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Abstract. Unsupervised Domain Adaptation (UDA) aims to trans-
fer a model from a labeled source domain to an unlabeled tar-
get domain, addressing challenges of distinct data distributions,
termed domain shift. Existing UDA research primarily focuses on
classification-like tasks, but neglects ranking and filtering tasks es-
sential for applications like medical diagnosis and search engines.
This paper is the first to notice and identify a new real-world trans-
fer problem: cross-stage transfer in multi-stage cascade ranking and
filtering systems, a common issue in diverse applications, includ-
ing information retrieval systems, medical diagnosis, and other real-
world ranking/filtering systems. In this problem, we emphasize the
crucial assumption of order-invariance and address the key issue
named Cross-stage Class Concept Conflict (C4), highlighting poten-
tial inconsistencies in class concepts for the same sample at differ-
ent stages. To tackle these challenges, we propose a novel method,
Unsupervised Rank Adaptation (URA), comprising two key com-
ponents: order-conditional distribution alignment, characterizing the
order-conditional distribution intra-stage and aligning them across
stages; and principal projection alignment, aligning the principal
component’s projection matrix with classifier parameters to ensure
order-invariance without guessing pseudo-labels, mitigating the in-
fluence of C4. Experimental results show that our approach reaches
state-of-the-art performance in various cross-stage transfer tasks.

1 Introduction
Transfer learning aims to help machine learning systems perform
well on new tasks by leveraging experiences from previous tasks.
Unsupervised Domain Adaptation (UDA), a widely discussed aspect
of transfer learning, focuses on adapting a model learned from a la-
beled source domain to work on an unlabeled target domain. This
process addresses the challenge of different data distribution across
domains, often called domain shift [28]. UDA has been applied to
various fields such as video action recognition [37], medical image
segmentation [7], text classification [24], multi-object tracking [1],
nighttime semantic segmentation [17], and so on.

Traditional UDA research predominantly focuses on tasks such
as classification and semantic segmentation (specifically, pixel-level
classification) [2, 31, 20, 4]. Previous approaches always learn a
domain-invariant latent feature space and employ a shared clas-
sifier trained with source semantic supervision [14]. Additionally,
some approaches explore the utilization of the self-training strat-
egy [42, 26, 38, 33, 41]. Although prior approaches have achieved
remarkable success in classification-like tasks, they always exhibit
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Figure 1. Multi-stage cascade filtering in medical diagnosis. The
three-stage diagnostic processes can all be replaced by an AI system.

poor performance in some other real-world scenarios. Specifically,
in multi-stage cascade ranking and filtering systems, such as medi-
cal diagnosis (Fig. 1) and item retrieval in e-commerce (Fig. 2), it
emphasizes the order of results.

For instance, as shown in Fig. 1, being diagnosed with cancer rep-
resents the final positive concept of the entire filtering system. To bal-
ance effectiveness and efficiency, the diagnostic process is organized
as a multi-stage cascade: Lower stages prioritize handling extensive
data with high recall and efficiency, minimizing time and resource
consumption but accepting lower effectiveness (e.g., precision). In
contrast, upper stages like tissue biopsy prioritize diagnosis effec-
tiveness (e.g., accuracy) at the expense of efficiency.

However, error accumulation across multi-stages may impair per-
formance, and the inconsistency among stages will exacerbate this
issue. Additionally, each stage presents specific advantages: lower-
stage models, trained with more data, are less affected by distribution
shifts due to selection bias. On the other hand, upper-stage models
have more competent architectures and precise supervision, making
their predictions more accurate. Hence, an intuitive idea arises: mu-
tual knowledge transfer across stages can leverage their respective
strengths and ensure consistency, potentially enhancing the overall
performance of the multi-stage cascade ranking and filtering system.

Despite this, traditional approaches are not well-suited to this situ-
ation. Cross-stage transfer emphasizes Order-invariance rather than
distribution-invariance (distribution alignment). Order-invariance
signifies the constancy of the relative positional relationship between
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Figure 2. Cross-stage transfer in multi-stage cascade ranking system for item retrieval in e-commerce.

two samples, which will be described in detail in Sec. 2. Besides,
there is never an aligned classification boundary between different
stages, leading to a situation where the same sample in different
stages may acquire different labels. For instance, the absence of a
tumor but an unhealthy sample in the primary diagnosis stage is con-
sidered positive, whereas it is deemed negative in clinical diagno-
sis. Specifically, we term this issue as Cross-stage Class Concept
Conflict (C4). Traditional UDA approaches never consider the new
assumption about order-invariance and the associated problem C4,
limiting efficacy in cross-stage transfer.

In this paper, we were the first to notice and identify a new real-
world transfer problem with practical application value: cross-stage
transfer in multi-stage cascade ranking and filtering systems. We in-
troduce a novel method, Unsupervised Rank Adaptation (URA) to
address this issue.

Our primary emphasis is on addressing one of the fundamental
challenges in this problem: studying changes in data distribution
across different stages. There are two primary technologies in URA:
1) Order-Conditional Distribution Alignment (OCDA): Considering
the order-invariance assumption, OCDA models and aligns the rela-
tionship distribution of intra-stage samples through the residuals of
features across stages, conditioned on the predicted order. 2) Prin-
cipal Projection Alignment (PPA): Tackling the challenging issue of
C4 and drawing inspiration from principal component analysis, we
assume that the scores of the samples exhibit a monotonic distribu-
tion in the direction of maximum variance. PPA aligns the projection
matrix of the principal component with classifier parameters. This
alignment ensures order-invariance without relying on guesswork for
pseudo-labels. Consequently, we posit that the direction of maximum
variance in the target distribution aligns with the sorting direction of
the data distribution.

