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Abstract. Clustering is a fundamental approach to understanding
data patterns, wherein the intuitive Euclidean distance space is com-
monly adopted. However, this is not the case for implicit cluster dis-
tributions reflected by qualitative attribute values, e.g., the nominal
values of attributes like symptoms, marital status, etc. This paper,
therefore, discovered a tree-like distance structure to flexibly rep-
resent the local order relationship among intra-attribute qualitative
values. That is, treating a value as the vertex of the tree allows to
capture rich order relationships among the vertex value and the oth-
ers. To obtain the trees in a clustering-friendly form, a joint learning
mechanism is proposed to iteratively obtain more appropriate tree
structures and clusters. It turns out that the latent distance space of
the whole dataset can be well-represented by a forest consisting of
the learned trees. Extensive experiments demonstrate that the joint
learning adapts the forest to the clustering task to yield accurate re-
sults. Comparisons of 10 counterparts on 12 real benchmark datasets
with significance tests verify the superiority of the proposed method.
Source code of the proposed method is available at [39].

1 Introduction

Datasets composed of multi-valued qualitative attributes (also known
as categorical or nominal attributes) are ubiquitous in cluster analy-
sis tasks [13, 26, 29], for instance, the clustering of clients, patients,
and so on. Unlike a numerical attribute with all its values distributed
on an Euclidean distance axis, the qualitative values of a categorical
attribute cannot reflect its distance structure. For example, there are
three possible values {driver, lawyer, nurse} for attribute “occupa-
tion”, but their optimal numerical embedding on a distance axis is
unknown. Therefore, most related works are dedicated to mining this
implicit distance structure [1, 18, 10], and can be roughly divided
into: 1) Distance measures and 2) Distance learning methods [3], ac-
cording to whether they connect to the downstream clustering tasks.

It is noteworthy that distance measures for qualitative values, e.g.,
Hamming distance [4], simply perform a boolean distance measure-
ment based on whether two values are the same or not. Although
subsequent measures [2, 25, 22] introduce various data statistical in-
formation to improve distance discrimination, they still treat each
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Figure 1. An intuitive comparison of clustering performance by adopting
different types of distance structures. (a) and (b) demonstrate the typical line

graph and fully connected graph. (c) demonstrates the k-modes [16]
clustering performance with the following distance structures: 1) Randomly

Generated Graphs (RGGs, not necessarily fully connected but ensure all
attribute values are connected), 2) Fully Connected Graphs (FCGs), 3)

Randomly Generated Line Graphs (RGLGs), and 4) Semantic Line Graphs
(SLGs, arrange possible values in the graph according to their semantic

order). The RGGs and RGLGs involving randomization are implemented 50
times, and the clustering accuracy is sorted for better visualization.

inter-value distance in isolation without considering the overall dis-
tance structure of all possible values. To address this issue, informa-
tion entropy is introduced to effectively couple the possible values
of an attribute, and an entropy-based distance metric [27] is formed
accordingly to more appropriately quantify the distances. Recently,
more distance metrics [37, 35, 36] attempt to orderly embed pos-
sible values into a distance axis to obtain a distance structure sim-
ilar to that of numerical attributes. However, their value order re-
lies on the explicit semantic order of the values, e.g., {strong_accept,
clear_accept, weak_accept} for an ordinal attribute “review recom-
mendation”, which is often unavailable when dealing with nominal
attributes.

Distance learning methods focusing on connecting distance mea-
surements and clustering tasks have received more attention in re-
cent years, as they can often obtain distance structures that are more
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suitable for clustering. An early attempt [9] models sample-cluster
similarity as the occurrence probability of possible values in clus-
ters. Later, approaches that directly model the distance space have
been proposed, including kernel-based [41] and graph-based [33, 34]
distance metric learning. However, they are all based on specific hy-
potheses, e.g., specific kernels can well-represent the distance metric,
or the distance metric follows a graph structure of possible values in-
spired by specific domain knowledge.

Benefiting from the universality of the graph, the graph-based
learning approaches [33, 34, 38, 36, 8] are proven to achieve more
competitive clustering performance. More specifically, a graph has
been adopted to represent the relationship among possible values of
an attribute. For the ordinal attribute values with explicit semantic
order, they adopt a line graph shown in Figure 1 (a) whereby the
weights of edges are learned to indicate the distances. For the nomi-
nal attribute values without semantic order, they use a fully connected
graph shown in Figure 1 (b) to facilitate distance learning. Neverthe-
less, a pair of coupled thorny problems still lies ahead: reasonable
prior knowledge is the premise of effective distance learning whilst
the data knowledge is usually obtained by observing data distribution
under well-defined distance metrics.

