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Abstract. Few-shot Named Entity Recognition (NER), the task
of identifying named entities with only a limited amount of labeled
data, has gained increasing significance in natural language process-
ing. While existing methodologies have shown some effectiveness,
such as enriching label semantics through various prompting modes
or employing metric learning techniques, their performance exhibits
limited robustness across diverse domains due to the lack of rich
knowledge in their pre-trained models. To address this issue, we pro-
pose CLLMFS, a Contrastive Learning enhanced Large Language
Model (LLM) Framework for Few-Shot Named Entity Recognition,
achieving promising results with limited training data. Considering
the impact of LLM’s internal representations on downstream tasks,
CLLMFS integrates Low-Rank Adaptation (LoRA) and contrastive
learning mechanisms specifically tailored for few-shot NER. By en-
hancing the model’s internal representations, CLLMFS effectively
improves both entity boundary awareness ability and entity recogni-
tion accuracy. Our method has achieved state-of-the-art performance
improvements on F1-score ranging from 2.58% to 97.74% over ex-
isting best-performing methods across several recognized bench-
marks. Furthermore, through cross-domain NER experiments con-
ducted on multiple datasets, we have further validated the robust gen-
eralization capability of our method. Our code is available on github
(https://github.com/yuzilan/CLLMFS).

1 Introduction

Named Entity Recognition (NER) is pivotal for identifying and cat-
egorizing named entities within unstructured text across various do-
mains, such as Location [23], Private Health Information [21] and
Event [32]. However, developing accurate NER models demands
substantial amounts of domain-specific annotated data, which are of-
ten scarce and costly to procure [14]. This has led to the demand for
Few-Shot Named Entity Recognition (FS-NER), which aims to learn
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from limited labeled examples to address entity tagging challenges
under low-resource conditions [6].

Early FS-NER methods often employ neural networks with con-
ventional supervised learning, which may lead to overfitting due to
the large number of parameters to optimize [3]. To mitigate this,
cross-domain NER approaches have been employed, where models
learn semantic features from base classes and adapt them to novel
classes [16]. Despite this, these methods may still exhibit subopti-
mal generalization in novel domains [9]. To address these limitations,
contrastive learning has been introduced, utilizing Gaussian distribu-
tions to optimize the distributional distance between tokens in sen-
tences [7].

With the rapid development of Large Language Models (LLMs),
models like GPT-3 demonstrate few-shot capabilities through
prompt-based construction, achieving satisfactory results [30].
LLAMA 2 [25] emerges as a superior choice in low-resource set-
tings due to its accessibility and adeptness across various natural lan-
guage processing (NLP) tasks. However, deploying of LLMs such
as ChatGLM, GPT-3, ChatGPT, GPT-4, LLAMA, and LLAMA 2
[10, 4, 17, 5, 24, 26] for FS-NER poses challenges, given their ex-
tensive parameter sizes and the need for substantial amounts of high-
quality supervised fine-tuning (SFT) data, leading to high costs in
training and data acquisition. To address this, Parameter-Efficient
Fine-Tuning (PEFT) techniques like Low-Rank Adaptation (LoRA)
[13] have been proposed to enhance model performance on new tasks
while minimizing fine-tuning parameters and computational com-
plexity.

In this research, we present an innovative method, CLLMFS, to
tackle the NER task under low-resource conditions. Our approach
leverages LLMs to effectively address the challenge of limited la-
beled data by exploiting their pre-trained knowledge. We fine-tune
LLMs using supervised learning to adapt them to our specific NER
task, resulting in improved performance compared to recent bench-
marks. To further reduce the trainable parameters, we employ LoRA
techniques, enabling effective fine-tuning with limited training sam-
ples. Additionally, we introduce contrastive learning to our frame-
work, enriching the LLM-based method for few-shot NER tasks.
This framework significantly improves the boundary awareness of
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the LLM and enhances its ability to accurately extract named en-
tities by refining internal embedding representations. Furthermore,
we enhance the model’s robustness by introducing noise to construct
positive example pairs during training. Our approach achieves state-
of-the-art results across multiple datasets, demonstrating its effec-
tiveness and versatility in handling NER tasks under low-resource
settings.