Our main contributions can be summarized as follows:

1. We are the first to notice and formulate the new real-world trans-
fer learning scenario: cross-stage transfer in a multi-stage cascade
ranking and filtering system.

2. We highlight the order-invariance assumption, underscoring its
critical role in the cross-stage transfer. Furthermore, we consider
the key challenge of Cross-stage Class Concept Conflict (C4), ex-

ploring its implications within the proposed cross-stage transfer.
3. We propose a novel method URA comprising two key compo-

nents: order-conditional distribution alignment and principal pro-
jection alignment, which can navigate the challenges presented by
cross-stage transfer.

4. We conduct extensive empirical studies on datasets CIFAR-10 and
CBIS-DDSM to validate the efficacy of the proposed URA.

The remainder of this paper is organized as follows: In Section 2,
we present the preliminaries of this paper. In Section 3, we describe
our proposed method URA and Section 4 describes our experiments
in different datasets. In Section 5, we present a review of related
works. Lastly, Section 6 provides a brief conclusion.

2 Preliminaries

2.1 Multi-stage Cascade Ranking and Filtering

Multi-stage cascade ranking/filtering is a prevalent architecture in
machine learning applications, such as medical diagnosis and e-
commerce. Formally, it can be formulated as {Mθ1 ,Mθ2 , ...,MθN },
where N means the number of stages. Each model Mi can be specif-
ically constructed by distinct parameters and architectures, operating
in a cascaded manner.

Considering effectiveness and efficiency, the upper model is al-
ways more capable yet slower, whereas the lower one is naive yet
faster. During the training process, data go through the upper model
are filtered by the lower one:

Du = {X ∈ Dl|Ml(X) = 1} . (1)

Here, Du serves as the input for the upper model, while Dl corre-
sponds to the lower model.

Models at different stages exhibit specific strengths and weak-
nesses. The upper model is more capable but trained with less data.
Thus, it can not perform well on unseen data, which is filtered out by
a lower model. This phenomenon is referred to as sample selection
bias (SSB) [3]. Conversely, the lower model has more exposure to
data but lacks the complexity required for challenging tasks.
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Figure 3. The framework of our method URA: A cross-stage shared single linear layer is employed as the classifier C : z �→ y for classification.
(C(z) = softmax(WT z + b),W ∈ R

2×c). And U means the result of SVD.

2.2 Cross-stage Transfer

To make the most of each stage’s strengths and address their weak-
nesses, an intuitive idea is to mutually transfer knowledge between
different stages, a process we term cross-stage transfer. However,
cross-stage transfer introduces entirely different assumptions and key
problems with classic UDA, especially the invariance of order rela-
tionships between samples and the possible existence of cross-stage
class concept conflict problem, which will be explored in the follow-
ing discussion in detail.

Order-invariance Assumption Existing research on UDA has
mainly focused on classification-like tasks, overlooking the specific
challenges in multi-stage cascade ranking/filtering tasks, where the
primary concern is the ranking order. In contrast to traditional UDA
methods emphasizing distribution-invariance across domains, cross-
stage transfer should pivot towards emphasizing order-invariance.
Specifically, we formulate the order-invariance assumption as:

Pl(y|x1) ≤ Pl(y|x2) ⇐⇒ Pu(y|x1) ≤ Pu(y|x2), ∀x1, x2 , (2)

which means even if the classification boundary of the task changes,
the relative position relationship between x2 and x1 remains con-
stant, with x2 always preceding x1.

Cross-stage Class Concept Conflict (C4) Traditional UDA ap-
proaches can not perform well on cross-stage transfer due to a spe-
cific key issue, Cross-stage Class Concept Conflict (C4), which has
received insufficient attention in prior research. In cross-stage trans-
fer, the concept (positive or negative) of the same sample in different
stages is inconsistent. For instance, as illustrated in Fig. 1, the ab-
sence of a tumor but an unhealthy sample in the primary diagnosis
stage is considered positive, whereas it is deemed negative in clinical
diagnosis. This issue can be formulated as:

∃x, Pu(y|x) �= Pl(y|x) . (3)

The distinct order-invariance assumption and the specific chal-
lenge posed by C4 hinder the effectiveness of traditional transfer
learning in multi-stage cascade ranking and filtering systems. In the
upcoming section, we will delve into detailed discussions on solu-
tions for these issues.

3 Methodology
In this section, we introduce an innovative method named Unsuper-
vised Rank Adaptation (URA) to address cross-stage transfer chal-
lenges. We focus more on the most basic issue, which is the differ-
ence in data distribution across different stages, verifying the effec-
tiveness of essential problems. Illustrated in Fig. 2, cross-transfer can
be bidirectionally employed between multiple stages, enabling each
stage to share its strengths with the other. To exemplify, we utilize
the knowledge transfer from the upper stage Du = {(xu

i , y
u
i )}nu

i=0 to
the lower stage Dl = {xl

i}nl
i=0 as an example for discussion.