The limitations brought by the prior knowledge can be fully ver-
ified by Figure 1 (c). It can be seen that clustering under the two
types of random graphs, i.e., RGGs and RGLGs, is significantly more
promising to obtain higher accuracy compared to FCGs and SLGs.
Moreover, RGGs obviously outperform RGLGs probably because
RGGs do not overly restrict the relationship among attribute values
to follow an order, thus laying the foundation for obtaining the latent
optimal relationship through randomization. The above observations
provide two hints: 1) A higher degree of topological freedom for the
distance structure brings better clustering results, and 2) Explicit se-
mantic order may not be optimal for clustering. Hence, how to obtain
the optimal distance structure w.r.t. certain clustering tasks without
relying on prior knowledge of the value relationship is crucial for
breaking through the current clustering performance.

In this paper, a new qualitative data learning paradigm that per-
forms Clustering with Order Forest learning (COForest) is proposed.
The learning process is no longer limited to adjusting the distance
between values under the hypothesized value graph, but allows both
graph structure and distances to be jointly learned with clustering.
It learns by iteratively: 1) Inferring graph structures w.r.t. the cur-
rent data partition, and 2) Performing clustering using the graph dis-
tance structure to more appropriately obtain data partition. Since the
inferred graphs are minimal spanning trees, they can concisely and
flexibly represent the relationship among possible values. It turns out
that the learning processes repeatedly improve the upper bound and
approach it, thus bypassing sub-optimal solutions and achieving su-
perior clustering accuracy. Main contributions of this work are sum-
marized into three-fold:

• A new insight is introduced that there exists an optimal latent
graph w.r.t. certain clustering tasks in representing the distance
structure of a qualitative attribute, and the graph should be flexi-
bly determined without being restricted by prior knowledge.

• COForest is proposed to iteratively optimize the distance struc-
tures and clusters to circumvent sub-optimal solutions. Compared
with the existing approaches that only tune distances under a given
topology, COForest further allows the reconstruction of the topol-
ogy and thus brings a higher degree of learning freedom.

• Comprehensive experimental evaluations including significance
tests, ablation studies, and qualitative visual comparisons, have
been conducted to demonstrate the superiority of thoroughly

learning distance structures without prior knowledge bias.

2 Propose Method

2.1 Problem Formulation

The problem of categorical data clustering with distance learning is
formulated below. Given a categorical dataset X = {x1,x2, ...,xn}
with n data samples. Each sample xi can be denoted as an l-
dimensional row vector xi = [xi,1, xi,2, .., xi,l]

� represented by l
attributes A = {a1,a2, ...,al}. Each attribute ar can be denoted as
a column vector ar = [x1,r, x2,r, ..., xn,r] composed of the r-th val-
ues of all the n samples, where the n values can be viewed as sampled
from a limited number of possible values Vr = {vr,1, vr,2, ..., vr,or}
with or indicating the number of possible values of ar , and vr,g in-
dicating the g-th possible value of ar .

Partitional clustering aims to partition X into k non-overlapping
sample subsets C = {C1, C2, ..., Ck} with the objective of minimiz-
ing the intra-subset dissimilarity [5, 11, 30], which is conventionally
expressed as

L(Q) =
k∑

j=1

n∑

i=1

qi,j · Γ(xi, Cj), (1)

where Q is an n×k matrix with its (i, j)-th entry qi,j ∈ {0, 1} indi-
cating the affiliation between sample xi and cluster Cj , and each row
of Q (e.g., the i-th row) satisfies

∑k
j=1 qi,j = 1. During clustering,

the values of qi,j are determined by

qi,j =

{
1, if j = argmin

y
Γ(xi, Cy)

0, otherwise.
(2)

The sample-cluster dissimilarity Γ(xi, Cj) is collectively reflected
by the value-level dissimilarities of different attributes by

Γ(xi, Cj) =
l∑

r=1

γ(xi,r, Cj,r), (3)

where γ(xi,r, Cj,r) is the dissimilarity between the sample xi and
the cluster Cj from the perspective of attribute ar .

Since the relationship among possible values remains to be de-
fined, it is not straightforward to compute the dissimilarity between
a sample and a sample set Cj . Therefore, the key to this work is how
to reasonably define the distance γ(xi,r, Cj,r) in the attribute aspect.
In the following, we first show how to flexibly model the value-level
relationship, based on which the corresponding distance metric is de-
fined. Then the joint learning scheme is proposed to make the defined
distance structure learnable with clustering.

2.2 Order Forest Construction

As mentioned in Section 1, both the line graph and the fully con-
nected graph have significant shortcomings in representing the dis-
tance structure of an attribute. That is, a line graph forces the relation-
ship among all the possible values to be an order, and its effectiveness
heavily relies on the prior order knowledge of the possible values. By
contrast, a fully connected graph constructs multiple paths for each
pair of possible values, and thus cannot concisely and exactly reflect
the relationship among possible values.

