ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.

2019

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA240718

Learning After Learning: Positive Backward Transfer in
Continual Learning
Wern Sen Wong #*, Yun Sing Koh? and Gillian Dobbie?

2School of Computer Science, The University of Auckland, New Zealand

Abstract. Continual Learning (CL) methods enable models to learn
new tasks without forgetting previously learned ones. Catastrophic
Forgetting (CF) occurs when the parameters of a neural network are
updated for a new task, causing the model to lose performance on
tasks it has previously learned. To mitigate CF, parameter isolation
methods use a “task mask” to allocate a subset of weights to each
task; these weights are typically frozen to preserve task performance.
However, frozen weights can limit positive backward transfer, which
is the beneficial reuse of knowledge from new tasks to improve the
accuracy of previously learned tasks. To address this gap, we in-
troduce LEarning AFter learning (LEAF), a novel CL method that
enables positive backward transfer by dynamically updating frozen
task masks based on gradient updates that signal sufficient backward
knowledge transfer. This mechanism allows for selective integration
of new knowledge without sacrificing previously acquired knowl-
edge. Our experiments show that LEAF surpasses existing state-of-
the-art methods in terms of accuracy while maintaining compara-
ble memory and runtime efficiencies. Moreover, it outperforms other
backward transfer techniques in improving the accuracy of a priori-
tized task. Our code is available at https://github.com/wernse/LEAF.

1 Introduction

Continual Learning (CL) is a learning approach that involves learn-
ing a sequence of tasks. An ideal continual learner is designed to fa-
cilitate positive forward and backward transfer of knowledge, using
past knowledge to learn new tasks and new knowledge to improve
learning on older tasks. However, this is difficult due to the chal-
lenge of Catastrophic Forgetting (CF), where neural networks often
lose knowledge from previous tasks when learning new ones, leading
to a significant performance decrease [22]. Approaches to mitigate
CF include regularization methods [40, 8, 32] that penalize signif-
icant weight changes associated with previous tasks, and memory-
based methods [3, 25] that leverage past data samples to maintain old
knowledge. Another approach is parameter isolation, which involves
creating distinct subsets of neural network weights for each task.
These subsets, often referred to as “subnetworks", are represented
through a “task mask" which is a sparse, binary overlay that isolates
the weights used for a task. Once a task is learned, these weights are
frozen to prevent changes when learning new tasks [26, 35, 10].
However, while parameter isolation methods effectively mitigate
CF, they come with the limitation of preventing positive backward
knowledge transfer, which is the beneficial reuse of knowledge from

* Email: wwon129 @aucklanduni.ac.nz

Wviaskcm, [@Masknyyg

(a) Existing parameter-isolation (forwards transfer)

Traint —P» Freeze maskm; — % Trainf+1 — P Freeze mask My

GE O mE O 0. O
o $53S B8f 9998

(b) LEAF component (backwards transfer) ?

Update mask M; with Knowledge transfer
Train f+1 —P new knowledge and fromgt+1 tot
(Replay buffer)

then freeze mask m,

Figure 1. An illustration of the gap between existing parameter isolation
methods and LEAF: (a) Existing methods freeze task mask my, preventing
updates after learning new tasks (b) LEAF component, updates the task
mask m¢, with new knowledge after learning task ;1.

= = Shared Weights = Frozen Weights

new tasks to improve the accuracy of previously learned tasks. Intu-
itively, careful modifications of the learned model of old tasks may
further improve learning performance, especially when the new task
shares knowledge similar to the old tasks. This gap leads to an essen-
tial question: How can we improve the learned model of older tasks
by facilitating backward transfer? Continuous learning systems have
an important need to improve an older task constantly. For example,
driver assistance systems [15] must adapt continuously to changing
conditions and can improve when learning new tasks such as identi-
fying the current time of day [19] or weather conditions [38]. Studies
in replay and regularization methods have shown that positive back-
ward transfer for specific older tasks is possible when replaying past
knowledge [16, 2]. However, positive backward transfer in param-
eter isolation methods remains difficult as previously learned tasks
remain frozen to prevent CF. In our work, we demonstrate that the
dynamic selection of task mask updates, combined with the use of a
replay buffer, can facilitate positive backward transfer.

To address the limitation of positive backward transfer in pa-
rameter isolation methods, we introduce LEarning AFter learning
(LEAF), a novel method that dynamically updates an older task mask
when new knowledge will be beneficial. LEAF introduces a flexi-
ble mechanism for updating older task masks with newly acquired
knowledge. This update occurs when there is a significant shift in
gradient updates, signaling the potential for improving the accu-
racy of an older task through backward transfer. When a significant
change is detected, LEAF dynamically updates the older task mask

2020 W.S. Wong et al. / Learning After Learning: Positive Backward Transfer in Continual Learning

using data from the replay buffer and the latest network weights. This
update allows the frozen task to benefit from subsequent learning.
For instance, as shown in Figure 1, updating the frozen task mask
for recognizing zeroes and ones with recent learnings from the task
involving twos and threes can significantly improve performance for
the frozen task. This update mechanism represents a paradigm shift
from existing parameter isolation methods, which freeze task masks
and thus prevent updates. Our LEAF approach allows for dynamic
updates, enabling positive backward knowledge transfer.
Our contributions are threefold:

e We introduce a novel parameter-isolation technique that dynami-
cally updates an older task mask when newly learned knowledge
is beneficial. This approach allows the update of an older task,
allowing LEAF to enable positive backward transfer for an older
task while maintaining comparable memory and runtime.

e We define a specific backward transfer scenario for CL, which
aims to improve the accuracy of a chosen older task by storing past
task data. This scenario allows LEAF to demonstrate the potential
accuracy improvements for a critical older task, which is difficult
in a CL setting [16].

e Our evaluation of LEAF highlights that our proposed method
outperforms state-of-the-art methods on 4 out of 5 benchmark
datasets, both in terms of accuracy and backward transfer for the
chosen older task.