As shown in Fig. 3, URA consists of two primary components to
address the above issues: Order-Conditional Distribution Alignment
(OCDA) for order-invariance and Principal Projection Alignment
(PPA) for addressing the C4 problem. Specifically, OCDA aligns the
distribution relationship of intra-stage samples through the residuals
of features across stages, conditioned on the predicted order, which
will be discussed in Sec. 3.1. Additionally, PPA is introduced to align
the projection matrix of the principal component with classifier pa-
rameters, ensuring order-invariance and reducing reliance on guess-
ing pseudo-labels, to mitigate the influence of C4. The detailed ex-
planation can be found in Sec. 3.2. These two components collec-
tively contribute to the effectiveness of URA in achieving efficient
cross-stage transfer.

3.1 Order-Conditional Distribution Alignment

In contrast to classic UDA approaches that emphasize distribution in-
variance across domains, cross-stage transfer should prioritize order-
invariance, placing greater emphasis on the order relationship among
intra-domain samples. Therefore, a primary challenge in cross-stage
transfer is to preserve order-invariance throughout the transfer pro-
cess. This necessitates the effective characterization of the relative
positional relationship between sample pairs.

According to the formulation of order-invariance in Eq. (2), and
drawing inspiration from Area Under Curve (AUC) optimization, the
main idea of order-conditional distribution alignment is to charac-
terize the feature relationship based on the ranking (order) between
pairwise samples. This process involves constructing a new feature
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relationship distribution that is conditional on the pairwise order re-
lationship. In any pairwise samples, we can characterize the relation-
ship of their feature z = F (x), extracted by the feature extractor
F : x 	→ z. Specifically, our intuitive idea is to construct a new pair-
wise feature relationship conditional on the order (denoted as H·) as:

H· = {hij = F (xi)− F (xj)|I(yi > yj), ∀xi, xj ∈ D·} (4)

where D· represents a specific domain of either Dl or Du.
However, two challenges arise in constructing this pairwise fea-

ture relationship: 1) the label y is unavailable in the target stage, and
2) the pairwise relationship will increase the data size from O(n)
to O(n2). In a distribution alignment strategy based on Maximum
Mean Discrepancy (MMD) (e.g., DAN [21] and JAN [22]), the com-
putational complexity becomes O(n4), making it time and resource
consumption. Hence, in practice, URA simplifies the pairwise rela-
tionship as the feature relationship between any feature z and the
positive feature center z+o and the negative feature center z−o . We
term this the “order-conditional distribution” and provide a detailed
formal discussion as follows.

Order-Conditional Distribution. Firstly, we need to calculate the
center of positive z+o and negative z−o .

Utilizing the predictions ŷ = C(z) ∈ R
c×c from the shared clas-

sifier C : z 	→ y, we determine these centers as follows:

z+o = Ex[F (x)P̂ (ŷ = 1|x)] = F (x)·C(F (x))[:,0]∑

x
C(F (x))[:,0]

, (5)

z−o = Ex[F (x)P̂ (ŷ = 0|x)] = F (x)·C(F (x))[:,1]∑

x
C(F (x))[:,1]

. (6)

Subsequently, we model the relationship between the feature z
and its corresponding center using their residuals. Thus, the order-
conditional distribution of the lower stage (Hl) and the upper stage
(Hu) can be defined as:

Hl = {hl = [z − z+o ; z − z−o ] | ∀x ∈ Dl, z = F (x)} (7)

Hu = {hu = [z − z+o ; z − z−o ] | ∀x ∈ Du, z = F (x)} (8)

where [∗; ∗] means concat.
Having established the order-conditional distribution via feature

residuals, the next step involves aligning the distributions of the up-
per and lower stages to facilitate cross-stage transfer while preserv-
ing order-invariance. And detailed explanation of this process is de-
scribed in the following section.

The Transfer of Order-Conditional Distribution. To maintain
the order-invariant of different stages in cross-stage transfer, we
need to align the order-conditional distribution. Specifically, we uti-
lize maximum mean discrepancy to facilitate alignment between the
lower stage (Hl) and the upper stage (Hu). The loss function for
Order-Conditional Distribution Alignment (LOCDA) is formally ex-
pressed as:

LOCDA =MMD(Hl, Hu)

=
1

|Hl|2
|Hl|∑
i=1

|Hl|∑
i=1

k(hli , hlj )

+
1

|Hu|2
|Hu|∑
i=1

|Hu|∑
i=1

k(hui , huj )

− 2

|Hl||Hu|
|Hl|∑
i=1

|Hu|∑
i=1

k(hli , huj ),

(9)

where k(·, ·) means the Gaussian kernel function.

3.2 Principal Projection Alignment

In the above, we have introduced the details of order-conditional dis-
tribution alignment, which involves computing positive and negative
sample centers based on P (y|x) of upper-stage (i.e., unsupervised)
samples. However, the predictions P (y|x) of unsupervised samples
may be arbitrary, potentially leading to error accumulation if a mis-
take is made in the prediction process. This issue is particularly catas-
trophic when encountering a C4 situation, where conflicts arise in
class concepts across stages. For example, as shown in Fig. 1, “Be-
nign Tumor” is labeled as negative in the upper stage “Tissue biopsy”
but positive in the lower stage “Clinical Diagnosis”. Consequently,
the classifier trained in the upper supervised stage may make incor-
rect predictions in the lower unsupervised stage.