In summary, our contributions are as follows:

• We advance the use of LLMs for few-shot NER by integrating
them with LoRA for supervised fine-tuning, achieving the-state-
of-art performance across multiple datasets with limited labeled
data.

• We propose a framework that incorporates contrastive learning to
improve the boundary awareness and accuracy of entity extrac-
tion, enhancing model robustness by constructing positive exam-
ple pairs with noised embedding.

• Our approach showcases robust transfer capabilities, significantly
enhancing the F1-score, ranging from 2.58% to 97.74% in the IN-
TRA setting, and from 44.36% to 160.00% in the INTER setting,
surpassing state-of-the-art methods across various datasets.

2 Related Works

2.1 Few-Shot NER

Few-shot learning (FS-NER) enhances model performance with lim-
ited labeled data. Data-enhancement methods augment small labeled
datasets with additional data sources, but unreliable examples can af-
fect precision [33]. Manner uses a Variational Autoencoder for an ex-
ternal memory module, but faces challenges in memory optimization
and cross-domain generalization [11]. CONTaiNER employs con-
trastive learning to optimize token distribution, improving adaptabil-
ity to new domains [7], but large source-target domain divergence
can be problematic.

2.2 Meta Learning

Meta Learning offers new approaches for few-shot learning. Metric-
based methods like Matching Networks [27] and Prototypical Net-
works [19] calculate similarities to learn prototypical representa-
tions for target classes. ProtoBERT uses a pre-computable BERT en-
coder for effective entity prediction [38]. ProML introduces multiple
prompt schemas with weighted averages for enriched label seman-
tics [6], achieving promising results across various settings. How-
ever, generated prototypes may lack precision, due to limited labeled
data for various entity types in the support set.

2.3 In-context learning

Large-scale pre-trained LLMs, like GPT-3 [4], have advanced in-
context learning, applied in tasks like question answering and NER
without additional training data [2]. Recent NLP research explores
prompt-based methods for FS-NER, relying on prompts to predict
labels. However, these methods primarily rely on prompts to pre-
dict labels using classification heads, rather than employing data-
enhancement or metric learning techniques. Prompt-based NER uses
language models to generate entity predictions based on context
and instructions. However, these methods face limitations in prompt
quality and design.

3 Methodology

The internal representations of language models play a pivotal role
in shaping the performance of downstream tasks. In this paper, we
introduce a novel model, CLLMFS, based on large pre-trained lan-
guage models. As depicted in Figure 1, our model undergoes su-
pervised fine-tuning in source domains under the N-way K-shot sce-
nario, enabling it to adapt to target domains effectively. Ultimately,
our model integrates LoRA and contrastive learning loss techniques,
specifically customized for the NER task.

3.1 Task definition

Given a sequence of n tokens {x1, x2, . . . , xn} and corresponding
tag labels {y1, y2, . . . , yn}, the primary objective of NER is to asso-
ciate each token xi with its corresponding tag label yi. In Few-shot
NER, a model undergoes training in a low-resource source domain
with a tag-set denoted as {Cs

i }. Subsequently, it is tested in a target
domain that employs a distinct tag-set, denoted as {Cd

j }, where i and
j represent indices for different tags. Since {Cs

i } ∩ {Cd
j } = ∅, the

model faces the formidable challenge of generalizing to previously
unseen test tags. In an N-way K-shot scenario, the source domain
comprises N distinct entity types, denoted as |{Cs

j )}| = N . For each
entity type, there are K examples in the support set. This setup means
that the model is trained with K labeled examples for each of the N
types, enabling it to learn and generalize from a limited number of
examples.