2 Related Work

CL strategies encompass several directions, notably regulariza-
tion, rehearsal, and parameter isolation methods. Regularization ap-
proaches [40, 8] incorporate constraints to minimize the adjust-
ment of weights for previously learned tasks. Rehearsal strate-
gies [29, 3, 25] employ a storage buffer to store past task data and
replay a subset during learning to preserve past knowledge.
Parameter Isolation Methods target CF by assigning unique net-
work parameter subsets to each task, primarily utilizing parameter
freezing to maintain task knowledge. Most works have focused on
defining mask-based methods, where a learned mask for individual
weights or groups of weights is used to freeze or constrain specific
parameters selectively. Piggyback [21] uses a binary mask on the
weights of a pre-trained model to create different subnetworks; an
additional overhead is introduced of 1 bit per network parameter for
each task. Kang et al. [10] introduced Winning SubNetworks (WSN),
which sequentially learns and selects an optimal subnetwork for each
task using an accumulate binary mask. WSN updates only weights
not selected in previous tasks, resulting in a task-specific subnet-
work. Another direction is Soft-masking of Parameter-level Gradi-
ent flow (SPG) [11], which uses the mask concept. However, it ap-
plies progressive update penalties on important parameters instead
of a binary mask to prevent forgetting. Ada-QPacknet [26] combines
adaptive pruning with bit width reduction to compress the models
across tasks efficiently by reducing the bit-width of the weights for-
mat. Our methodology diverges by iteratively updating frozen task
masks when new information is detected, facilitating both forward
and backward knowledge transfer through a dynamic task mask.
Knowledge Transfer Methods have mainly focused on the CF is-
sue, with limited exploration in knowledge transfer across tasks. Di-
vided into experience-replay and orthogonal-projection categories,
experience-replay methods such as A-GEM [2] aim to balance
task learning by replaying combinations of old and new task data.
Orthogonal-projection methods offer a different approach; Gradient

Projection Memory (GPM) [31] stores the bases of the subspaces
spanned by old task data and projects the new gradients on the di-
rections orthogonal to these subspaces. Similarly, Trust Region Gra-
dient Projection (TRGP) [17] proposes a scaled weight projection to
facilitate the forward knowledge transfer from related old tasks to
the new task while updating the model based on orthogonal gradient
projection. Notably, the ContinUal learning method with Backward
knowlEdge tRansfer (CUBER) [16] marks a significant advancement
by enabling positive backward transfer, where it selectively projects
gradients derived from the task’s entire training data to determine
when to update the knowledge of old tasks that are positively related
to the current task. In light of their contributions, these methods de-
pend on storing gradients or data, which is important for training
subsequent tasks and attempting to improve backward transfer. In-
spired by storing past data, we combine this with the strengths of
parameter isolation methods. To the best of our knowledge, our pa-
per is the first to attempt to improve backward transfer in parameter
isolation models using a replay buffer.

Full Access to Past Data Methods facilitates knowledge trans-
fer with full access to all past data. Such works as Model Zoo [28]
and application areas such as in robotics [37] advocate for the acces-
sibility of full access task data to improve accuracy and knowledge
transfer between tasks. Our scenario aims to selectively store suffi-
cient past data from a chosen task to enable backward transfer.

3 Backwards Transfer Learning Scenario

In the field of CL, going beyond CF and facilitating backward trans-
fer is a significant challenge [16], with substantial implications for
robotics [37] and driver assistance systems [15]. These applications
depend on improving certain operations with new task knowledge.
For example, precise environmental perception is crucial for safe
navigation in driver assistance systems. The environmental percep-
tion task can benefit from knowledge gained from related tasks like
discerning the time of day [19] and weather conditions [38].

Existing CL models attempt to improve backward transfer store
past concepts such as CUBER [16], which stores task gradients, and
A-GEM [2], which stores a sample of past task data. However, the
amount of backward transfer is limited by the past data they can
use to improve a learned task. On the other hand, models with un-
restricted access to past task data [28, 37] face challenges in data
storage. Our approach proposes a novel scenario, allowing a chosen
crucial task to store its full set of data in the buffer, thereby provid-
ing the potential to improve positive backward transfer without over-
whelming system resources. Using the knowledge from new tasks,
our method seeks not only to mitigate CF but also to improve the
performance of a chosen crucial task.

3.1 Problem Statement

We encounter 7" tasks sequentially presented to a learner in a super-
vised learning framework. Each task ¢ is associated with a dataset
Dy = {@i ¢, yi,e yitq, where z;; and y;,; denote the input features
and the corresponding label for n; instances. We employ a neural
network f(-;), with weights 6, to learn these tasks by minimizing
the objective:

1 &
0 mlmemlzem 271 L(f(xi,;0),yi,t))]

W.S. Wong et al. / Learning After Learning: Positive Backward Transfer in Continual Learning 2021

with £(.,.) as the loss function, typically cross-entropy. Access to
Dy is limited to its respective learning phase, while some CL meth-
ods rehearse a portion of past datasets. The task identity is known
during both training and testing.

Given the propensity for neural networks to be over-parameterized
to accommodate future tasks [9], identifying efficient subnetworks
becomes feasible. The optimal binary mask m; for task ¢ can be
defined as:

1 &
m, = minimize — L(f(zit;0 ©me),yit) — C, 2
‘ my€{0,1}101 M ; (f (i t), Yit))

where © signifies element-wise multiplication, C'is the loss for task
t, and the model’s capacity c is significantly less than the size of 6.
Section 4 highlights the process to derive m; using adjustable weight
scores s, optimizing each task’s loss collectively.

