
distribution D over X , such that

C(HDT, c,D, 0) � 10pn and C(HF, c,D, 0) � pn.

Theorem 3 shows that there exists a classification mapping such
that depth undertakes a more important role than width to efficiently
express this mapping. The construction of the concept inherits the
idea in Theorem 1, i.e., the concept c is the parity function. For deep
trees, the proof remains the same as that of Theorem 1. For forests,
we prove the lower bound of approximation complexity by analyzing
the total counts of correctly labeled points. In order to label a point
properly, there should be at least one more tree assigning the correct
label than the wrong label. Thus, each point contributes at least one
more count to the total counts of correctly labeled points than the
total counts of mistakenly labeled points. As shown in Figure 3 and
its explanations, one leaf cannot cause a distinction larger than 1 be-
tween the number of correctly labeled and mistakenly labeled points.
Thus, the number of leaves is no less than the number of points in the
input space, leading to Ω(pn) approximation complexity.

5 Experiments

In this section, we verify the power of depth in experiments. Sec-
tion 5.1 introduces the construction of a product distribution, which
is important to learn parity functions in simulation. Section 5.2 veri-
fies theoretical findings via simulation. Section 5.3 shows the advan-
tage of depth in real-world experiments.

5.1 Product distributions

As shown in Section 4, generalized parity functions can be efficiently
expressed by deep trees under any distribution. But from the aspect of
learning, it is known that parity functions with uniform distributions
are hard to learn using decision trees since there is no impurity gain at
early splits [7, 49, 32]. This motivates us to investigate the existence
of a specific distribution to demonstrate the power of depth in both
approximation and learning. When considering learning tree-based
models in experiments, we focus on the hypercubic input space [p]n

with p = 4 and the following probability mass function

pn(x) =
n∏

i=1

fi(xi) ∀x ∈ [p]n,

where fi : [p] → R denotes the probability mass function of a 1-
dimensional random variable defined by

fi(1) =
1

bi
, fi(2) =

a

bi
, fi(3) =

ai

bi
, fi(4) =

1

bi
,

where bi = 2 + a + ai denotes the normalization coefficient, and a
represents a constant. The constructed distribution is a product dis-
tribution parameterized by the constant a. The constant a controls
the extent of asymmetry and should be large enough to support effi-
cient learning of parity functions using deep trees. In experiments, it
suffices to choose a = 3 while it fails when a = 2.

The intuition behind the construction is that the distribution should
be highly asymmetric to meet two requirements. Firstly, the root node

(a) The uniform distribution. The
root node splits at random, and
there is no impurity change.

(b) The constructed product dis-
tribution. The root node splits at
x = 2.5, and impurity decreases.

Figure 5: A 2-dimensional demonstration of parity functions with the
uniform distribution and the constructed product distribution. Grids
with red shadow have negative labels, and grids with blue dots have
positive labels. The number in each grid represents the relative mag-
nitude of the probability mass function, and a = 3 is a constant.

�� � ��� �� � ���

�� � ���

�� � ��� �� � ���

�� � ���

�	 � ���

�� � ��� �� � ���

�� � ���

�� � ��� �� � ���

�� � ���

�	 � ���

�	 � ���

�� � ��� �� � ���

�� � ���

�� � ��� �� � ���

�� � ���

�������	
���	�� �	� ��

(a) The learned decision tree.

�	
 ��� �	
 ���

�	
 ���

��
 ��� ��
 ���

��
 ���

��
 ��� ��
 ���

��
 ���

�� � �

�������	
���	�� �	� �� �������	
���	�� �	� ���	���	
���	���� �

��
 ��� ��
 ���

��
 ���

��
 ��� ��
 ���

��
 ���

(b) The learned deep tree.
Figure 6: The decision tree and deep tree learned from the 2-
dimensional parity function with the constructed product distribu-
tion. Subtrees with shadows of the same color are the same. The deep
tree merges identical subtrees and uses fewer leaves.

splits at the midpoint of a feature, and its child nodes split at the mid-
point of the same feature until this feature can no longer be split. Sec-
ondly, all nodes choose the same feature as the next splitting feature
and repeat the first requirement after one feature is split completely.
These two requirements lead to highly symmetric decision paths and
help deep trees learn parity functions efficiently.