Therefore, we propose to construct order forest M =
{M1,M2, . . . ,Ml} where Mr is a Minimal Spanning Tree (MST)
corresponding to the r-th attribute ar . Each tree Mr is denoted as
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Figure 2. Process of order tree construction. (a) A fully connected graph
Gr is prepared with a distance matrix reflecting the edge weights. (b) Prim or

Kruskal algorithm is implemented to generate an order tree with a unique
order trace between each pair of nodes, which is defined in Definition 1.

a tuple Mr =< Vr, Br,Wr > where all the or possible values in
Vr are treated as nodes. Br is the set of or − 1 edges that have the
minimum sum of edge lengths and can connect all the or nodes. Wr

contains the weights reflecting the edge lengths. Such a tree can be
searched through the Prim or Kruskal [31, 24] algorithm given a fully
connected graph with exact edge weights as shown in Figure 2(a).
The weights are actually the distance between any pair of possible
values, which can be computed using any existing distance measure
defined for qualitative values. From Figure 2(b), it can be seen that
the constructed MST concisely and exactly reflects the local order
relationship among possible values, and is thus called an order tree.

Remark 1 (Generalization of relationship graph). Given an attribute
ar , the constructed order tree Mr represents the order relationship
among different possible value subsets and provides a unique trace
between each pair of possible values as shown in Figure 2(b). There-
fore, Mr can be regarded as generalized from: 1) The line graph
representing all the values in one order, and 2) The fully connected
graph representing redundant relationships among possible values.

To define dissimilarity between nodes according to the order tree,
we first define the order trace between two nodes.

Definition 1 (Order trace). Given an order tree Mr , order trace
Tr,s,u is a set containing all the weights between the nodes located
on the shortest path from node vr,s to vr,u. Since the order tree is
undirected, Tr,s,u = Tr,u,s holds.

It turns out that each order trace uniquely concatenates a certain
number of closely connected nodes, while the other nodes that are
further away are excluded. This allows the order tree to flexibly rep-
resent local order relationships of possible value subsets, thus yield-
ing a higher degree of freedom in distance structure learning. The
dissimilarity between two nodes vr,s and vr,u can be intuitively re-
flected by their order trace, e.g., by adding all the weights on the

trace. So far, the definition of weights plays a key role in construct-
ing order forest and forming the dissimilarity between nodes. Since
we focus on the clustering task, the weights and dissimilarity are de-
fined by sufficiently leveraging the cluster information in Section 2.3,
and the learning of the dissimilarity is incorporated with clustering
in Section 2.4.

2.3 Clustering-Friendly Trace Distance

Given cluster partition Q, weights of a fully connected graph should
be first computed and then the order tree extracted from it forms
value-level dissimilarities. Specifically, weight between two nodes
vr,u and vr,s is defined as the distance between their probability dis-
tributions extracted from different clusters by

wr,u,s =
∥∥pvr,u − pvr,s

∥∥
p
, (4)

where pvr,u =
[
pC1|vr,u , pC2|vr,u , . . . , pCk|vr,u

]
and pvr,s =[

pC1|vr,s , pC2|vr,s , . . . , pCk|vr,s
]

are k-dimensional vectors repre-
senting the probability distributions of vr,u and vr,s across all the k
clusters. pCj |vr,u = |Xr,u ∩ Cj |/|Xr,u| where | · | counts the num-
ber of samples in a set and Xr,u = {xi|xi,r = vr,u} is a sample
set collecting all the samples in X with their r-th values equal to
vr,u. The symbol ‖·‖p represents p-norm, which intuitively reflects
the difference in the direct probability distribution of nodes, where
we adopt a common setting p = 2. A distribution pvr,u describes
the distribution pattern of a value across all the k clusters, so that
two values with similar patterns are considered to be more similar.
We therefore use weights defined in Eq. (4) to construct the order
tree that is with the likelihood of producing the current partition Q.

With constructed order tree Mr and the weight defined in Eq. (4),
the dissimilarity between two possible values vr,u and vr,s is defined
as the length of their order trace as defined in Definition 1, which can
be written as

dr,u,s=
∑

wr,u,s∈Tr,u,s

wr,u,s. (5)

Since this is computed based on the weights defined in a clustering-
friendly manner by Eq. (4), we thus call it clustering-friendly trace
distance. Accordingly, the sample-cluster distance γ(xi,r, Cj,r) re-
flected by the order tree structure Mr can be defined based on the
value-level trace distance as

γ(xi,r, Cj,r;Mr) = p�
j,rdr,u, (6)

where we assume that the sample value xi,r equals to the possi-
ble value vr,u for simplicity without loss of generality. dr,u =
[dr,u,1, dr,u,2, ..., dr,u,or ] is an or-dimensional vector containing the
trace distances between vr,u and each of the or possible values in Vr ,
and pj,r = [pvr,1|Cj

, pvr,2|Cj
, ..., pvr,or |Cj

] is an or-dimensional
vector describing the probability distribution of possible values in Vr

within cluster Cj , where pvr,u|Cj
= |Xr,u ∩ Cj |/|Cj |.

Correspondingly, the overall sample-cluster distance Γ(xi, Cj)
defined based on the whole order forest M can be formulated as

Γ(xi, Cj ;M) =
l∑

r=1

γ(xi,r, Cj,r;Mr). (7)

Theorem 1. The trace distance measure dr,u,s defined in the context
of the order tree Mr represents a valid distance metric.