A subnetwork f; derived from the neural network f for task ¢,
is outlined by a binary mask m; applied to the network’s weights
0. This mask m. specifies the active weights for task ¢, effectively
enabling only a subset of weights. For each mask element m; ;, a
value of 1 activates the corresponding weight 6; for task ¢, while 0
deactivates it. The functionality of the subnetwork f; is defined as:

Je(x;0,me) = f(x;0 © my), 3)

where © represents element-wise multiplication. The output is a neu-
ral network configuration that operates with a subset of weights de-
fined by the mask m;, thus optimizing the network for the specific
task ¢.

3.2 Optimizing an older chosen task’s accuracy

To optimize an older chosen task, we use a memory buffer M to
store instances from the chosen task ¢. to replay in the future. We
aim to find a binary attention mask 1}, that minimizes the loss on the
chosen task. The data for task ¢. in the memory buffer is denoted as
M, = {Tito, yir, }ios, where x; ., represents the input features,
Yi ¢, 1s the label the model is aiming to predict, and n., represents
the number of input and label pairs for task . in M.

The objective, using the model parameters 60,: after learning tasks
up to task t’ (where t' > t.), is expressed as:

N,

X L 1
mi, = minimize — Z L(f(zit.;00 Ome.),yir.) (@)
1

my, €{0,1}101 Nt =

where z; ¢, and y;,;, represent the input and label for the chosen task
tc, sourced from the memory buffer M, and 6,/ denotes the neural
network parameters trained up to task ¢'.

4 LEarning After learning algorithm

We describe LEarning AFter learning (LEAF) in Algorithm 1, a
backward transfer method that uses task masks, gradient changes,
and a replay buffer to enable positive backward transfer, exploit
newly learned knowledge, and maintain comparable runtime and
memory. Figure 2 presents the overview of the LEAF process, illus-
trating the evolution of task masks and the chosen task mask within
the neural network.

Unlike state-of-the-art forget-free methods such as PackNet [20]
and WSN [10], which prevent CF by freezing previous task masks
without considering potential benefits from backward knowledge
transfer, LEAF adds an additional step to dynamically determine if an

older task should be unfrozen and be carefully updated with knowl-
edge from the new task.

LEAF operates in two main steps. Initially, for each task, LEAF
identifies a high-accuracy task mask and updates only the weights
that have not been trained on the previous tasks. After training, the
model freezes the task mask parameters so that the previous task is
immune to the CF. Subsequently, LEAF detects if the new knowl-
edge can improve the accuracy of a previously learned task. This
detection is determined by identifying significant shifts in the gradi-
ent updates for the chosen task. Upon detecting a significant shift, the
chosen task mask is dynamically updated with data from the replay
buffer using the latest weights, which encapsulate new knowledge
from subsequent tasks. This approach ensures that the mask benefits
from the most up-to-date network weights for backward transfer by
incorporating knowledge after the task was initially frozen.

4.1 Task mask generation

In this stage, the goal is to find a high-accuracy subnetwork for each
task while preventing weight updates to any existing subnetworks,
thus mitigating CF. Following the methodology of Kang et al. [10],
a task-specific mask m; for task ¢ is derived. This mask selectively
activates weights that improve the accuracy of the current task. Each
weight 0 is evaluated and assigned a score s throughout the training
process. The mask m is formed by selecting the top ¢% of weights
from each layer based on these scores, where c represents a fixed
percentage of each layer’s capacity. This approach results in a sparse
binary mask, m;, defined explicitly for task ¢.

To optimize model weights € and task mask m; using the task’s
dataset D;, we use an objective £(-) to minimize ¢ and s as follows:

minimize L(0 ® my; Dy). (5)

Creating subnetworks introduces two challenges: first, updating 0
across new tasks risks altering weights critical for older tasks; sec-
ond, the zero-gradient indicator function complicates updating the
weight scores s. For the first challenge, our approach involves selec-
tive weight updates, focusing only on the weights not selected for
earlier tasks. We use an accumulated binary mask M;_ for task ¢ as
follows:

M1 = UiZima, (©)

where m is a mask for a chosen task and accordingly update 0:

9<—0—n<%§@(1—MH)), 7

N : aL
where 7) represents an optimization algorithm, 5% denotes the gra-

dient update, and © signifies the element-wise multiplication of the
gradient with the binary mask for task ¢. For the second issue, we use
the Straight-through Estimator [27] in the backward pass to avoid
the derivatives of the indicator function, allowing for the update of

the weight score s.
oL
§4—8—1m (g) . (8)

The weight scores s are used to select weights for the subnetwork.

4.2 Updating the chosen mask

Updating a chosen older task mask m, is a key component of LEAF.
This process aims to integrate relevant new knowledge into an older

2022 W.S. Wong et al. / Learning After Learning: Positive Backward Transfer in Continual Learning

(a) New mask process

(c) Task Masks
=SharedWeight [Mask m;, O Frozen Weight

Mask m;, 1 Critical Weight

GEnm

[Setchosentask t. < 11]

Find mask My,
over weights W

Randomly initialized
weights W0

Find mask My,
over weights W/ "~!

6L 50 B

(b) After every new mask my,

Replay Buffer o}
M,, %»g 3
[olel7[7]

Distance Measure
(Wasserstein Distance)

Before Training

Je O
<= OO0

HEEEN
HEEEN
HEREN

W oo /o
ool
o NN
(L]
L]

[o]oENERER
(o] oJENEN o]
[oJEW 0Jo]o]
[0]oJoJo]o]
[0]oJ o] o]0]

I 0 oo
[
(o JENEREN o]
(oJE o]0 /EH
(o] oJo][0]0]

Update mask M,

Change Detector
{Cumulatwe Sum)

[offo]o/EREN

| e DOE
: oo

o olo]0

over weights /-1

? Mt /_‘m;
e~
o]

< Yes:

Change
detected?