The constructed product distribution makes learning parity func-
tions more efficient, compared with the uniform distribution. We
demonstrate 2-dimensional examples of parity functions with the
uniform distribution and the constructed product distribution in Fig-
ure 5. Consider the root node of a decision tree. For the uniform
distribution, the probability mass function is mirror symmetric along
both x = 2.5 and y = 2.5. Thus, there is no impurity change to
split any feature at any point, which leads to a random split at the
root node. While for the constructed product distribution, the prob-
ability mass distribution is mirror symmetric only along x = 2.5.
Thus, a vertical split breaks the symmetry and brings impurity de-
crease. In n-dimensional spaces, the uniform distribution has n axes
of symmetry, and it takes at least n layers in a decision tree to start
the reduction of impurity. While the constructed product distribution
only has 1 axis of symmetry since only f1 is symmetric. Thus, the

S.-H. Lyu et al. / The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest2046

Parent Left Child Left Child

L
a
y
e
r
1

L
a
y
e
r
3

L
a
y
e
r
5

Figure 7: The purity gain in a decision tree with 6 layers when learning 6-dimensional parity functions with the constructed product distribution.
The first column demonstrates gains in the first, third, and fifth layers. The second and third columns show gains in the left and right child
nodes of the parent node in the first column, respectively. By the principle of maximizing purity gain, each parent node splits at the midpoint
of a feature, and its child node splits at midpoints of the same feature.
root node splits using x1, and the impurity decreases in each layer.

Furthermore, the constructed product distribution induces sym-
metric decision paths in a decision tree and makes deep trees more
efficient than decision trees. We demonstrate the decision tree and
deep tree learned from the 2-dimensional parity function with the
constructed product distribution in Figure 6. When learning using
decision trees, the learned tree is symmetric in the sense that the two
red subtrees are the same, and the two blue subtrees are the same.
When learning using deep trees with a suitable depth, the output of
the first tree, which is also the new feature in the second tree, au-
tomatically merges identical subtrees. For high-dimensional parity
functions with the constructed product distribution, numerical cal-
culation verifies that the distribution satisfies the two requirements
mentioned above when the input dimension n � 8. Due to the lim-
ited space, we demonstrate the verification of n = 6 in Figure 7 and
provide verification of all n � 8 in the supplementary materials. We
use Gini index as the measure of impurity and plot the purity gain
in a decision tree with 6 layers when learning 6-dimensional parity
functions with the constructed product distribution. As shown in the
first row, the first and second layers split at midpoints of the same
feature x1. Then x1 only takes one value in each leaf and is removed
from the horizontal axis. In the third layer, the distributions in the 4
leaves are the same since all distributions are product distributions.
Thus, it suffices to consider the purity gain in one leaf. We repeat this
procedure and find that all nodes split at the midpoint of one feature,
and nodes in even-numbered layers split at the same feature as their
parent nodes. Therefore, the learned decision tree is highly symmet-
ric, and the number of identical subtrees is exponential with respect
to n. Then deep trees can reduce the model complexity exponentially.
The numerical verification of higher dimensions is difficult since the
4n-dimensional probability mass matrix exceeds storage limits.

5.2 Numerical simulation

In this subsection, we verify our theories by comparing the perfor-
mance of trees, deep trees, and random forests via simulation.

Datasets. We randomly sample 106 points from the probability
mass function pn. Inputs are generated by perturbing all points with
random noises from the uniform distribution over [−0.5, 0.5]n. The
label of an input is the same as the output of the parity function on
its nearest integer lattice point., i.e.,

y(x) = c(x0) with x0 = argminx′∈[p]n‖x′ − x‖2,

where c(x) = (−1)‖x‖1 is the parity function. When some coordi-
nate of x is 0.5, which happens with 0 probability and does not im-
pact on the performance, the minimizer is not unique, and the label
is randomly chosen. These 1,000,000 pairs of inputs and labels form
a dataset, of which 70% are used as a training set, and the remaining
30% are used as a test set.

Training and testing. We use the training set to train decision
trees (T), deep trees with depth 2 (DT-2), 3 (DT-3), and 4 (DT-4),
and random forests with 9 (RF-9), 19 (RF-19), and 29 (RF-29) trees.
The maximum depth of trees in these models varies from 1 to 15. The
Gini index is used as the splitting criterion. Other parameters use the
default values implemented by scikit-learn [36]. We test these models
on the test set and record the test accuracy.

Simulation results. In Figure 8, we plot the test accuracy with re-
spect to the total number of leaves, which equals the summation of
the number of leaves over all trees. We also provide the total num-
ber of leaves needed to achieve a test accuracy of 99% in Table 2.
Deep trees achieve high accuracy with the fewest number of leaves.
As the input dimension n increases, deeper deep trees become more
efficient, and the gap between deep trees and other models becomes
larger. These results support the power of depth in theories.