Proof. dr,u,s follows non-negativity, symmetry, and triangle in-
equality for any r ∈ {1, 2, ..., l} and u, s, g ∈ {1, 2, ..., or} as
shown below.
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Non-negativity: dr,u,s ≥ 0. dr,u,s is the length of an order trace,
which is always non-negative comprising non-negative weights ac-
cording to Eqs. (4) and (5) with the norm set at p = 2;
Symmetry: dr,u,s = dr,s,u. Since the order tree is an undirected
graph, the weights on the trace extracted from the undirected graph
obey the commutative law for their summation;
Triangle inequality: dr,u,s ≤ dr,u,g + dr,g,s. The order trace is
the unique path between two values with length dr,u,s. From vr,u to
vr,s, detour another node vr,g other than the trace Tr,u,s necessarily
involves extra weight(s) from the other traces. Given that each weight
is non-negative, the result follows.

Theorem 2. The sample-cluster distance Γ(xi, Cj ;M) defined in
the context of the order forest M represents a valid distance metric.

Proof. The computation of Γ(xi, Cj ;M) can be viewed as the
weighted sum of a series of dr,u,ss in dr,us with non-negative
weights represented by the probabilities in pj,rs according to
Eqs. (6) and (7). Since trace distance dr,u,s is a metric according to
Theorem 1, Γ(xi, Cj ;M) is also a metric following non-negativity,
symmetry, and triangle inequality.

2.4 Joint Learning Algorithm

Joint learning of cluster and order forest is facilitated by integrating
the order forest construction mechanism presented in Sections 2.2
and 2.3 into the clustering objective. Accordingly, L(Q) can be re-
fined to L(Q,M) based on Eqs. (1), (5), (6), and (7):

L(Q,M) =
k∑

j=1

n∑

i=1

qi,j ·
l∑

r=1

γ(xi,r, Cj,r;Mr). (8)

Then the problem becomes how to compute Q and M to minimize
L, which is typically solved by iteratively fixing one and comput-
ing another. Specifically, given fixed distance structure M̂ , Q can be
computed to minimize L(Q, M̂) by

qi,j =

{
1, if j = argmin

y

∑l
r=1 γ(xi,r, Cy,r;Mr)

0, otherwise.
(9)

with i = {1, 2, ..., n} and j = {1, 2, ..., k}. Eq. (9) is strictly derived
from Eq. (2) by adopting order forest M̂ as its distance structure.
After the Q is computed, we fix it as Q̂ and then reconstruct M
according to Figure 2 and Eqs. (4) - (5).

In summary, L is optimized by iteratively solving the two mini-
mization problems: 1) Fix M̂ , run k-modes [16] to iteratively com-
pute Q until convergences; 2) Fix Q̂, reconstruct M to update the
distance metric. With a finite state space of M , the states will grad-
ually be exhausted during the iterative searching, and thus the con-
vergence of the algorithm can be guaranteed. The whole algorithm is
summarized as Algorithm 1.

Theorem 3. Time complexity of COForest is O(nlkIE)
Proof. To more intuitively provide the proof, we first de-

fine the probability P and trace distance matrix D, and as-
sume that ς = max(o1, o2, ..., ol) for worst-case analysis. P
is a k × l probability matrix with its (j, r)-th entry pj,r =
[pvr,1|Cj

, pvr,2|Cj
, ..., pvr,or |Cj

]. D is an l × ς trace distance ma-
trix, and its (r, u)-th entry is dr,u = [dr,u,1, dr,u,2, ..., dr,u,or ].

Assume solving problem L(Q, M̂) involves I iterations to com-
pute Q and P, and the whole algorithm involves E iterations to con-
struct M and update D for solving L(Q̂,M).

Algorithm 1: COForest: Clustering with Order Forest Learning

Require: Dataset X , number of sought clusters k
Ensure : Partition Q, order forest M

1 Initialization: Set outer and inner loop counters by E ← 0 and
I ← 0; Run k-modes [16] to obtain a relatively stable initial
Q{E}; Construct initial M{E} according to Q{E}; Set
convergence mark for outer loop by Conv_E ← False.

2 while Conv_E = False do

3 Conv_I ← False;
4 while Conv_I = False do

5 I ← I + 1; Compute Q{I} by Eq. (9);
6 if Q{I} = Q{I−1} then

7 Conv_I ← True;
8 end

9 end

10 if Q{E} = Q{I} then

11 Conv_E ← True;
12 else

13 E ← E + 1; Q{E} ← Q{I}; Reconstruct M{E};
14 end

15 end

For each iteration of I, P should be prepared by going through
all the n data samples once with complexity O(nklς), and D should
be prepared by going through all the ς values of l attributes once on
n samples with complexity O(nlς). Then the n samples are clus-
tered to k clusters by considering ς values of l attributes according
to Eq. (9), with time complexity O(nklς). Therefore, the time com-
plexity of solving L(Q, M̂) in a total of I iterations is O(Inklς).