3.2 LLM for entity extraction

Our method for entity extraction tasks is based on LLAMA 2, re-
ferred to as LLM. Figure 1 illustrates the pivotal components of our
model. We utilize the 7-billion parameter model of LLAMA 2, bal-
ancing effectiveness and inference speed. Our approach achieves ex-
cellent results in entity extraction tasks with only a small amount of
training samples.

LLAMA 2’s architecture closely resembles the standard Trans-
former Decoder, primarily consisting of 32 Transformer Blocks.
Each block includes the following core components:

• RMSNorm [37]: Normalizes the activation outputs of network
layers, ensuring uniform scaling, accelerating training, and en-
hancing model stability.

• SwiGLU [18]: Adds non-linearity to the model by transforming
input values through the Swish activation function.

• RoPE [22]: A novel positional encoding strategy that encodes po-
sitional information through rotation operations.

• GQA [1]: Divides query heads into G groups, with each head
maintaining its own query parameters and each group sharing a
key and value matrix, simplifying calculations and improving the
efficiency of attention computation in large models.

By leveraging these components, our method effectively extracts
entities with high accuracy and efficiency.

3.3 Model Training

3.3.1 Supervised fine-tuning with LoRA

Supervised fine-tuning (SFT) refers to the process of adjusting a pre-
trained LLM using labeled data to better adapt it to a specific task.
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Figure 1. The framework overview CLLMFS. The LLM extracts named entities from carefully designed SFT data using decoding strategies, LoRA
fine-tuning leveraging LLM’s attention mechanisms such as QKV computations, constructing positive and negative samples for contrastive learning, and

creating adversarial embedding samples.

During SFT, weights of the model are adjusted based on the dis-
crepancies with the true labels, aiming to enhance precision and task
adaptation.

Each sample in SFT typically consists of three parts: instruction
(i.e., prompt), input, and output. For instance, for the entity type "Per-
son" (other entity types are provided in the Appendix A 3 [35]):

{ "instruction": "Please extract the
Person in the sentence given below, the
entity of person refers to the entity that
represents the identity or role of a specific
person in the input sentence.", "input":
"True , but I imagine it would be a lot
lower and as I pointed out to Andrew Little
would be cheaper than [ eliminating fees .",
"output": "<im_start> I can extract entities
for you, the extracted entities are <<<
Andrew Little >>> <im_end>" }

The design concept behind constructing SFT data involves using
the instruction to define the entity extraction task and the types of en-
tities to be extracted, guiding the LLM to efficiently perform entity
extraction tasks. The input represents the original input of the user,
containing the sentences from which entities are to be extracted. For
example, Our entity type token in instruction is "Person", and
the actual entity in the input sentence is "Andrew Little". The out-
put denotes the output results of the model, with the extracted entities
surrounded by start (<<<) and end (>>>) symbols. Additionally, we
intentionally devised a specific format for the output of the LLM,
starting with <im_start> and ending with <im_end>.

Considering the limited amount of the data generated by SFT, full
model fine-tuning is not feasible and the issue of overfitting is also se-
rious. We adopt Low-Rank Adaptation (LoRA) [13] to address these
problems. LoRA assumes that weight updates during the adaptation
process also have a lower ’intrinsic rank’. For a pre-trained weight
matrix W0 ∈ R

d×k, we restrict its update through a low-rank de-
composition as follows:

W0 +ΔW = W0 +BA (1)

where B ∈ R
d×r , A ∈ R

r×k, and the rank r << min(d, k).

3 https://doi.org/10.5281/zenodo.13363901

Throughout training, W0 remains frozen and does not undergo gradi-
ent updates, while A and B include trainable parameters. We employ
a random Gaussian initialization for A and set B to zero, ensuring
that ΔW = BA is zero at the start of training.