[o]oCIERER
[0 [IE o]
[0J o] o][o]0]

o o]0l
ol o]
Tty [

Figure 2. Overview of LEAF: (a) The model initially identifies task-specific masks for incoming tasks. When the chosen task is learned, the chosen task data
is stored within a replay buffer for future replay. (b) Updates are triggered by measuring the gradient divergence between the chosen mask m¢, and the
accumulated binary mask of all other previous tasks M. (c) A visual representation is provided to illustrate the evolution of task masks. After task 2, my, is
updated with new knowledge, resulting in shared weights between m¢, and task 2’s mask my,.

task, improving its accuracy while keeping other task masks frozen to
prevent CF. To facilitate this, we use the weight scores in Equation 8
to selectively update m.,. The weight scores signal which weights
are most relevant for the task mask based on the latest knowledge
acquired by the network.

To execute the update, m;, is temporarily unfrozen, allowing it
to carefully update to new knowledge while keeping the other task
masks frozen. We adapt Equation 7 to the following:

Here, M, denotes the accumulated binary mask for all tasks
learned up to task ¢, and m;, is the binary mask for the chosen task
being updated. To enable updates to m;,, we use A— to separate mg,,
from the accumulated mask M.

The chosen task mask m¢_ is updated by using the weight score s
described in Equation 8, which guides the selection of new weights
for the chosen task based on the updated knowledge in the network.

4.3 When to Transfer

In this stage, determining when to update an older task mask my,_ is
important to prevent negative backward transfer and maintain com-
parable runtime. To determine when there is significant knowledge to
improve a previous task, we monitor shifts in the distribution of the
gradient updates to assess whether the model has acquired diverse
new knowledge suitable for transfer to the chosen task. Such shifts
may signal a knowledge difference between newly learned concepts
and the existing understanding of the chosen task.

To evaluate these distribution shifts quantitatively, we compute the
Wasserstein distance [30] between the gradients of the aggregated
binary mask, excluding the chosen task’s mask, and the gradients
specific to the chosen task. A substantial distance between these gra-
dients suggests a notable divergence [18].

To detect changes, we calculate the gradient changes as follows:
Gro = VoL O mu;b), G=VoLl(0OM;b), (10)

with b; a batch from the chosen task, m., the mask for the cho-
sen task, and M’ the accumulated binary mask excluding the chosen
task. The Wasserstein distance between these gradients is:

1 1/p
W@m®=(ﬁlﬁﬁw—ﬂﬁwﬁw) , o an

Here, the Wasserstein distance W (g, G) calculates the differ-
ential gradient distributions between the chosen task mask g:, and
the cumulative mask G. The calculation measures the minimum cost
to transform one distribution into the other, reflecting differences in
their gradient distributions.

For change detection, we utilize the Cumulative Sum (CUSUM)
algorithm [24], known for its adeptness at recognizing minor yet
consistent data shifts [5]. This method assists with identifying
when newly acquired knowledge significantly differs from previous
task knowledge, indicating backward transfer potential. Cumulative
changes are determined by:

C = max(0,C_; + Q¢ — k),

C, =max(0,C,,_; — Q: — k)
where k is the allowance parameter that provides a buffer against
minor changes, and Q); is the Wasserstein distance between the gra-
dients G+, and G after learning task ¢. An update to the chosen task

mask is considered if C;" > hor C;; < —h where h is a threshold
that signals a significant cumulative change.

(12)

5 Experiments

Our experiments address the following research questions: 1) How
does training subsequent tasks affect backward transfer on the ini-

W.S. Wong et al. / Learning After Learning: Positive Backward Transfer in Continual Learning 2023

Algorithm 1 LEAF (LEarning AFter learning)

1: input dataset of task { D }7_,, model weights 6, score weights
s, binary mask Mg = ol layer-wise capacity c, chosen task
buffer M, chosen task .

2: fortaskt =1,...,7 do

3 for batch b, ~ D, do

4 if t. ==t then

5: M — MU {b:} > Store chosen task
6: end if

7 Get mask m of the top-c¢% scores s at each layer

8: Compute L(6 © my; be)

9: 0 <—0—n(g—§ © (1 —Mq)) > Weight update
10: s+ s—n(%) > Weight score update
11: end for

12: M < M1 Umy
13: if t >= t. then

> Accumulate binary mask

14: Mme, < My

15: M’ +— M; A —my, > Accumulated mask without m,
16: Jt, < Veﬁ(é’@mtc;bt)

17: G« VoLl(0® M';b)

18: W < DistanceMeasure(g:,,G) > Compute distance
19: if ChangeDetector(W) then

20: for batch b;, ~ M do

21: Update my,_ of top-c% scores s at each layer

22: Compute £(6 © my.;be,)

23: 0+ 60—-n(%%o01-M))

24: S48 — n(%—f)

25: end for

26: My M Umy, > Add updated chosen mask
27: end if

28: end if

29: end for

tially learned task in LEAF? 2) How does varying the selection of
the chosen task ¢. impact the backward transfer in LEAF when dif-
ferent tasks are chosen? 3) How does varying the buffer size alloca-
tion affect the accuracy of the chosen initial task in LEAF? 4) What
are the trade-offs between backward transfer and the training time
and memory requirements when using LEAF compared to other CL
methods?

5.1 Experimental Setup

In our experimental setup, LEAF is presented with a sequence of
learning tasks. Once a task is learned, its training data is discarded,
apart from the chosen task t. where the data is stored in a replay
buffer. After learning all tasks, each task model is evaluated using
its test data. In training each task, we use its validation set to decide
when to stop training. We consider task-incremental CL with a multi-
head configuration for all experiments in the paper. We follow the
experimental setups in recent works [10, 31, 6].

Hyperparameter setting: We selected ¢ = 0 to investigate the
potential for positive backward transfer on the initially learned task.
For LEAF, the sparsity parameter c is set to 0.3 for CIFAR100 and
CIFAR100-SC, while it is set to 0.1 for MinilmageNet, TinyIma-
geNet, and the 5 Dataset to learn each dataset. The allowance value
k is determined through a grid search on the validation set. It varies
according to the scale of features in each dataset: 3 for Minilma-
geNet, 6 for CIFAR100 and the 5 Dataset, 12 for CIFAR100-SC, and
16 for TinyImageNet. Please refer to the supplementary material [34]
for more detailed information on the hyperparameters used.