To address these challenges, we propose a novel strategy called
PPA. We argue that the sample scores exhibit a monotonic distribu-
tion along the direction of maximum variance. The weight matrix W
of the classifier projects the latent feature z into a 2-dimensional logit
space. We can also employ Singular Value Decomposition (SVD) to
project the latent feature z into a 2-dimensional subspace, preserv-
ing maximum variance. Instead of aligning directly in logit space,
we align the projection matrix, which is equivalent and more conve-
nient. Consequently, the projection matrix from SVD and the projec-
tion matrix from the classifier will be aligned in the same direction.
This alignment ensures order-invariance without the need for guess-
work regarding pseudo-labels, making it more robust when facing a
C4 scenario. More details will be introduced as follows.

Initially, we utilize SVD to decompose the latent feature matrix Z
of lower unsupervised stage samples:

Z = UΣV T . (10)

Here Z ∈ R
d×n, where d represents the feature dimension, and n

represents the number of samples.
It is assumed that the results of Eq. (10) are sorted by singular val-

ues from largest to smallest. Therefore, to project the latent features
into a 2-dimensional space while preserving maximum variance, the
projection matrix should be:

V̂ = V [: 2, :] ∈ R
2×n . (11)

The projection matrix from SVD denoted as V̂ , and the projection
matrix W from the classifier C should align in the same direction,
which can be expressed as:

W = λ · V̂ , ∃λ ∈ R . (12)

Since the result of SVD, V , is an orthogonal matrix, i.e., V V T = I ,
where I denotes the identity matrix, it follows that V̂ V̂ T = I . Thus:

WV̂ T = λ · I ∈ R
2×2 . (13)

Building upon this foundation, we design a loss for Eq. (13). Let
M = WV̂ T ∈ R

2×2, and the loss can be defined as:

LPPA = (M0,0 −M1,1)
2 +

1

2
(M2

0,1 +M2
1,0) , (14)

where Mi,j denotes the element in the i-th row and the j-th column
of M . In this loss equation, the first term aims to ensure that the
elements along the diagonal of M (M0,0 and M1,1) are equal (i.e.,
both are unknown λ), while the second term constrains the elements
outside the diagonal of M (M0,1 and M1,0) to be 0.
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Algorithm 1 Unsupervised Rank Adaptation (URA)
Input: Upper stage dataset Du = {(xu

i , y
u
i )}nu

i=0 and lower stage
dataset Dl = {xl

i}nl
i=0 , learning rate η and loss trade-offs α and

β.
1: for iter = 0 to MaxIteration do
2: xu, yu = RandomSample(Du) // Get labeled data
3: xl = RandomSample(Dl) // Get unlabeled data
4: zl = F (xl), zu = F (xu) // Extract features
5: gl = C(zl), gu = C(zu) // Get logits for classification
6: Hu = OCDAEq.(7,8)(fu, gu),

Hl = OCDAEq.(7,8)(fl, gl)
7: LOCDA = Eq.(9)(Hu, Hl) // Calculate OCDA Loss
8: V̂l = Eq.(9,10)(zl) // Get principal projection
9: W ← get parameters form classifier C

10: LPPA = Eq.(14)(V̂l,W ) // Calculate PPA Loss
11: Lcls = Eq.(15)(yu, yu)
12: LURA = LCLS + αLOCDA + βLPPA // Total Loss
13: θ ← θ − η ∂LURA

∂θ
// Update parameters by BP

14: end for

3.3 Overall Optimization Objective

In addition to the transfer losses for order-conditional distribution
alignment (LOCDA) and principal projection alignment (LPPA), we
require a classification loss to train the classifier using supervised
data from the upper stage Du = {(xu

i , y
u
i )}nu

i=0, where yu
i ∈ {0, 1}.

This loss is defined as:

LCLS =
1

nu

nu∑
i=1

�ce(C(F (xu
i )), y

u
i )) , (15)

where �ce(·, ·) is the cross-entropy loss.
In conclusion of this section, we summarize the overall loss as:

LURA = LCLS + αLOCDA + βLPPA . (16)

The optimization objective is to minimize this combined loss, which
includes the classification loss as well as the alignment losses
weighted by the hyper-parameters α and β. Additionally, we provide
the pseudo-code in Algorithm 1.

4 Empirical Studies
In this section, we preprocess and partition subsets of two standard
image classification datasets, CIFAR-10 and CBIS-DDSM, by the
specified cross-stage transfer problem setting. Subsequently, we con-
duct a comprehensive empirical study to showcase the effectiveness
of our proposed URA algorithm. Further details will be provided in
the following.

4.1 Experimental protocol

Datasets for Multi-stage Ranking System. To assess the effec-
tiveness of our proposed URA method in cross-stage transfer scenar-
ios, we extensively conducted experiments on two visual benchmark
datasets: a simulated dataset based on CIFAR-10 and a real-world
medical image dataset, CBIS-DDSM.