In other words, during the fine-tuning process, the model initial-
izes with pre-trained parameters W0 and updates them to W0 +
ΔW (θ) by maximizing the conditional language model probability,
where |θ| << |W0|:

max
θ

∑

(x,y)∈Z

|y|∑

t=1

log(PW0+ΔW (θ)(yt|x, y < t)) (2)

where Z denotes the training dataset comprising input sequences
x and their corresponding target sequences y, and |y| signifies the
length of the target sequence y. PW0+ΔW (θ)(yt|x, y < t) represents
the probability that the model predicts the t-th element yt of the tar-
get sequence, given the input sequence x and the first t elements of
the target sequence y. LoRA fine-tune only need a subset of parame-
ters, thereby avoiding issues such as excessive resource consumption
caused by full fine-tuning.

In principle, LoRA can be applied to any subset of weight matri-
ces in a neural network, thereby reducing the number of trainable
parameters.

3.3.2 Decoding strategies

Decoding strategies play a pivotal role in text generation tasks. In
our approach, we maintain a fixed temperature of 0.01 to control the
diversity of generated text. Additionally, we employ the top-k sam-
pling method, where only tokens ranking within the top probability
threshold (top_p) are considered during the token sampling process.
This strategy optimizes the greedy approach by sampling from the
top-k tokens, allowing tokens with higher scores or probabilities be-
yond the top threshold to also have a chance of being selected.

Given the nature of our task, which involves information extrac-
tion, we implement a constrained generation approach. This ensures
that the generated output is constrained to be a subset of the input,
restricting the generated content within predefined boundaries. Fur-
thermore, to prevent the model from endlessly generating content,
we introduce a custom stop symbol, denoted as <im_end>, marking
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the end of the generated sequence. This mechanism effectively halts
the generation process after the last eight characters, ensuring con-
trolled and targeted generation. Employing a combination of a low-
temperature setting and constrained generation proves instrumental
in effectively handling few-shot scenarios.

The internal representations of language models have a significant
impact on the performance of downstream tasks. In this paper, we
employ contrastive learning loss in low-resource entity extraction
tasks to enhance the boundary perception ability of the model and
improve its effectiveness.

3.4 Contrastive learning

Contrastive learning is a discriminative representation learning
method based on the principle of comparison, primarily used for un-
supervised (self-supervised) representation learning. The core idea
of contrastive learning is to compare samples with positive examples
(semantically similar) and negative examples (semantically dissimi-
lar). By designing contrastive losses, it aims to bring representations
of semantically similar positive examples closer while pushing repre-
sentations of semantically dissimilar negative examples further apart.
Therefore, the careful selection of positive and negative sample pairs
for contrastive learning is crucial.

We propose a specific approach to address the challenge of de-
signing positive and negative samples for contrastive learning in low-
resource entity extraction tasks. In the constructed SFT data, the enti-
ties to be extracted from the input are designated as positive samples.
Additionally, the neighboring entities of the target entities serve as
negative samples, emphasizing the significance of capturing the en-
tity boundaries accurately. As shown in fig. 1, the embedding of "Per-
son" is proximately aligned with that of "Andrew Little", while being
intentionally distanced from the embeddings corresponding to "out
to" and "wound be". It is essential to avoid over-extracting or under-
extracting words, particularly ensuring against over-extracting.

We define T as the set of embeddings of entity types within
the instructions, and E as the set of embeddings of entities
from input sentences. Therefore, we treat the entity type em-
beddings within the instructions and the embeddings of the en-
tities to be extracted from input sentences as the positive pairs
(i.e.,{(ztinstr, z

e
in)|t ∈ T , e ∈ E}). Simultaneously, we establish

negative pairs (i.e.,{(ztinstr, z
n
in)|t ∈ T , n ∈ E}) by considering the

entity type embeddings within the instructions and the neighboring
entities of the entities to be extracted from input sentences. Formally,
we employ the contrastive loss, InfoNCE [12], to maximize agree-
ment among positive pairs and minimize it among negative pairs:

LCL =
∑

t∈T ,e∈E
− log

exp (s(ztinstr, z
e
in)/τ)∑

n∈E,n �=e exp (s(z
t
instr, z

n
in/τ)

(3)

where s(·) denotes the similarity between two vectors and is set as
the cosine similarity function. τ , referred to as the Temperature pa-
rameter in the softmax function, is a hyper-parameter.