Datasets and architecture: We evaluate our CL algorithm on
five continual learning benchmark datasets. A task represents an im-

age classification task for a given group of objects. Following the
CL approaches [4], each dataset’s training and testing instances are
evenly split into each task and each class. These datasets are CI-
FAR100 [12], a visual object dataset split into 10 tasks with 10
different classes each; CIFAR100-SC [39], which segments the CI-
FAR100 dataset into 20 tasks based on 20 superclasses, with each
task comprising 5 semantically related classes; MinilmageNet [33],
a variant of ImageNet [13] with 20 tasks, each containing 5 differ-
ent classes; TinylmageNet [14], another ImageNet variant with 40
tasks, each including 5 different classes; and 5-Dataset [31], a com-
bination of five distinct vision datasets (CIFAR-10 [12], MNIST [7],
SVHN [23], FashionMNIST [36], and notMNIST [1]), with the clas-
sification problem in each dataset treated as a separate task. We
trained our models on an Nvidia Tesla A100 GPU 40GB. For evalu-
ating CIFAR100 and CIFAR100-SC, we employ a 5-layer AlexNet,
with 3 convolution layers and 2 fully connected layers, similar to Lin
et al. [17]. For MinilmageNet, TinylmageNet, and the 5-Dataset, we
use a scaled-down version of ResNet-18, similar to Kang et al. [10].

Compared Baselines. We compare our approach against one up-
per limit baseline and eight CL baselines. Our evaluation includes
a variety of benchmarks, such as Multitask Learning (MTL), which
joint learns all tasks, a baseline for average task accuracy. We in-
clude four knowledge transfer techniques: GPM [31] retains early
task inputs’ subspace, using orthogonal gradient projections for up-
dates. TRGP [17], and CUBER [16] propose advanced weight and
gradient management strategies for knowledge transfer and model
adaptation across tasks. CUBER is particularly relevant for its focus
on positive backward transfer. A-GEM [2] restricts learning on new
tasks by utilizing gradients from old tasks’ data. SupSup [35] and
WSN [10] explore the use of task-specific binary masks and show
the effectiveness of weight reuse and is the current state-of-the-art for
parameter-isolation models. SPG [11] applies regularization based
on the parameter’s importance to the task. Ada-QPacknet [26] com-
bines pruning with compression techniques through quantization.

Performance Metrics Following Lin et al. [17], we use accuracy
(ACC) to measure the average test classification accuracy of all tasks.
Our scenario focuses on a single chosen task setting. We introduce a
metric called Backward Transfer of the Chosen Task (BWT,,.). This
metric is designed to measure a learned task’s accuracy change after
learning new tasks, defined as:

T
BWT,, = i o > (Rij. — Ricste)- (13)
i=te+1

Here, T is the total task count, ¢. is the chosen task, R; ¢, is the
model’s accuracy on task t. after sequentially learning up to task i,
and Ry, ¢, is the accuracy on task ¢. directly after it has been learned.
The BWT,,_ metric ranges from -100% to 100%, measuring the ac-
curacy change on task ¢. after subsequent tasks have been learned.
Negative BWT,_ values indicate a decrease in the chosen task’s ac-
curacy, which indicates a loss of previously learned information due
to interference from newly learned tasks. In contrast, positive values
indicate increased accuracy, suggesting that learning new tasks has

contributed to understanding task ..

5.2 Exploring Backward Transfer in LEAF (RQ1)

This section assesses how training on subsequent tasks affects back-
ward transfer on the initially learned task. The evaluation results
in Table 1 show LEAF’s effectiveness in facilitating positive back-
ward transfer, improving BWT;_ over other parameter-isolation and
memory-based approaches in four out of five datasets.

2024 W.S. Wong et al. / Learning After Learning: Positive Backward Transfer in Continual Learning
Table 1. The BWT}, and ACC, each with standard deviations, over 5 runs for each dataset.

Metric Method CIFAR100 CIFAR100-SC TinyImageNet 5 Dataset MinilmageNet
A-GEM (ICLR 19) -5.41 + 0.46 -4.86 + 0.86 -7.16 + 1.25 -8.61 + 0.50 -7.61 + 1.04

GPM (ICLR 21) -0.22 +0.14 -1.60 + 0.78 -1.90 + 0.64 -4.52 +1.28 -4.00 £+ 1.02

TRGP (ICLR 22) -0.25 £ 0.16 -0.44 + 0.26 -0.50 + 0.30 -0.18 +0.32 0.50 £ 0.27

g” CUBER (Neurips 22) 0.34 £0.12 0.40 £0.23 0.38 £ 0.31 -0.24 + 0.09 1.07 £ 0.68
N SPG (ICML 23) -1.30 + 0.53 -1.20 4+ 1.02 -1.60 4 0.84 -2.54 +0.95 -1.14 £+ 0.75
Q SupSup (Neurips 20) 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £+ 0.00 0.00 £ 0.00
WSN (ICML 22) 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
Ada-QPackNet (ECAI 23) 0.00 £ 0.00 0.00 £ 0.00 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £ 0.00

LEAF (ours) 0.95 +0.28 2.44 + 0.65 3.99 £+ 0.79 -0.27 £ 0.18 4.51 +£1.12
Multi-task 79.754+0.387 61.00 £0.201 77.10 + 1.06T 9344 +0.121 69.46 + 0.62F