It is observed that random forests require a much larger number
of leaves in the simulation since there are plenty of labeled sam-
ples without label noise, which can be done with a single tree. In
such a task, diversity from random forests only takes more leaves and
hardly helps training. However, these results do not eliminate the im-
portance of width and diversity in deep forests since real-world data
usually has noise and a restricted number of samples.

S.-H. Lyu et al. / The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest 2047

(a) n = 2. (b) n = 4. (c) n = 8.
Figure 8: Test accuracy of learning n-dimensional parity functions with the constructed product distribution using trees, deep trees of different
depths, and random forests of different numbers of trees. The test accuracy is plotted as a function of total number of leaves. Deep trees can
achieve the same performance using fewer leaves, which is more obvious when dealing with high-dimensional inputs.

(a) Pendigits dataset. (b) Satimage dataset. (c) Segment dataset.
Figure 9: Test accuracy of learning three benchmark datasets with random forests (RF) and deep forests (DF) of different numbers of trees and
different tree sizes of base learners. ‘(·)’ denotes the tree size of base learners.

Table 2: The total number of leaves needed to achieve a test accuracy
of 99% using different models, where a horizontal line means failure
of achieving an accuracy of 99%, and the bold number indicates the
fewest number of leaves. Deep trees use the fewest number of leaves.

T DT-2 DT-3 DT-4 RF-9 RF-19 RF-29

n = 2 16 15 22 16 385 507 783
n = 4 251 57 42 57 3,142 5,918 6,255
n = 8 633 116 95 63 — 51,972 59,795

5.3 Real-world experiments

In this subsection, we verify our theories by comparing the perfor-
mance of deep forests and random forests with different tree sizes on
three real-world datasets.

Datasets. We select three widely used benchmark datasets of clas-
sification tasks from the UCI Machine Learning Repository [16]. The
datasets vary in size: from 2310 to 10992 instances, from 16 to 36
features, and from 6 to 10 classes. From the literature, these datasets
come pre-divided into training and testing sets. Therefore in our ex-
periments, we use them in their original format.

Training and testing. We use the training set to train ran-
dom forests with width in {50, 100, 200, 400, 800, 1600} and deep
forests with depth 2 and width in {25, 50, 100, 200, 400, 800}, so
that the total numbers of trees in both equal. We also set all the tree
sizes in {8, 16, 32} to show the influence of different sizes of trees
as base learners on the ensembles. Other parameters use the default
values implemented by scikit-learn [36]. We test these models on the
test set and record the test accuracy.

Benchmark results. We plot the test accuracy of random forests

and two-layer deep forests with different tree sizes and widths in Fig-
ure 9. Under equivalent tree size and number of trees, deep forests
consistently outperform random forests. Even when the width of
random forests significantly exceeds that of deep forests, its perfor-
mance struggles to match that of deep forests. These results demon-
strate that depth, compared to width, provides greater efficiency. It
is observed that the tree size of base learners plays a crucial role in
practice. While individual decision trees with larger tree sizes per-
form poorly, random forests and deep forests constructed from these
trees outperform those built with smaller tree sizes.

6 Conclusion

This paper provides the first comparison of tree size, width, and depth
from the aspect of expressiveness. We theoretically prove that depth
is more powerful than tree size and width when approximating parity
functions. Experiments show that our theoretical results are valid in
many objective function classes other than parity functions. In the
future, it is promising to investigate the learnability advantage [43,
45] of depth in deep forests and analyze the robustness of deep forests
when dealing with noisy data.

Acknowledgements

S.-H. Lyu was supported by the National Natural Science Foundation
of China (62306104), Jiangsu Science Foundation (BK20230949),
China Postdoctoral Science Foundation (2023TQ0104), Jiangsu Ex-
cellent Postdoctoral Program (2023ZB140). J.-H. Wu was supported
by the Program for Outstanding PhD Candidates of Nanjing Univer-
sity (202401A13).

S.-H. Lyu et al. / The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest2048

References

[1] J. K. Afriyie, K. Tawiah, W. A. Pels, S. Addai-Henne, H. A. Dwamena,
E. O. Owiredu, S. A. Ayeh, and J. Eshun. A supervised machine learn-
ing algorithm for detecting and predicting fraud in credit card transac-
tions. Decision Analytics Journal, 6:100163, 2023.