By employing this design for positive and negative samples, the
distance between the entity type embeddings within the instructions
and the embeddings of the entities to be extracted from input sen-
tences is minimized. This adjustment enables the model to prioritize
positive entities more effectively during generation. Simultaneously,
it increases the distance between the entity type embeddings within
the instructions and the neighboring entities of the entities to be ex-
tracted from input sentences. This enhances the model’s boundary

perception ability, resulting in more precise extraction of entity in-
formation.

3.5 Enhancing Representation Uniformity with
Adversarial Samples

The representations generated by contrastive learning are typically
regularized, causing them to concentrate within a hypersphere.
Alignment and uniformity refer to two essential characteristics of
a good representation space: alignment ensures that representations
of semantically similar samples are close together, while uniformity
ensures that representations of semantically dissimilar samples are
evenly distributed across the hypersphere. Enhancing the uniformity
of representation distributions can improve the performance of many
tasks, such as recommendation systems.

However, previous research has primarily relied on in-batch neg-
ative sampling or random negative sampling from the training data.
This approach may introduce sampling bias, leading to the inclu-
sion of inappropriate negative examples (such as false negatives or
anisotropic representations) in contrastive learning, potentially com-
promising the alignment and uniformity of the representation space.

To achieve a more uniformly distributed representation space, we
focuses on the embedding space and directly introduces noise into
the representations. Inspired by Yu et al. [34], we construct adver-
sarial samples through imperceptible perturbations by adding uni-
formly distributed Gaussian random noise to positive embeddings of
entities. While this approach is simple, it can strengthen the positive
samples to resist noise, leading to a significant enhancement in the
model’s robustness against interference. Formally, given a token i
and its embedding zi in the d-dimensional space, we can implement
the following representation-level augmentation:

z
′
i = zi +Δ

′
i (4)

where Δ
′
i is the added noise vectors.

3.6 Model Optimization

To train our model effectively for the low-resource entity extraction
task, we employ a combined loss function comprising both cross-
entropy loss and contrastive learning loss.

The primary objective of cross-entropy loss in Few-shot NER is to
ensure that our model learns to correctly associate each token xi in
the input sequence with its corresponding tag label yi. This involves
minimizing the discrepancy between the predicted tag probabilities
and the ground truth labels across the entire sequence. Formally, the
cross-entropy loss LCE is computed as follows:

LCE = −
∑

i

∑

c∈{Cd
j }

yi,c log(ŷi,c) (5)

where yi,c represents the ground truth label for token xi correspond-
ing to tag c in the target domain, and ŷi,c represents the predicted
probability of token xi belonging to tag c.

By minimizing the cross-entropy loss, our model learns to accu-
rately predict the tags associated with each token in the input se-
quence, thereby improving its performance in the NER task, espe-
cially when dealing with previously unseen tags in the target domain.

In addition to cross-entropy loss, we incorporate contrastive learn-
ing loss to further enhance the model’s performance. The contrastive
loss LCL encourages the model to effectively distinguish between
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positive pairs (tokens associated with the same entity type) and neg-
ative pairs (tokens associated with different entity types).

Due to the presence of 32 Transformer Blocks (i.e., 32 layers of
hidden states) in LLAMA 2, we determined the optimal layer for
computing the contrastive loss through empirical testing. Configura-
tions using the 10th, 25th, 26th, 27th, and 30th layers were evaluated,
and the 26th layer consistently yielded the best performance. This
layer selection closely aligns with the 8:2 golden ratio, providing a
balance between the lower and higher layers in the model’s architec-
ture. Therefore, we compute the contrastive loss at the 26th layer to
leverage this optimal configuration.