A-GEM (ICLR 19) 62.54 £ 1.02 51.60 £+ 0.84 57.51 £ 1.15 84.59 +1.32 58.31 £ 1.02

GPM (ICLR 21) 72.08 +0.45 57.60 £+ 0.37 61.09 £+ 0.62 91.00 £+ 0.52 61.80 £ 1.35

O TRGP (ICLR 22) 75.40 £ 0.26 58.47 £ 0.51 62.81 £ 0.82 92.78 £ 0.43 64.36 £ 1.12
@) CUBER (Neurips 22) 75.71 £0.25 60.28 £+ 0.57 67.62 +0.70 93.13 £ 0.27 63.34 £0.83
< SPG (ICML 23) 68.34 +0.72 56.75 £ 0.39 60.75 £ 0.79 92.28 + 1.86 70.75 + 0.39
SupSup (Neurips 20) 75.22 +1.00 60.43 £+ 0.63 58.62 + 1.74 91.39 +£0.85 70.43 £ 1.32

WSN (ICML 22) 77.84 +0.36 64.15 + 0.44 71.74 £ 1.15 9291 £+ 0.04 72.73 £ 1.55
Ada-QPackNet (ECAI 23) 74.10 £+ 0.65 59.54 4+ 0.96 71.00 £+ 1.02 94.10 £ 0.60 69.21 £0.43

LEAF (ours) 7791 £+ 041 64.24 + 047 71.84 + 1.27 92.85 £ 0.12 72.84 + 1.72

Note: T denotes results reported from Dang et al.[6].

Specifically, LEAF achieves improvements in BWT;_. on CI-
FAR100, CIFAR100-SC, TinyImageNet, and MinilmageNet, with
gains of 0.95%, 2.44%, 3.99%, and 5.21% respectively. These re-
sults show LEAF’s capability to dynamically update m;, and inte-
grate newly learned knowledge effectively. Compared to CUBER, a
state-of-the-art backward transfer technique, LEAF exhibits higher
BWTT;, improvements by margins of 0.31%, 1.84%, 5.67%, and
4.14%. These improvements may be attributed to LEAF’s update
mechanism, which incorporates new network weights into the cho-
sen task mask. However, LEAF has a slight decrease in BWT;_ on
the 5-Dataset, similar to CUBER and TRPG, which includes fewer
interrelated tasks, a larger volume of instances per task, and a smaller
number of tasks which suggest a challenge for backward transfer.

Regarding overall accuracy, LEAF leads in 4 out of 5 datasets,
with gains of 0.1%, 0.11%, 0.11%, and 0.35% in ACC over SupSup,
WSN, and Ada-QPackNet. These slight increases in ACC indicate
that LEAF not only maintains accuracy on all other tasks but also
improves the backward transfer on the chosen task.

5.3 Impact of Varied Task Selection t. (RQ2)

This study examines the impact of varying the chosen task on back-
ward transfer in LEAF. We hypothesize that early tasks are likely
to exhibit higher accuracy gains due to their limited exposure to the
knowledge from other tasks. These tasks can benefit more from in-
tegrating insights gained from subsequent tasks. In contrast, mid-
sequence tasks, which already integrate knowledge from earlier
tasks, may experience a saturation effect. Thus, additional learning
could lead to diminishing returns, as shown by minor improvements
in accuracy from newly acquired knowledge. To empirically test this
hypothesis, we selected four early tasks (¢o to ¢3), four middle tasks
(tg to t12), and four late tasks (15 to t19) as the chosen task indepen-
dently. We measure the accuracy after learning each subsequent task
until all remaining tasks were learned, as shown in Figure 3.

Our experimental results indicate that early tasks chosen as t. in
LEAF improved accuracy as additional tasks were learned, outper-
forming all other baselines. For example, tasks to, t1, t2, and ¢3 ini-
tially show no change in accuracy after the first few tasks are learned,

as the update mechanism has not been activated. However, as more
tasks were learned, there was an increase of 2.95%, 1.69%, 2.34%,
and 2.16%, respectively. In contrast, middle and late sequence tasks
do not show any accuracy changes, implying a lack of beneficial
knowledge transfer from subsequent tasks. These results highlight
LEAF’s capability to improve positive backward transfer effectively
for earlier tasks while preventing CF for later tasks.
to 1 153 3
70 — — ;

e —— L f-r_—-:_,, =.
60 PR
e
0] B~ —
t t t t
) 9 y 10 11 12
S ==
> 70
g e
= N — S——
3 60 1 = "
g o —-
50
115 16 17 hy
70 LEAF
E WSN
60 1 o - GPM
- CUBER
[—— — < e TRGP
50(5= 1 AGEM
[P
0 5 10 15200 5 10 15 200 5 10 15 200 5 10 15 20

Subsequent Tasks Learned

Figure 3. Accuracy of chosen tasks as subsequent tasks are learned. i.e. if
te = t12 and there are 20 tasks, then 7 tasks can be learned (CIFAR100-SC)

5.4 Ablation Study

We conducted an ablation study to evaluate the impact of the task
mask change detector within LEAF. For this purpose, we introduced
LEAFnNc b, which does not include a mechanism to evaluate when
to update the chosen task mask based on significant changes in gra-
dient divergence. Instead, LEAF o p updates the task mask each
time the model learns a new task. Table 2 presents the compar-
ative accuracy results for both LEAF and LEAFycp across five
datasets. The results indicate that selectively updating the task mask
based on gradient divergence improves the backward transfer of

W.S. Wong et al. / Learning After Learning: Positive Backward Transfer in Continual Learning

the chosen task. Specifically, LEAF outperforms LEAFycp on CI-
FAR100, CIFAR100-SC, TinyImageNet, 5 Dataset, and Minilma-
geNet, achieving BWT;, improvements of 0.35%, 0.18%, 0.35%,
0.13%, and 0.46% respectively. This update mechanism improves
backward transfer and reduces training runtime by only updating

when substantial new knowledge is detected.