[2] M. Anthony, P. L. Bartlett, P. L. Bartlett, et al. Neural Network Learn-
ing: Theoretical Foundations. Cambridge University Press, 1999.

[3] L. Arnould, C. Boyer, and E. Scornet. Analyzing the tree-layer structure
of deep forests. In Proccedings of the 37th International Conference on
Machine Learning, pages 342–350, 2021.

[4] S. Basu, K. Kumbier, J. B. Brown, and B. Yu. Iterative random forests
to discover predictive and stable high-order interactions. Proceedings
of the National Academy of Sciences, 115(8):1943–1948, 2018.

[5] G. Biau. Analysis of a random forests model. Journal of Machine
Learning Research, 13(1):1063–1095, 2012.

[6] G. Biau, L. Devroye, and G. Lugosi. Consistency of random forests and
other averaging classifiers. Journal of Machine Learning Research, 9
(9), 2008.

[7] G. Blanc, J. Lange, M. Qiao, and L. Tan. Decision tree heuristics can
fail, even in the smoothed setting. In Proceedings of the 25th Approxi-
mation, Randomization, and Combinatorial Optimization. Proceedings
of the 24th Algorithms and Techniques, pages 45:1–45:16, 2021.

[8] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.
[9] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and

Regression Trees. Chapman & Hall/CRC, 1984.
[10] T. Chen and C. Guestrin. XGboost: A scalable tree boosting system.

In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794, 2016.

[11] Y.-H. Chen, S.-H. Lyu, and Y. Jiang. Improving deep forest by exploit-
ing high-order interactions. In Proceedings of the 21st IEEE Interna-
tional Conference on Data Mining, pages 1030–1035, 2021.

[12] A. Curth, A. Jeffares, and M. van der Schaar. Why do random
forests work? Understanding tree ensembles as self-regularizing adap-
tive smoothers. CoRR, abs/2402.01502, 2024.

[13] A. Daniely. Depth separation for neural networks. In Proceedings of
30th Conference on Learning Theory, pages 690–696, 2017.

[14] M. Denil, D. Matheson, and N. De Freitas. Narrowing the gap: Random
forests in theory and in practice. In Proccedings of the 30th Interna-
tional Conference on Machine Learning, pages 665–673, 2014.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Pro-
ceedings of the 19th Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, pages 4171–4186, 2019.

[16] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository,
2017.

[17] R. Eldan and O. Shamir. The power of depth for feedforward neural net-
works. In Proceedings of 29th Conference on Learning Theory, pages
907–940, 2016.

[18] R. Genuer. Variance reduction in purely random forests. Journal of
Nonparametric Statistics, 24(3):543–562, 2012.

[19] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.
Machine Learning, 63(1):3–42, 2006.

[20] A. Goujon, A. Etemadi, and M. Unser. On the number of regions of
piecewise linear neural networks. Journal of Computational and Ap-
plied Mathematics, 441:115667, 2024.

[21] Y. Guo, S. Liu, Z. Li, and X. Shang. Bcdforest: A boosting cascade
deep forest model towards the classification of cancer subtypes based
on gene expression data. BMC Bioinformatics, 19:1–13, 2018.

[22] Q. Hu, H. Zhang, F. Gao, C. Xing, and J. An. Analysis on the number of
linear regions of piecewise linear neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 33(2):644–653, 2022.

[23] H. Ishwaran and U. B. Kogalur. Consistency of random survival forests.
Statistics and Probability Letters, 80(13-14):1056–1064, 2010.

[24] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu.
LightGBM: A highly efficient gradient boosting decision tree. In Ad-
vances in Neural Information Processing Systems 30, pages 3146–3154,
2017.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM,
60(6):84–90, 2017.

[26] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

[27] X. Liu, Y. Tian, X. Lei, M. Liu, X. Wen, H. Huang, and H. Wang. Deep
forest based intelligent fault diagnosis of hydraulic turbine. Journal of
Mechanical Science and Technology, 33:2049–2058, 2019.

[28] S.-H. Lyu, L. Yang, and Z.-H. Zhou. A refined margin distribution anal-

ysis for forest representation learning. In Advances in Neural Informa-
tion Processing Systems 32, pages 5531–5541, 2019.

[29] S.-H. Lyu, Y.-H. Chen, and Z.-H. Zhou. A region-based analysis for the
feature concatenation in deep forests. Chinese Journal of Electronics,
31(6):1072–1080, 2022.