For each iteration of E , since P and D have been prepared, order
tree of ς possible values of each of the l attributes can be searched
by constructing Mr with time complexity O(nlς2). For E iterations
of the whole COForest algorithm, considering the I inner iterations,
the overall time complexity of COForest is O(E(Inklς + nlς2)).

Since ς is a small integer ranging from 2 to 8 in most cases, it
can be treated as a constant, and the overall time complexity can be
simplified to O(nlkIE), which is linear to n and l. �
3 Experiments

Five experiments are designed to evaluate the proposed COForest by
comparing it with 10 counterparts on 12 real public datasets using
three validity metrics. The experiments are summarized below:

• Clustering performance comparisons with significance tests illus-
trate that COForest significantly outperforms the conventional and
state-of-the-art counterparts (Section 3.2).

• Ablation studies comparing five ablated versions of COForest
confirm the effectiveness of each of the core components of CO-
Forest (Section 3.3).

• Convergence and efficiency of COForest are demonstrated by
plotting the objective function values during learning and execu-
tion time under different dataset scales, respectively (Section 3.4).

• Reasonableness of the learned distance structure is well confirmed
by qualitatively comparing the cluster discrimination ability of
different methods using t-SNE (Section 3.5).

• The potential of extending COForest to mixed data with numeri-
cal and categorical attributes is validated by comparing its cluster-
ing performance with those specifically proposed for mixed data
(please refer to the “Supplementary Material” provided by [39]).
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Table 1. Information of the 10 counterparts. “Type” indicates whether a
method separates or jointly learns the distance definition and clustering.

No. Counterpart Year Type

1 KMD [16] 1998 Separate
2 LSM [27] 1998 Separate
3 JDM [20] 2016 Separate
4 CBDM [17] 2012 Separate
5 OCIL [9] 2013 Joint
6 UDMC [35] 2022 Separate
7 DLC [33] 2020 Joint
8 H2H [38] 2022 Joint
9 HDC [34] 2022 Joint
10 ADC [36] 2023 Separate

Table 2. Statistics of the 12 datasets. l and n are the numbers of attributes
and samples, respectively. k∗ is the true number of clusters.

No. Dataset Abbrev. l n k∗

1 Hayes-Roth HR 4 132 3
2 Car Evaluation CE 6 1728 4
3 Australia Credit AC 8 690 2
4 Congressional Voting VT 16 435 2
5 Caesarian Section CS 4 80 2
6 Soybean (small) SB 35 47 4
7 Nursery School NS 8 12960 4
8 Zoo ZO 16 101 7
9 Thoracic Surgery TS 13 470 2

10 Heart Failure HF 5 299 2
11 Inflammations Diagnosis DS 5 120 2
12 Lenses LS 4 24 3

3.1 Experimental Setup

Experimental settings are briefly described below.
10 Counterparts are sorted out in Table 1. We set their hyper-

parameters (if any) to the values recommended by the corresponding
papers. Each method is implemented 10 times and the average per-
formance is reported.

12 Datasets from various domains are utilized for the experiments.
All the datasets are real public datasets collected from the UCI Ma-
chine Learning Repository [23], and the statistical information is
shown in Table 2. Before the experiments, we preprocess the datasets
by removing samples with missing values. Since we focus on cate-
gorical data clustering, numerical attributes in AC, TS, HF, and DS
datasets are omitted. For all the compared methods, we set k = k∗

as the sought number of clusters.
Three Evaluation Metrics include the clustering accuracy

(CA) [15], Adjusted Rand Index (ARI) [32, 14], and Normalized
Mutual Information (NMI) [12], are adopted for evaluating cluster-
ing performance from different perspectives. Among them, CA is a
conventional index, which computes the matching rate based on the
best permutation mapping between the obtained clusters and the true
classes. In contrast, ARI and NMI are more discriminative, being in
value intervals [−1, 1], and [0, 1], respectively. For all the indices, a
higher value indicates a better clustering performance. NMI results
are provided in the “Supplementary Material” [39].

3.2 Clustering Performance

In this section, we investigate the clustering performance of different
algorithms and statistically analyze the superiority of COForest.

Clustering performance of different methods are compared in
Tables 3 and 4 w.r.t. CA and ARI, respectively. The best and second-
best results on each dataset are highlighted in bold and underline,
respectively. The observations include the following three aspects: 1)

Overall, COForest performs best on almost all datasets, indicating its
superiority in clustering. 2) The performance of COForest on the TS
and HF datasets is not obviously better than the second-best method.
However, the second-best method varies on these datasets, indicat-
ing the robustness of COForest. 3) Although COForest does not have
the best CA and ARI performance on the VT dataset, it maintains the
second-best and is not surpassed by much by the winners. In addition,
the results of CBDM on CE, NS, and LS datasets are not reported be-
cause the attributes of these datasets are independent of each other,
making CBDM fails in measuring distances according to the corre-
lated attributes.