Table 2. BW'T;,_ and standard deviation values for LEAF y ¢ p

LEAFNcD LEAF
CIFAR100 0.60+0.32 0.95+0.28
CIFARI00-SC 226+£0.59 2.44 +0.65
TinyImageNet 3.53+£1.07 399 +1.12
5 Dataset -040£022 -0.27£0.18
MinilmageNet ~ 3.86 4 0.68 4.51 +0.79

5.5 Effect of Buffer Size on Task Accuracy (RQ3)

This section examines how variations in the replay buffer size affect
the accuracy of the chosen task ¢. in LEAF, compared to LEAF N/,
which lacks a task mask update mechanism. We systematically vary
the buffer size to include 100%, 80%, 60%, 40%, and 20% of the total
instances available for task t., where 100% stores the complete set
of training instances for task t.. The variants of LEAF are designated
as LEAF 100, LEAFgo, LEAF¢0, LEAF.40, and LEAF», representing
the percentage of the total training instances stored in the buffer. This
experiment is run on four datasets: TinylmageNet, MinilmageNet,
CIFAR100, and CIFAR100-SC, as shown in Table 3.

The findings show that as the buffer size decreases, the accuracy
across all datasets decreases. When using LEAF, the accuracy of the
chosen task exceeds that of LEAFyy at 80% buffer size for CI-
FAR100, 60% for CIFAR100-SC, and 40% for both TinyImageNet
and MinilmageNet. The reduction in buffer size typically results in
decreased accuracy, potentially due to overfitting to the limited sam-
ples. These results show that a larger buffer size may be needed to up-
date the chosen task mask to improve backward transfer effectively.

Table 3. Accuracy and standard deviation of ¢, with varied buffer sizes

CIFAR100 CIFAR100-SC TinylmageNet MinilmageNet

LEAFNy 78.00 £0.48 54.68 +0.67 73.60 £0.85 6592+ 0.82
LEAF2o 7436 +£0.55 5098 £0.68 7123 £0.92 63.74+0.68
LEAF40 7521+£0.52 53.79+£0.73 7443 +051 66.87+0.78
LEAFg¢o 77.89 £0.67 56.35+0.62 75.65£0.70 66.31+0.58
LEAFgg 7834+£043 5679045 7738+0.62 68.72+0.86
LEAF100 79.16 £0.31 57.20 +0.52 78.26 = 0.68 69.40 + 0.74

5.6 Training Time and Memory Usage (RQ4)

We evaluate the efficiency of LEAF in terms of training duration and
memory usage against five established CL methods: GPM, TRPG,
A-GEM, CUBER, and WSN. These evaluations are conducted us-
ing four datasets: TinyImageNet, MinilmageNet, CIFAR100, and
CIFAR100-SC, with results visualized in Figure 4. Training time is
measured by the total duration after training on all tasks. We record
GPU memory consumption after training on a single task to ensure a
fair comparison of memory usage, especially between methods that
rely on gradient storage versus storing input instances.

CUBER has shown the highest backward transfer among the
compared methods but also incurs the longest runtimes across the

2025

datasets. The increased run time is primarily due to the computa-
tionally intensive process of calculating gradient alignments for each
task, which involves handling large gradient vectors. CUBER has
the highest memory requirements when using the ResNet-18 back-
bone on the TinylmageNet and MinilmageNet datasets. In contrast,
LEAF typically exhibits lower runtime and memory requirements
than CUBER on TinylmageNet and MinilmageNet, primarily due
to CUBER'’s necessity to store extensive gradient vectors. However,
when employing the AlexNet model as the backbone for CIFAR100
and CIFAR100-SC, LEAF shows a higher memory requirement due
to storing the entire training dataset of the chosen task to facilitate fu-
ture task mask updates. Despite these variances, LEAF demonstrates
similar memory usage to CUBER on TinylmageNet and Minilma-
geNet but achieves higher backward transfer for the chosen task.

5 11 o LeaF 5 1 *
m WSN n °
g 0.8/ o GPm * ﬁ 08
= @ CUBER =
206 » TRPG 4 go.6
= A-GEM =
2 0.4 2 0.4 *
el o A
290.2 20.2
3 3
0 "o
0 02 04 06 0.8 1 0 02 04 06 0.8 1
Scaled Memory Usage (0 to 1) Scaled Memory Usage (0 to 1)
(a) TinyImageNet (b) MinilmageNet
1 * 1 *
= =
Sos8 Sos
S3 S
Los * ® 2os o
=] =]
50.4 Soal "
x A x a
el el
90.2 L20.2
3 3
"o "o
0 02 04 06 0.8 1 0 02 04 06 0.8 1
Scaled Memory Usage (0 to 1) Scaled Memory Usage (0 to 1)

(c) CIFAR100 (d) CIFAR100-SC

Figure 4. Memory usage is recorded after training on the first task, and
runtime is after all tasks are learned. The highest memory usage and runtime
recorded are used as the reference (value of 1). Maximum values are
recorded on separate axes: CIFAR100 is 112 mins & 361MB, CIFAR100-SC
is 90 mins & 347MB, TinyImageNet is 72 mins & 371MB, and
MinilmageNet is 160 mins & 310MB.

6 Conclusion and Future Work

In this work, we investigate how to facilitate positive forward and
backward transfer of knowledge, using past knowledge to learn new
tasks and new knowledge to improve learning on an older task. We
proposed and developed a novel CL method, LEAF, which improves
backward transfer by introducing a flexible mechanism for updat-
ing older knowledge through task mask adaptation. Our experiments
demonstrate that LEAF achieves higher BW T} in 4 out of 5 bench-
mark datasets. We also show its effectiveness in a CL fashion as new
tasks arrive. We also highlighted scenarios where tasks share simi-
larities and datasets with a higher number of tasks, such as TinyIm-
ageNet and MinilmageNet, as LEAF leverages relevant knowledge
from new tasks to improve the performance of the chosen task. In fu-
ture work, we will extend our research to explore strategies that en-
hance backward transfer under limited memory and simultaneously
enable positive backward transfer across multiple tasks.