1. Finding the cat in CIFAR-10: The original CIFAR-10 dataset
consists of 60,000 images divided into 10 classes, each containing
6,000 images. For simulating cross-stage transfer within a multi-
stage cascade ranking system, we construct system and datasets to

“find the cat”: Cat is one of the class in CIFAR-10, and the goal
of ranking multi-stage cascade ranking system is to find the cat
image. Initially, We train a toy binary classifier using a 1/6 subset
of CIFAR-10. We then employ it to split the remaining data into
three parts: p1 is the true negative samples of toy classifier, p2 is
the fake positive of toy classifier, p3 is the actual cat samples. This
allows us to establish a two-stage ranking/filtering system: Stage-
1 filters p2 ∪ p3 (considered as positive in this stage) from the
entire dataset (p1 ∪ p2 ∪ p3); Stage-2 filters the actual cat images
(p3) from p2 ∪ p3; Additionally, Stage-H (Hyper) directly filters
the actual cat images from the entire dataset. With these settings,
we construct three mutually-exclusive datasets for each of these
stages. Notably, the occurrence of C4 arises during cross-stage
transfer between Stage-1 and the other stages.

2. Diagnosing malignant tumor in CBIS-DDSM: The CBIS-
DDSM dataset is a standardized version of the Digital Database
for Screening Mammography (DDSM), containing 2,620 scanned
film mammography studies. It encompasses cases of normal, be-
nign, and malignant tumors, all with validated pathological infor-
mation. Similarly, we can establish a two-stage ranking system to
“Diagnose malignant tumors”. This will be a natural real-world
application, where p1 represents normal cases, p2 represents be-
nign tumors, and p3 represents malignant tumors. Thus, Stage-1
filters all tumors (both benign and malignant) from the all patients;
Stage-2 filters malignant tumors from patients with all tumors;
Stage-H directly filters malignant tumors from the all patients.

Implementation details. We implement our proposed method,
URA, with deep convolutional networks in Pytorch [29] based on
the Transfer-Learning-Library [18]. For all the datasets we use, the
backbone network is ResNet-50 [13] with parameters finetuned from
the model pre-trained on ImageNet. Our experiments were all con-
ducted on NVIDIA A100-PCIE-40GB. For all experiments, we train
the models for 30 epochs, and set the batch size to 128. For opti-
mization, we adopt the SGD optimizer to train models with the Nes-
terov momentum 0.9. The learning rate of the experiment defaults
to 0.001. Subsequently, we perform comprehensive experiments to
demonstrate the efficacy of URA.

Baselines. We compare URA with state-of-the-art deep unsuper-
vised domain adaptation approaches, including Domain Adversarial
Neural Network (DANN) [9], Joint Adaptation Networks (JAN) [22],
Conditional Domain Adversarial Network (CDAN) [23], Cycle Self-
Training (CST) [19], and the most recent and SOTA baseline in UDA,
Invariant Consistency Learning (ICON) [40]. All baseline results are
reproduced in the setting of unsupervised ranking adaptation using
their official implementations.

Evaluation metrics. To measure the performance of the rank-
ing system, we evaluate the proposed URA and baselines us-
ing Area Under Curve (AUC), Normalized Discounted Cumulative
Gain (NDCG@K), and Average Precision (AP@K). These metrics
are widely used in ranking tasks and are appropriate for evaluating
the ability to maintain order-invariance in cross-stage transfer.

4.2 Comparison with state-of-the-art

Tables 1 and 2 show the results compared with the baselines on
the simulated dataset based on CIFAR-10 and CBIS-DDSM, respec-
tively. In these tables, we highlight the best and second-best results in
bold and underlined. Additionally, all these results are averages ob-
tained from running the experiments 5 times with different random
seeds. The results reveal several insightful observations:
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Table 1. Results on simulated dataset based on CIFAR-10 with ResNet-50 as backbone (AP and NDCG means AP@5000 and NDCG@5000).

Method Stage 2 → Stage 1 Stage 1 → Stage 2 Stage 2 → Stage H Stage H → Stage 2 Avg.

AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG

ResNet .685 .512 .673 .706 .751 .621 .912 .675 .715 .684 .511 .669 .747 .612 .670
JAN .598 .500 .553 .549 .556 .207 .802 .557 .300 .601 .502 .555 .638 .529 .404
DANN .655 .515 .622 .532 .271 .226 .803 .269 .337 .653 .517 .612 .661 .393 .449
CDAN .664 .566 .622 .622 .566 .483 .877 .504 .608 .665 .570 .620 .707 .552 .583
CST .687 .532 .669 .763 .762 .644 .922 .648 .752 .790 .460 .792 .790 .601 .714
ICON .585 .330 .527 .580 .706 .520 .895 .714 .730 .764 .622 .756 .706 .593 .633

URA .740 .610 .722 .800 .850 .759 .938 .778 .797 .798 .692 .794 .819 .732 .768

Table 2. Results on CBIS-DDSM with ResNet-50 as backbone (AP and NDCG means AP@3000 and NDCG@3000).

Method Stage 2 → Stage 1 Stage 1 → Stage 2 Stage 2 → Stage H Stage H → Stage 2 Avg.

AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG

ResNet .612 .440 .672 .814 .952 .890 .653 .464 .720 .638 .837 .794 .679 .673 .769
JAN .582 .398 .651 .828 .968 .885 .642 .448 .716 .671 .885 .807 .681 .675 .764
DANN .603 .418 .669 .835 .963 .899 .646 .453 .715 .637 .845 .785 .680 .670 .767
CDAN .566 .408 .631 .810 .959 .882 .649 .454 .730 .658 .880 .803 .671 .675 .762
CST .547 .315 .535 .921 .994 .960 .680 .386 .812 .643 .850 .795 .698 .636 .776
ICON .449 .299 .502 .783 .942 .871 .621 .475 .703 .611 .818 .776 .629 .634 .713

URA .648 .485 .690 .933 .996 .974 .698 .489 .737 .715 .892 .828 .764 .715 .807

1. Our URA has achieved the best results in all tasks on simulated
CIFAR-10 and has outperformed most tasks on CBIS-DDSM.
Notably, URA significantly outperforms all compared approaches
in average performance across all sub-tasks, including the most
recent and SOTA baseline, ICON. Specifically, compared with
the second-best results, URA exhibited improvements of AUC
+0.029, AP@5000 +0.131, NDCG@5000 +0.054 in simulated
CIFAR-10, and AUC +0.057, AP@3000 +0.04, NDCG@3000
+0.022 in real-world CBIS-DDSM. This demonstrates that the
proposed URA can effectively handle order-invariance and C4,
achieving superior performance in cross-stage transfer in multi-
stage cascade ranking systems.

2. Compared with the source only without adaptation, many tra-
ditional UDA approaches exhibit negative transfer, deteriorat-
ing performance upon applying adaptation technologies. Specif-
ically, in terms of average performance, the most severe neg-
ative transfer: AUC -0.109, AP@5000 -0.219, NDCG@5000
-0.266 in simulated CIFAR-10, and AUC -0.05, AP@3000 -
0.039, NDCG@3000 -0.056 in real-world CBIS-DDSM. This
underscores that traditional UDA approaches, designed for
classification-like tasks, are unsuitable for cross-stage transfer in
multi-stage cascade ranking systems. Consequently, addressing
order-invariance and C4 is crucial in this specific scenario.

4.3 Ablation Study

The proposed URA consists of two primary components, OCDA and
PPA. We conducted ablation studies to assess the individual contri-
butions of these components. The results of these ablations on simu-
lated CIFAR-10 and CBIS-DDSM are reported in Tables 3 and 4. By
comparing the average results, two assertions can be made:

1. OCDA and PPA are both beneficial and do not induce negative
transfer compared to the source-only baseline.

2. The effects of OCDA and PPA are not conflicting, combining them
leads to better performance than employing either one alone.

Figure 4. The results of hyper-parameter sensitivity of performance
(AUC) on two datasets CIFAR-10 and CBIS-DDSM. The X-axis is the

hyper-parameter α and the Y-axis is the hyper-parameter β.

4.4 Hyper-Parameter Sensitivity

In the overall optimization loss, Eq. (16), there are two trade-offs
involving the weights of OCDA (α) and PPA (β). We employ the
grid search technique in our implementation to determine the optimal
values for the hyper-parameters α and β, exploring a range of values
including {0.15, 0.25, 0.5, 1.0, 1.5}.

The visualization in Fig. 4 illustrates the impact of different α and
β values on AUC for the first task, i.e., Stage 2 → Stage 1. This vi-
sualization demonstrates that all variants with positive α and β sur-
pass the source-only baseline, confirming that OCDA and PPA con-
sistently benefit cross-stage transfer in multi-stage cascade ranking
systems, and URA is not sensitive to hyper-parameters.

5 Related work
Cascade Ranking. Multi-stage cascade ranking has gained trac-
tion as a promising strategy for balancing the efficiency and effec-
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Table 3. Ablation results on simulated dataset based on CIFAR-10 with ResNet-50 as backbone (AP and NDCG mean AP@5000 and NDCG@5000).

Method Stage 2 → Stage 1 Stage 1 → Stage 2 Stage 2 → Stage H Stage H → Stage 2 Avg.

AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG

ResNet .706 .751 .621 .685 .512 .673 .912 .675 .715 .684 .511 .669 .747 .612 .670

OCDA .778 .879 .747 .714 .566 .690 .921 .664 .701 .790 .664 .780 .801 .693 .730
PPA .771 .791 .677 .728 .589 .708 .936 .776 .793 .794 .689 .787 .807 .711 .741

URA .800 .850 .759 .740 .610 .722 .938 .778 .797 .798 .692 .794 .819 .732 .768

Table 4. Ablation results on CBIS-DDSM with ResNet-50 as backbone (AP and NDCG mean AP@3000 and NDCG@3000).

Method Stage 2 → Stage 1 Stage 1 → Stage 2 Stage 2 → Stage H Stage H → Stage 2 Avg.

AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG AUC AP NDCG

ResNet .612 .440 .672 .814 .952 .890 .653 .464 .720 .638 .837 .794 .679 .673 .769

OCDA .648 .467 .703 .927 .980 .935 .678 .368 .782 .683 .906 .809 .734 .680 .807
PPA .626 .478 .671 .895 .971 .919 .666 .485 .731 .710 .886 .814 .724 .705 .784

URA .648 .485 .690 .933 .996 .974 .698 .489 .737 .715 .892 .828 .763 .715 .807

tiveness of ranking systems [35], employing distinct models for each
stage. Recent research has witnessed a shift towards cascaded rank-
ing models grounded in deep learning. For instance, Gallagher et al.
[8] delved into gradient derivation for cascaded classifiers, optimiz-
ing them through end-to-end methods, while Fan et al. [5] proposed
integrating multiple stages using hard negative sampling. Further-
more, some researchers have noticed that considering different stages
together can improve the performance of the system more than op-
timizing each stage individually. Fei et al. [6] advocated for feature
sharing across different stages, and Hron et al. [16] suggested the
joint utilization of multiple models during the recall phase, learning
to aggregate recall items from diverse channels.