Significance tests are conducted by first implementing Friedman
tests on the average performance ranks reported in the last rows in Ta-
bles 3 and 4, respectively. The corresponding p-values are 0.00020
and 0.00002, respectively, both passing the test under 99% confi-
dence interval (i.e., p-value = 0.01). On this basis, Bonferroni Dunn
(BD) post-hoc tests are implemented. Critical Difference (CD) inter-
vals for the two-tailed BD tests at 95% (α= 0.05) and 90% (α = 0.1)
confidence intervals are 3.8048 and 3.5204, respectively, for com-
paring 11 methods across 12 datasets. As can be seen from the “AR”
rows in Tables 3 and 4 that all compared methods fall outside the
right boundary of the CD intervals, except for the DLC method w.r.t.
ARI performance under α = 0.05. But it is worth mentioning that
DLC is very close to the boundary of α = 0.05 and stays outside
the boundary of α = 0.1. In general, the test results indicate that the
proposed COForest significantly outperforms the other counterparts.

3.3 Ablation Study

To explicitly demonstrate the effectiveness of the core components of
COForest, several ablated versions of it are compared in Figure 3. To
evaluate the proposed order forest learning mechanism, we compare
COForest with COFI , which constructs the order forest once with-
out iterative learning. To evaluate the proposed order forest struc-
ture, COFI is modified by replacing the order forest with line graphs
and fully connected graphs to form COFII and COFIII , respectively.
Moreover, to verify the adopted probability distribution-based mea-
sure in Eq. (4) for weights computing, we further let COFIII adopt
the traditional Hamming distance and form the version COFIV .

It can be observed from Figure 3 that COForest outperforms its
four variants, which generally illustrates its effectiveness. More spe-
cific observations are four-fold: 1) COForest performs not worse than
COFI on all the datasets, validating the necessity of the joint learn-
ing of the order forest and clustering. 2) On 10 out of 12 datasets, the
performance of COFI is not worse than COFII and COFIII . This in-
dicates that our constructed order forest is more reasonable in reflect-
ing the distance structures, even without learning. The reason would
be that the order tree is a generalized distance structure as analyzed
in Remark 1, which can more flexibly represent multiple local or-
der relationships. 3) The mutual win and loss of COFII and COFIII

across the 12 datasets reveals that both line graph and fully connected
graph have their own limitations. 4) COFIII adopting probability
distribution-based measure outperforms COFIV adopting Hamming
distance on 10 datasets, indicating that the use of the probability dis-
tributions in Eq. (4) is reasonable.

3.4 Convergence and Efficiency Evaluation

To evaluate the convergence of COForest, we plot its objective func-
tion values L during the learning on all the 12 datasets in Figure 4.
The horizontal and vertical axes represent the number of learning
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Table 3. Clustering performance evaluated by CA. “AR” row reports the average performance rankings.

Data KMD LSM JDM CBDM OCIL UDMC DLC H2H HDC ADC COForest (ours)

HR 0.3795±0.02 0.3826±0.03 0.3841±0.03 0.4083±0.06 0.3621±0.05 0.3886±0.01 0.3659±0.03 0.3333±0.00 0.3758±0.02 0.3970±0.05 0.4530±0.07

CE 0.3730±0.04 0.3587±0.04 0.3597±0.04 - 0.3659±0.05 0.3505±0.03 0.3746±0.04 0.3354±0.06 0.3730±0.04 0.3730±0.04 0.4261±0.06

AC 0.7494±0.05 0.7823±0.04 0.6858±0.12 0.7417±0.08 0.7781±0.10 0.7674±0.08 0.7499±0.14 0.7942±0.00 0.7484±0.09 0.7709±0.09 0.8307±0.05

VT 0.8621±0.01 0.8662±0.00 0.8662±0.00 0.8749±0.00 0.8763±0.00 0.8639±0.00 0.8540±0.08 0.8736±0.00 0.8736±0.00 0.8713±0.00 0.8761±0.00
CS 0.5475±0.02 0.5425±0.05 0.5475±0.05 0.5787±0.03 0.5037±0.18 0.5788±0.03 0.6013±0.04 0.6050±0.02 0.5862±0.03 0.5875±0.02 0.6450±0.02

SB 0.8191±0.18 0.8553±0.19 0.7830±0.16 0.8213±0.15 0.7936±0.33 0.8426±0.17 0.8723±0.17 0.9511±0.10 0.8128±0.13 0.8191±0.16 0.9723±0.09

NS 0.3454±0.04 0.3171±0.04 0.3064±0.03 - 0.3454±0.08 0.3235±0.04 0.3301±0.06 0.3441±0.05 0.3454±0.04 0.3454±0.04 0.3626±0.09

ZO 0.6564±0.10 0.6594±0.10 0.7149±0.09 0.6921±0.08 0.5663±0.31 0.6564±0.09 0.7020±0.10 0.6980±0.04 0.6713±0.12 0.6812±0.11 0.7832±0.12