2026

W.S. Wong et al. / Learning After Learning: Positive Backward Transfer in Continual Learning

References

(1]
(2]

(3]

(4]
(5]

(6]

[7

—

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Y. Bulatov. Notmnist dataset. Google (Books/OCR), 2011.

A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning
Representations, 2019.

A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania,
P. H. Torr, and M. Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Z. Chen and B. Liu. Lifelong machine learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 12(3):1-207, 2018.

B. Daass, D. Pomorski, and K. Haddadi. Using an adaptive entropy-
based threshold for change detection methods — application to fault-
tolerant fusion in collaborative mobile robotics. In 2019 6th Interna-
tional Conference on Control, Decision and Information Technologies
(CoDIT), pages 1173-1178, 2019. doi: 10.1109/CoDIT.2019.8820667.
D. Deng, G. Chen, J. Hao, Q. Wang, and P.-A. Heng. Flattening sharp-
ness for dynamic gradient projection memory benefits continual learn-
ing. Advances in Neural Information Processing Systems, 34:18710-
18721, 2021.

L. Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
29(6):141-142, 2012.

S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach. Uncertainty-
guided continual learning with bayesian neural networks. In Interna-
tional Conference on Learning Representations, 2020.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on Learning
Representations, 2019.

H. Kang, R. J. L. Mina, S. R. H. Madjid, J. Yoon, M. Hasegawa-
Johnson, S. J. Hwang, and C. D. Yoo. Forget-free continual learning
with winning subnetworks. In International Conference on Machine
Learning, pages 10734-10750. PMLR, 2022.

T. Konishi, M. Kurokawa, C. Ono, Z. Ke, G. Kim, and B. Liu.
Parameter-Level Soft-Masking for Continual Learning. In Proc. of
ICML, 2023.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. Master’s thesis, University of Toronto, 2009.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in Neural Informa-
tion Processing Systems, 25, 2012.

Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS
23IN, 7(7):3, 2015.

L. Liebel and M. Korner. Auxiliary tasks in multi-task learning. arXiv
preprint arXiv:1805.06334, 2018.

S.Lin, L. Yang, D. Fan, and J. Zhang. Beyond not-forgetting: Continual
learning with backward knowledge transfer. In A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho, editors, Advances in Neural Information Pro-
cessing Systems, 2022.

S. Lin, L. Yang, D. Fan, and J. Zhang. TRGP: Trust region gradient pro-
jection for continual learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=iEvAf8
i6JjO.

Y. Luopan, R. Han, Q. Zhang, C. H. Liu, G. Wang, and L. Y. Chen.
Fedknow: Federated continual learning with signature task knowledge
integration at edge. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE), pages 341-354. IEEE, 2023.

W.-C. Ma, S. Wang, M. A. Brubaker, S. Fidler, and R. Urtasun. Find
your way by observing the sun and other semantic cues. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages
6292-6299. IEEE, 2017.

A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single
network by iterative pruning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 7765-7773, 2018.

A. Mallya, D. Davis, and S. Lazebnik. Piggyback: Adapting a single
network to multiple tasks by learning to mask weights. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 67-82,
2018.

M. McCloskey and N. J. Cohen. Catastrophic interference in connec-
tionist networks: The sequential learning problem. In Psychology of
Learning and Motivation, volume 24, pages 109—-165. Elsevier, 1989.
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning,
pages 11, 16, 2011.

E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100—
115, 1954.

P. Pan, S. Swaroop, A. Immer, R. Eschenhagen, R. Turner, and M. E. E.

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

Khan. Continual deep learning by functional regularisation of mem-
orable past. Advances in Neural Information Processing Systems, 33:
4453-4464, 2020.

M. Pietron, D. Zurek, K. Faber, and R. Corizzo. Ada-qpacknet — multi-
task forget-free continual learning with quantization driven adaptive
pruning. In 26th European Conference on Artificial Intelligence, 2023.
V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Raste-
gari. What’s hidden in a randomly weighted neural network? In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11893-11902, 2020.

R. Ramesh and P. Chaudhari. Model zoo: A growing brain that learns
continually. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=WfvgGBcgbE7.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: In-
cremental classifier and representation learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2001-2010, 2017.

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as
a metric for image retrieval. International Journal of Computer Vision,
40:99-121, 2000.

G. Saha, I. Garg, and K. Roy. Gradient projection memory for contin-
ual learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=3 AOjORCNC2.

W. Shi, Y. Chen, Z. Zhao, W. Lu, K. Yan, and X. Du. Create and find
flatness: Building flat training spaces in advance for continual learning.
In 26th European Conference on Artificial Intelligence, 2023.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching net-
works for one shot learning. Advances in Neural Information Process-
ing Systems, 29, 2016.

W. Wong, Y. S. Koh, and G. Dobbie. Learning after learning: Positive
backward transfer in continual learning supplementary material, 2024.
Available at https://doi.org/10.5281/zenodo.13357526.

M. Wortsman, V. Ramanujan, R. Liu, A. Kembhavi, M. Rastegari,
J. Yosinski, and A. Farhadi. Supermasks in superposition. Advances
in Neural Information Processing Systems, 33:15173-15184, 2020.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747,2017.

A. Xie and C. Finn. Lifelong robotic reinforcement learning by re-
taining experiences. In Conference on Lifelong Learning Agents, pages
838-855. PMLR, 2022.

X. Yan, Y. Luo, and X. Zheng. Weather recognition based on images
captured by vision system in vehicle. In Advances in Neural Networks—
ISNN 2009, pages 390-398, 2009.

J. Yoon, S. Kim, E. Yang, and S. J. Hwang. Scalable and order-
robust continual learning with additive parameter decomposition. In
International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=r1gdj2EKPB.

G. Zeng, Y. Chen, B. Cui, and S. Yu. Continual learning of context-
dependent processing in neural networks. Nature Machine Intelligence,
1(8):364-372, 2019.