Despite these advancements, these cascading ranking methods still
do not fully consider how to utilize the different characteristics of
different stages to improve the overall effect of the system.

These approaches failed to recognize the potential for mutual
knowledge transfer across stages, which can leverage their respective
strengths and ensure consistency. We argue that cross-stage transfer
can potentially enhance the overall performance of the multi-stage
cascade ranking and filtering system.

Unsupervised Domain Adaptation. UDA is an important sub-
field of transfer learning that aims to overcome the challenges posed
by different data distributions between labeled source and unlabeled
target domains. The primary objective of UDA is to leverage knowl-
edge gained from labeled source domains to enhance model perfor-
mance in the target domain, thereby promoting more accurate pre-
dictions and improving overall decision-making capabilities.

Traditional UDA research predominantly focuses on tasks such
as classification and semantic segmentation, primarily employing
two core techniques: moment matching and adversarial confusion.
Moment matching involves quantifying distributional differences
using statistical moments, such as the Maximum Mean Discrep-
ancy [12, 21], and its various variations [34, 22, 11]. Furthermore,
this method extends its scope to include thoughtful consideration of
batch means and variances [36], contributing to a comprehensive un-
derstanding of distribution alignment. The second technique, adver-
sarial confusion, utilizes an adversarial training paradigm, in which
the domain discriminator is intricately trained alongside the feature
extractor to achieve source and target alignment by confusing cross-
domain distribution. As a landmark research, Ganin et al. [10] first

introduced adversarial learning strategies into deep learning-based
domain adaptation. These methods proposed therein have a GAN-
like architecture, bringing new possibilities for improving DA using
GAN-based techniques [23, 15, 20, 25]. Recently, the research prob-
lems in UDA have expanded to include various problem settings,
such as [32, 39, 30, 27] and so on.

Despite the remarkable success of these UDA approaches, they
always exhibit poor performance in some certain real-world sce-
narios, such as cross-stage transfer in multi-stage cascade ranking
and filtering systems, without considering the characteristics of the
ranking task. Cross-stage transfer emphasizes order-invariance rather
than distribution-invariance. Additionally, the unaligned classifica-
tion boundary between different stages may cause the same sample
in different stages to obtain different labels, termed C4. Our proposed
URA emerges as a notable solution proficient in addressing and re-
solving the challenges posed by this distinctive problem.

6 Conclusion
In this paper, we first introduce a new real-world transfer learning
scenario: cross-stage transfer within multi-stage cascade ranking and
filtering systems, which has not been extensively explored in tradi-
tional transfer learning methods. We focus on the critical assumption
of order-invariance in this problem and address a key issue called
C4, which highlights potential inconsistencies in class concepts for
the same sample at different stages. To overcome these challenges,
we propose a novel method called URA, consisting of two main
components: OCDA characterizes the intra-stage order-conditional
distribution and aligns them across stages, and PPA aligns the pro-
jection matrix of the principal component with classifier parameters
to ensure order-invariance without relying on pseudo-labels, thereby
mitigating the influence of C4. Experimental results demonstrate the
effectiveness of our approach in various cross-stage transfer tasks.

Cross-stage transfer is a vital area within transfer learning, identi-
fied and tentatively explored in this paper for the first time. Nonethe-
less, lots of new research challenges still warrant further investiga-
tion in future studies. For example, challenges include improving the
efficiency of cross-stage transfer, addressing online test-time cross-
stage transfer, and jointly facilitating cross-stage transfer across more
stages simultaneously. Overcoming these challenges will help ad-
vance the field of transfer learning.
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2166âĂŞ2171, 2021.

[7] W. Feng, L. Ju, L. Wang, K. Song, X. Zhao, and Z. Ge. Unsupervised
domain adaptation for medical image segmentation by selective entropy
constraints and adaptive semantic alignment. In AAAI Conference on
Artificial Intelligence, pages 623–631, 2023.

[8] L. Gallagher, R. Chen, R. Blanco, and J. S. Culpepper. Joint optimiza-
tion of cascade ranking models. In Proceedings of the International
Conference on Web Search and Data Mining (WSDM), pages 15–23,
2019.

[9] Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by
backpropagation. In International Conference on Machine Learning,
pages 1180–1189, 2015.

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky. Domain-adversarial training of
neural networks. Journal of Machine Learning Research, 17(1):2096–
2030, 2016.

[11] P. Ge, C.-X. Ren, X.-L. Xu, and H. Yan. Unsupervised domain adapta-
tion via deep conditional adaptation network. Pattern Recognition, 134:
109088, 2023.

[12] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13:
723–773, 2012.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for im-
age recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[14] Q. He, S. Xiao, M. Ye, X. Zhu, F. Neri, and D. Hou. Independent feature
decomposition and instance alignment for unsupervised domain adapta-
tion. In International Joint Conference on Artificial Intelligence, pages
819–827, 2023.