TS 0.7083±0.08 0.6717±0.08 0.7023±0.10 0.6957±0.09 0.6689±0.08 0.7087±0.09 0.6868±0.08 0.5723±0.03 0.7104±0.08 0.6947±0.10 0.7232±0.09

HF 0.5344±0.03 0.5344±0.03 0.5421±0.03 0.5498±0.02 0.4880±0.17 0.5378±0.02 0.5381±0.02 0.5441±0.05 0.5388±0.02 0.5378±0.02 0.5532±0.03

DS 0.6833±0.11 0.6833±0.11 0.6975±0.11 0.7142±0.12 0.7242±0.16 0.6725±0.11 0.7242±0.16 0.6267±0.04 0.6725±0.11 0.6975±0.11 0.7617±0.08

LS 0.5250±0.07 0.5417±0.10 0.5417±0.10 - 0.5417±0.08 0.5792±0.14 0.5500±0.09 0.5167±0.09 0.5250±0.07 0.5250±0.07 0.6833±0.14

AR 7.2500 7.2083 6.7917 6.4583 7.0833 6.5833 5.3750 6.3750 6.2083 5.5833 1.0833

Table 4. Clustering performance evaluated by ARI. “AR” row reports the average performance rankings.

Data KMD LSM JDM CBDM OCIL UDMC DLC H2H HDC ADC COForest (ours)

HR -0.0064±0.01 -0.0051±0.01 -0.0048±0.01 0.0127±0.03 -0.0073±0.02 -0.0037±0.00 -0.0068±0.01 -0.0149±0.00 -0.0056±0.01 0.0043±0.03 0.0429±0.04

CE 0.0229±0.03 0.0314±0.02 0.0321±0.02 - 0.0501±0.06 0.0289±0.02 0.0676±0.03 0.0140±0.03 0.0229±0.03 0.0229±0.03 0.1016±0.07

AC 0.2575±0.10 0.3228±0.07 0.1892±0.17 0.2569±0.11 0.3421±0.15 0.3107±0.11 0.3178±0.22 0.3453±0.00 0.2714±0.12 0.3225±0.12 0.4462±0.12

VT 0.5233±0.02 0.5354±0.01 0.5354±0.01 0.5613±0.01 0.5655±0.01 0.5287±0.01 0.5208±0.18 0.5572±0.00 0.5572±0.00 0.5503±0.00 0.5647±0.00
CS -0.0033±0.01 0.0017±0.03 0.0038±0.03 0.0137±0.01 0.0070±0.03 0.0140±0.02 0.0342±0.03 0.0319±0.02 0.0191±0.02 0.0190±0.01 0.0732±0.02

SB 0.7657±0.20 0.8164±0.24 0.6826±0.22 0.7652±0.21 0.7902±0.33 0.8232±0.19 0.8500±0.20 0.9271±0.16 0.7595±0.18 0.7863±0.19 0.9562±0.14

NS 0.0630±0.02 0.0556±0.02 0.0457±0.02 - 0.1146±0.10 0.0617±0.03 0.0886±0.08 0.0847±0.09 0.0630±0.02 0.0630±0.02 0.1352±0.13

ZO 0.5707±0.13 0.5872±0.15 0.6496±0.14 0.6187±0.12 0.5093±0.29 0.5937±0.15 0.6315±0.12 0.6255±0.06 0.6010±0.15 0.6128±0.15 0.7511±0.18

TS 0.0054±0.05 0.0123±0.05 0.0188±0.05 0.0171±0.04 -0.0048±0.05 0.0198±0.05 -0.0034±0.04 -0.0249±0.00 0.0084±0.05 0.0031±0.04 0.0220±0.04

HF -0.0067±0.00 -0.0067±0.00 -0.0013±0.01 -0.0009±0.01 -0.0002±0.00 -0.0023±0.00 -0.0005±0.00 -0.0043±0.00 -0.0019±0.00 -0.0023±0.00 0.0045±0.01

DS 0.1697±0.18 0.1697±0.18 0.1944±0.19 0.2280±0.20 0.2839±0.32 0.1543±0.18 0.2839±0.32 0.0615±0.04 0.1543±0.18 0.1944±0.19 0.2901±0.16

LS 0.0756±0.10 0.1180±0.15 0.1180±0.15 - 0.1287±0.12 0.1919±0.22 0.1379±0.15 0.0786±0.11 0.0756±0.10 0.0756±0.10 0.3359±0.22

AR 8.6667 7.0000 6.5417 6.7500 5.2083 6.0833 4.7083 6.5417 7.0833 6.3333 1.0833
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Figure 3. CA performance of different ablated COForest versions.

Figure 4. Convergence curves of COForest on different datasets. L
represents the value of the objective function.

iterations and the value of L, respectively. The triangle markers on
the curve represent the iterations that COForest converges and the
red dots mark the iterations of order forest reconstruction. It can be
observed that, after each update of the order forest, L decreases, indi-
cating that the forest reconstruction is consistent with the minimiza-
tion of L. Moreover, COForest converges within 15 iterations in most
cases, which is quite efficient for a learning process that iteratively
reconstructs the distance structure and learning data partitions.