Finally, we leverage a multi-task training strategy to jointly opti-
mize the cross-entropy loss, and the contrastive learning loss. The
overall loss function is:

L = LCE + λLCL (6)

where λ serves as a hyperparameter to regulate the impact of con-
trastive learning and is set to 0.001. This choice is made considering
that different losses calculate distinct gradients, with the aim of em-
phasizing the gradient of the main task.

By jointly optimizing cross-entropy loss and contrastive learning
loss, our model learns to effectively classify entities while also cap-
turing semantically meaningful representations, thus enhancing its
overall performance in the low-resource entity extraction task.

4 Experiments

4.1 Dataset Description

To assess the effectiveness of our method, we utilize 5 datasets span-
ning various domains: WNUT’17 4, GUM 5, I2B2 6, OntoNotes 7,
and Conll2003 8 which are publicly available and have been used in
existing research [15, 28, 29, 31] to showcase diversity in terms of
domain, scale, and sparsity.

• WNUT’17 [8] is a collection of noisy user-generated text from
social media platforms. This dataset contains annotations for 6 en-
tity types, including ’corporation’, ’creative-work’, ’group’, ’loca-
tion’, ’person’, and ’product’.

• GUM [36] stands as a versatile, open-source multilayer resource,
encompassing a spectrum of twelve text genres including narra-
tives, interviews, news, instructions, and academic writing. It cov-
ers 11 entity types such as time, object, quantity, organization and
other entities.

• I2B2 [20] is annotated for Protected Health Information (PHI) and
disease Risk Factors, serves as a critical resource within the med-
ical domain. We specially focus on 6 entity recognition of PHI,
like ’Patient ID’, ’Hospital Location’, ’Visit Date’, ’Patient Pro-
fession’, and ’Profession Contact’.

• OntoNotes [32] is a large-scale, multilingual corpus that is
collected from news, conversational telephone speech, weblogs
and broadcast. This paper focuses on 18 entity types, includ-
ing ’Geopolitical Entity’, ’Organization’, ’Person’, ’Location’,
’Money’, ’Facility’, ’Date’, ’Ordinal’, ’Quantity’, ’Time’, ’Na-
tionalities, Religious or Political Groups’, ’Cardinal’, ’Percent’,
’Event’, ’Work of Art’, ’Language’, ’Law’, and ’Product’.

4 https://huggingface.co/datasets/wnut_17
5 https://gucorpling.org/gum/
6 https://www.i2b2.org/NLP/DataSets/
7 https://www.ldc.upenn.edu/
8 https://huggingface.co/datasets/conll2003

• CoNLL’03 [23] is also a benchmark dataset that focuses on 4
types of entities: persons, locations, organizations, and miscella-
neous entities that do not belong to the previous three categories.

All of the above datasets use the N-way and 5-shot setting for
training. For a fair comparison on those datasets, we split long sen-
tences in some datasets into multiple shorter sentences to accommo-
date the input token limit of LLM, thus facilitating the extraction of
text information by CLLMFS. We conducted tests on the WNUT’17,
GUM, I2B2, OntoNotes, and CoNLL’03 datasets, utilizing approxi-
mately 1,200, 800, 750, 10,000, and 1,100 instances, respectively.

4.2 Experimental Settings

4.2.1 Evaluation Metrics

To compare our model with previous state-of-the-art (SOTA) models,
we evaluate its performance by computing the micro-F1 score across
the target domain.

• INTRA setting: In traditional NER datasets such as WNUT’17,
GUM, I2B2, OntoNotes, and CoNLL’03, distinct tag-set distribu-
tions are present. To address this, we generate multiple support
sets by sampling from the original training set to train our model
within the source domain. These support sets are subsequently
employed for predictions on the original test set.