[30] S.-H. Lyu, Y.-X. He, and Z.-H. Zhou. Depth is more powerful than
width with prediction concatenation in deep forests. In Advances in
Neural Information Processing Systems 35, pages 29719–29732, 2022.

[31] S.-H. Lyu, J.-H. Wu, Q.-C. Zheng, and B. Ye. The role of depth, width,
and tree size in expressiveness of deep forest, 2024. URL https://arxiv.
org/abs/2407.05108.

[32] R. Mazumder and H. Wang. On the convergence of CART under suffi-
cient impurity decrease condition. In Advances in Neural Information
Processing Systems 36, pages 57754–57782, 2023.

[33] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of
linear regions of deep neural networks. In Advances in Neural Informa-
tion Processing Systems 27, pages 2924–2932, 2014.

[34] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu.
Definitions, methods, and applications in interpretable machine learn-
ing. Proceedings of the National Academy of Sciences, 116(44):22071–
22080, 2019.

[35] M. Pang, K.-M. Ting, P. Zhao, and Z.-H. Zhou. Improving deep forest
by confidence screening. IEEE Transactions on Knowledge and Data
Engineering, 34(9):4298–4312, 2022.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.
Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[37] E. Scornet, G. Biau, and J.-P. Vert. Consistency of random forests. An-
nals of Statistics, 43(4):1716–1741, 2015.

[38] M. Telgarsky. Benefits of depth in neural networks. In Proceedings of
the 24th Conference on Learning Theory, pages 1517–1539, 2016.

[39] L. V. Utkin and M. A. Ryabinin. Discriminative metric learning with
deep forest. International Journal on Artificial Intelligence Tools, 28
(2):1950007:1–1950007:19, 2019.

[40] G. Vardi, G. Yehudai, and O. Shamir. Width is less important than depth
in relu neural networks. In Proceedings of 35th Conference on Learning
Theory, pages 1249–1281, 2022.

[41] Q. Wang, L. Yang, and Y. Li. Learning from weak-label data: A deep
forest expedition. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence, pages 6251–6258, 2020.

[42] Y. Wang, H. Wu, and D. Nettleton. Stability of random forests and
coverage of random-forest prediction intervals. In Advances in Neural
Information Processing Systems 36, 2023.

[43] J.-H. Wu, S.-Q. Zhang, Y. Jiang, and Z.-H. Zhou. Complex-valued neu-
rons can learn more but slower than real-valued neurons via gradient
descent. In Advances in Neural Information Processing Systems 36,
pages 23714–23747, 2023.

[44] J.-H. Wu, S.-Q. Zhang, Y. Jiang, and Z.-H. Zhou. Theoretical explo-
ration of flexible transmitter model. IEEE Transactions on Neural Net-
works and Learning Systems, 2023.

[45] W. Xu and S. Du. Over-parameterization exponentially slows down
gradient descent for learning a single neuron. In Proceedings of the
36th Annual Conference on Learning Theory, pages 1155–1198, 2023.

[46] L. Yang, X. Wu, Y. Jiang, and Z. Zhou. Multi-label learning with deep
forest. In Proceedings of the 24th European Conference on Artificial
Intelligence, pages 1634–1641, 2020.

[47] S.-Q. Zhang, W. Gao, and Z.-H. Zhou. Towards understanding theoret-
ical advantages of complex-reaction networks. Neural Networks, 151:
80–93, 2022.

[48] Y. Zhang, J. Zhou, W. Zheng, J. Feng, L. Li, Z. Liu, M. Li, Z. Zhang,
C. Chen, X. Li, Y. A. Qi, and Z. Zhou. Distributed deep forest and its
application to automatic detection of cash-out fraud. ACM Transactions
on Intelligent Systems and Technology, 10(5):55:1–55:19, 2019.

[49] Q.-C. Zheng, S.-H. Lyu, S.-Q. Zhang, Y. Jiang, and Z.-H. Zhou. On
the consistency rate of decision tree learning algorithms. In Proceed-
ings of the 26th International Conference on Artificial Intelligence and
Statistics, pages 7824–7848, 2023.

[50] M. Zhou, X. Zeng, and A. Chen. Deep forest hashing for image re-
trieval. Pattern Recognition, 95:114–127, 2019.

[51] Z.-H. Zhou and J. Feng. Deep forest. National Science Review, 6(1):
74–86, 2019.

[52] R. Zhu, D. Zeng, and M. R. Kosorok. Reinforcement learning trees.
Journal of the American Statistical Association, 110(512):1770–1784,
2015.

S.-H. Lyu et al. / The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest 2049