[15] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros,
and T. Darrell. Cycada: Cycle-consistent adversarial domain adaptation.
In International Conference on Machine Learning, pages 1989–1998.
PMLR, 2018.

[16] J. Hron, K. Krauth, M. Jordan, and N. Kilbertus. On component in-
teractions in two-stage recommender systems. In Advances in Neural
Information Processing Systems, pages 2744–2757, 2021.

[17] F. Huang, Z. Yao, and W. Zhou. Dtbs: Dual-teacher bi-directional
self-training for domain adaptation in nighttime semantic segmentation.
Frontiers in Artificial Intelligence and Applications, 372:1084, 2023.

[18] J. Jiang, B. Chen, B. Fu, and M. Long. Transfer-learning-library. https:
//github.com/thuml/Transfer-Learning-Library, 2020.

[19] H. Liu, J. Wang, and M. Long. Cycle self-training for domain adapta-
tion. In Advances in Neural Information Processing Systems, 2021.

[20] Y. Liu, W. Zhang, and J. Wang. Source-free domain adaptation for
semantic segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1215–1224, 2021.

[21] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable
features with deep adaptation networks. In International Conference on
Machine Learning, pages 97–105, 2015.

[22] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer learning
with joint adaptation networks. In International Conference on Machine
Learning, pages 2208–2217, 2017.

[23] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversar-
ial domain adaptation. In Advances in Neural Information Processing
Systems, pages 1647–1657, 2018.

[24] M. Lu, Z. Huang, Z. Tian, Y. Zhao, X. Fei, and D. Li. Meta-tsallis-
entropy minimization: A new self-training approach for domain adap-
tation on text classification. In International Joint Conference on Arti-
ficial Intelligence, pages 5159–5169, 2023.

[25] Y. Ma, Y. Chen, H. Yu, Y. Gu, S. Wen, and S. Guo. Letting go of self-
domain awareness: Multi-source domain-adversarial generalization via
dynamic domain-weighted contrastive transfer learning. In European
Conference on Artificial Intelligence, pages 1664–1671, 2023.

[26] K. Mei, C. Zhu, J. Zou, and S. Zhang. Instance adaptive self-training for
unsupervised domain adaptation. In European Conference on Computer
Vision, pages 415–430, 2020.

[27] E. F. Montesuma, F. M. N. Mboula, and A. Souloumiac. Multi-source
domain adaptation through dataset dictionary learning in wasserstein
space. In European Conference on Artificial Intelligence, pages 1739–
1746, 2023.

[28] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, volume 32, 2019.

[30] Q. Peng, Z. Ding, L. Lyu, L. Sun, and C. Chen. Rain: Regularization on
input and network for black-box domain adaptation. In International
Joint Conference on Artificial Intelligence, pages 4118–4126, 2023.

[31] P. O. Pinheiro. Unsupervised domain adaptation with similarity learn-
ing. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 8004–8013, 2018.

[32] Z. Qiao, X. Luo, M. Xiao, H. Dong, Y. Zhou, and H. Xiong. Semi-
supervised domain adaptation in graph transfer learning. In Interna-
tional Joint Conference on Artificial Intelligence, pages 2279–2287,
2023.

[33] H. Sun and M. Li. Enhancing unsupervised domain adaptation by ex-
ploiting the conceptual consistency of multiple self-supervised tasks.
Science China Information Sciences, 66(4):142101, 2023.

[34] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep
domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014.

[35] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient
ranked retrieval. In Proceedings of the international ACM SIGIR con-
ference on Research and development in Information Retrieval, pages
105–114, 2011.

[36] X. Wang, Y. Jin, M. Long, J. Wang, and M. I. Jordan. Transferable nor-
malization: Towards improving transferability of deep neural networks.
In Advances in Neural Information Processing Systems, 2019.

[37] P. Wei, L. Kong, X. Qu, Y. Ren, Z. Xu, J. Jiang, and X. Yin. Unsu-
pervised video domain adaptation for action recognition: A disentan-
glement perspective. In Advances in Neural Information Processing
Systems, 2023.

[38] J. Yang, S. Shi, Z. Wang, H. Li, and X. Qi. St3d: Self-training for un-
supervised domain adaptation on 3d object detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 10368–10378,
2021.

[39] X. Yang, Y. Gu, K. Wei, and C. Deng. Exploring safety supervision for
continual test-time domain adaptation. In International Joint Confer-
ence on Artificial Intelligence, pages 1649–1657, 2023.

[40] Z. Yue, Q. Sun, and H. Zhang. Make the u in UDA matter: Invariant
consistency learning for unsupervised domain adaptation. In Advances
in Neural Information Processing Systems, 2023.

[41] Y. Zhang, J. Lin, K. Chen, Z. Xu, Y. Wang, and K. Jia. Manifold-aware
self-training for unsupervised domain adaptation on regressing 6d ob-
ject pose. In International Joint Conference on Artificial Intelligence,
pages 1740–1748, 2023.

[42] Y. Zou, Z. Yu, B. V. Kumar, and J. Wang. Unsupervised domain adap-
tation for semantic segmentation via class-balanced self-training. In
European Conference on Computer Vision, 2018.

Y. Pan et al. / Cross-Stage Transfer in Multi-Stage Cascade Ranking and Filtering Systems1958