• INTER (Cross Domain) setting: In the cross-domain setting, our
model is trained on the OntoNotes dataset, serving as the source
domain, and subsequently tested on other datasets, constituting
the target domain. The tag sets in different datasets are primarily
determined by the dataset creators and often do not overlap. For
instance, GUM is focused on social media terminology, whereas
I2B2 is centered around medical terminology, leading to almost no
overlap. In some rare cases where tag overlap occurs, the tags may
still represent slightly different concepts (e.g., one dataset might
use “place” to denote a neighborhood, while another might use
“position” to refer to a city location). In this setting, the training
and test set from OntoNotes is split into N-way K-shot for train-
ing, and the test set consists of the original test sets from various
domains, without utilizing their respective training sets.

4.2.2 Baselines

To evaluate CLLMFS’s effectiveness, we compare it with several
state-of-the-art Few-Shot NER models across various datasets and
settings:

• ProtoBERT [38] simplifies Few-Shot NER using a span-based
prototypical network with a pre-computable BERT encoder. It em-
ploys token embeddings to create entity prototypes and utilizes l-2
distance for efficient entity prediction during inference.

• NNShot [33] adopts a novel token-level nearest neighbor classifi-
cation approach, distinguishing itself from prototype-based meth-
ods by utilizing the proximity of similar samples in an embedding
space.

• ProML [6] introduces multiple prompt schemas to enrich label
semantics and a novel architecture that synergistically integrates
these prompts, advancing metric learning in Few-Shot NER.

• CONTaiNER [7] utilizes contrastive learning with Gaussian-
distributed token embeddings to enhance Few-Shot NER. It fo-
cuses on optimizing generalized objectives to improve entity dis-
tinction without overfitting to specific domain attributes.

Y. Zhang et al. / CLLMFS: A Contrastive Learning Enhanced Large Language Model Framework for Few-Shot Named Entity Recognition 1989



Table 1. Overall Performance Comparison.

Model WNUT’17 GUM I2B2 OntoNotes CoNLL’03 Avg.

INTRA

ProtoBERT 0.2655 0.1374 0.3433 0.3818 0.3218 0.2900
NNShot 0.2305 0.0683 0.3844 0.3454 0.3382 0.2734
ProML 0.2262 0.2336 0.5654 0.2548 0.3424 0.3249

CONTaiNER 0.2108 0.1328 0.3807 0.2275 0.3199 0.2543
CLLMFS 0.5250 0.3840 0.5800 0.5765 0.5750 0.5281

%Improv. 97.74% 64.38% 2.58% 50.99% 67.93% 62.54%

INTER

ProtoBERT 0.2312 0.0920 0.2713 - 0.2917 0.2216
NNShot 0.2353 0.0634 0.2823 - 0.3280 0.2048
ProML 0.2456 0.0703 0.2650 - 0.2960 0.2192

CONTaiNER 0.2291 0.0687 0.3057 - 0.2681 0.2179
CLLMFS 0.4579 0.2392 0.4413 - 0.5128 0.4128

%Improv. 86.44% 160.0% 44.36% - 56.34% 86.28%

Table 2. Ablation Analysis.

Modules F1 Score
LLAMA 2 + LoRA 0.375
LLAMA 2 + LoRA + CL 0.377
LLAMA 2 + LoRA + CL + Noise 0.384

Table 3. Impact of LoRA Module Parameter Combinations on F1-score.

Wq Wk Wv Wo Win Wout Wwte F1-score
� 0.281

� 0.283
� 0.350

� � 0.329
� � 0.370
� � � 0.367
� � � � 0.360
� � � � � 0.368
� � � � 0.375

� � � � � 0.372
� � � � � � 0.373
� � � � � � � 0.352

To ensure fair comparisons, we used the optimal parameters from
each model’s respective code repositories. All models were trained
and evaluated on the same datasets, with metrics averaged over five
statistical runs for consistency.

4.3 Performance Comparison

The performance comparison in Table 1 illustrates CLLMFS’s su-
perior effectiveness, achieving new state-of-the-art (SOTA) results.
Across different datasets, CLLMFS shows substantial improvements
over previous SOTA models, with average relative gains of 62.54%
and 86.28% in micro F1 under the INTRA and INTER settings, re-
spectively.