To evaluate the efficiency of COForest, large synthetic datasets are
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Figure 5. Execution time on synthetic datasets.
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Figure 6. t-SNE visualization of the AC dataset.

randomly generated with different scales of attributes and samples.
Specifically, we generate by: 1) Fixing the number of attributes at l =
20 and increasing the number of samples n from 10k to 100k with
step-size 10k, and 2) Fixing sample size at n = 2k and increasing
the number of attributes l from 1k to 10k with step-size 1k, where
‘k’ indicates ‘kilo’. Note that each attribute has five possible values,
and the number of clusters k is consistently set to five. The execution
time of all the 11 methods is demonstrated in Figure 5. It can be
seen that the execution time of COForest is lower than or similar to
the state-of-the-art UDMC, DLC, and H2H. Moreover, the increasing
trend of the execution time of COForest is almost linear with n and l,
which is consistent with the time complexity analysis of Theorem 3.
In summary, COForest is efficient compared to the state-of-the-art
methods and does not incur too much additional computational cost
compared to the simplest methods.

3.5 Qualitative Evaluation

To illustrate the cluster discrimination capability of COForest and the
intuitiveness of the distance structure it obtains, we use the distance
between attribute values learned by COForest, CBDM, and ADC to
encode the attributes of the AC dataset. The encoded data are then
dimensionally reduced into a 2-D space through t-SNE [28] and vi-
sualized in Figure 6 by marking the data points with ‘true’ labels
provided by the dataset. If more data points with the same label are
gathered in the visualization, then it indicates that the corresponding
distance metric is more competent in discriminating different clus-
ters. It can be seen that COForest has significantly better cluster dis-
crimination ability in the comparisons, which indicates the intuitive-
ness of its obtained clusters upon the tree-like distance structure.

4 Relate Work

This section overviews the existing distance-measure-based and
distance-learning-based categorical data clustering methods.

Distance Measures for categorical data including the measures
yielded by encoding strategies and the directly defined distance mea-
sures. Traditional data encoding techniques, such as one-hot encod-
ing, use Hamming distances to encode each possible value into a new

attribute. However, it fails to capture the full spectrum of dissimi-
larity between possible values due to its boolean nature [10, 6]. To
overcome these limitations, statistical-based measures have been in-
troduced that consider the frequency of intra-attribute values, thereby
capturing lower information entropy for similar values and suggest-
ing more reasonable distance metrics [27, 9]. Further advancements
in this area have developed metrics that account for inter-attribute
dependencies, providing a more holistic view of the data relation-
ships [2, 25, 17]. Additionally, consideration of value order differ-
entiates between nominal and ordinal attributes, with specific ap-
proaches defining distances by integrating semantic order, thereby
obviously improving distance accuracy for ordinal data [37, 35].

Distance Learning methods incorporate the defining of distances
into the learning process of clustering. This includes advanced rep-
resentation learning techniques that dynamically encode categori-
cal data. For instance, some studies use various kernels to untan-
gle attribute couplings more effectively [41], while others develop
mixed encoding strategies for both numerical and categorical at-
tributes [21, 40]. These often require meticulous tuning of hyperpa-
rameters. A significant step forward in this domain is the introduction
of parameter-free approaches that learn the optimal number of clus-
ters and the distances [19, 7]. Another innovative strategy involves
transforming nominal attributes into ordinal ones through geomet-
ric projections to optimize latent distances, significantly enhancing
clustering performance by unifying the treatment of different types
of categorical attributes [38]. Furthermore, [33] treats values with
order information as line graphs and learns the graph weights. Later,
the works [34, 36] further unify the distances of nominal and ordinal
attributes and make them learnable with clustering.

These advances significantly improve clustering performance on
categorical data. Nevertheless, coupled thorny problems still lie
ahead: reasonable prior knowledge is the premise of effective dis-
tance learning whilst the data knowledge is usually obtained by ob-
serving data distribution under well-defined distance metrics.

5 Concluding Remarks

This paper demonstrates and analyzes the key issue that bottle-
necks the current qualitative data clustering performance, i.e., dis-
tance learning is restricted by prior knowledge of the distance struc-
ture. Accordingly, a new learning paradigm called COForest is pro-
posed, which incorporates the construction of distance structure into
the learning process and achieves joint optimization with clustering.
Given the number of sought clusters k, the learning process of CO-
Forest is parameter-free and can be easily applied to various datasets.
Moreover, the learned tree-like distance structures are concise and
highly interpretable, making them very suitable for representing the
implicit distribution of qualitative data. Extensive experiments illus-
trate the superiority of COForest, as well as the effectiveness of its
key technical components.

The proposed method demonstrates outstanding clustering perfor-
mance on static qualitative data under the given ‘true’ number of
clusters. In the future, it is promising to consider extending it to cop-
ing with more complex real situations, e.g., learning from streaming
data composed of a mixture of quantitative and qualitative attributes
with an unknown number of imbalanced clusters.
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