CLLMFS excels in various challenging scenarios, spanning both
within-domain (INTRA) and cross-domain (INTER) NER tasks.
Conventional baseline models, such as ProML, face difficulties in
adapting to unseen text domains like GUM due to limited prompt
design and methodological constraints. CONTaiNER, although ef-
fective in few-shot NER, struggles with substantial domain differ-
ences between source and target domains.

Despite these challenges, CLLMFS consistently outperforms
SOTA models in both within-domain and cross-domain NER tasks,
demonstrating robustness and adaptability. Moreover, CLLMFS ef-
fectively handles noisy data, as demonstrated in the WNUT’17
dataset, showcasing its suitability for real-world applications with
varying data quality.

4.4 Ablation Analysis

We conducted ablation experiments to systematically investigate the
impact of each constituent module on the performance of CLLMFS,
which comprises three essential modules: Low-Rank Adaptation
(LoRA), Contrastive Learning (CL), and Uniform Gaussian Random
Noise (Noise). Due to the complexity of computations involved in
the LLAMA 2 model without utilizing LoRA technology, the com-
putational resources available were insufficient to execute the model.
Consequently, this experiment is excluded from consideration.

As depicted in Table 2, we observed a clear trend of performance
improvement with the inclusion of each additional module, which
demonstrates the beneficial impact of incorporating Noise in con-
junction with LoRA and CL, further bolstering the model’s overall
performance.

4.5 Influence of LoRA module selections

To enhance entity extraction tasks in low-resource settings, we
systematically investigated the impact of LoRA module selections
within the CLLMFS architecture. This architecture includes four
weight matrices in the self-attention module (Wq,Wk,Wv,Wo),
two in the MLP module (Win,Wout), and one for word token em-
beddings (Wwte). We applied LoRA to each weight matrix and ex-
plored the optimal configurations to maximize performance.

Using 5-fold cross-validation, we ensured the robustness of our
findings, averaging performance over five iterations. The results,
summarized in Table 3, show that configurations involving LoRA
on Wq , Wk, Wv , and Win consistently outperform others. However,
adding LoRA to Wo, Wout and Wwtedoes not consistently improve
performance, as indicated by varying F1-scores across different con-
figurations.

Overall, these findings underscore the importance of careful pa-
rameter tuning in optimizing the effectiveness of the LoRA module
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for few-shot NER tasks. The observed performance variations high-
light the intricate interplay between different module parameters and
their collective impact on model performance.

5 Discussion

Our proposed CLLMFS framework achieves promising performance
in NER task. Different from previous few-shot NER methods,
CLLMFS fine-tunes the model and leverages LLM’s capabilities by
constructing entity SFT data from limited data, enhancing general-
ization for few-shot NER tasks. Different from previous meta learn-
ing methods, CLLMFS leverages abundant semantic information in
LLMs, achieving consistent performance across target domains, even
with limited source domain samples. Different from previous in-
context learning methods, CLLMFS integrates SFT data for fine-
tuning and introduces contrastive learning for FS-NER, enhancing
boundary awareness and entity recognition accuracy. Please refer to
the Appendix B 9 [35] for some study cases.

6 Conclusion

In this paper, we first propose CLLMFS by enhancing the large
language model with contrastive learning for few-shot NER. Our
method leverages the inherent knowledge within LLM and utilizes
LoRA for supervised fine-tuning. By integrating contrastive learn-
ing, CLLMFS enhances LLM’s ability of boundary awareness and
entity extraction accuracy. Our approach has achieved state-of-the-
art performance on multiple datasets with limited labeled data. The
cross-domain experiment results confirm that the strong transfer ca-
pabilities of CLLMFS across different domains. In the future, we will
concentrate on named entity recognition and extend our current work
to relation extraction.

9 https://doi.org/10.5281/zenodo.13363901
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