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Abstract. Graph neural network (GNN) models play a pivotal
role in numerous tasks involving graph-related data analysis. De-
spite their efficacy, similar to other deep learning models, GNNs are
susceptible to adversarial attacks. Even minor perturbations in graph
data can induce substantial alterations in model predictions. While
existing research has explored various adversarial defense techniques
for GNNs, the challenge of defending against adversarial attacks on
real-world scale graph data remains largely unresolved. On one hand,
methods reliant on graph purification and preprocessing tend to ex-
cessively emphasize local graph information, leading to sub-optimal
defensive outcomes. On the other hand, approaches rooted in graph
structure learning entail significant time overheads, rendering them
impractical for large-scale graphs. In this paper, we propose a new
defense method named Talos, which enhances the global, rather than
local, homophily of graphs as a defense. Experiments show that the
proposed approach notably outperforms state-of-the-art defense ap-
proaches, while imposing little computational overhead.

1 Introduction

Graph Neural Networks (GNNs) extend deep learning to graph data
and significantly outperform traditional methods in tasks like node
classification[9], graph classification[16], and link prediction[24].
However, like deep learning models in computer vision [7] and nat-
ural language processing [1], GNNs are vulnerable to adversarial at-
tacks, where small perturbations mislead the model into making in-
correct predictions[8, 19, 23]. This lack of robustness makes GNNs
challenging to apply in critical real-world scenarios.

Recent studies propose various defense methods against these at-
tacks, often leveraging homophily in their design. GNNs typically
aggregate similar neighbors to improve node representations[17, 27],
effectively utilizing previously overlooked graph structure infor-
mation. Adversarial attacks disrupt homophily by adding dissim-
ilar edges or altering node features[17, 12, 14]. Defense meth-
ods use the homophily assumption differently; for example, GCN-
Jaccard removes edges between dissimilar nodes, while Soft-
Median/Medoid[6, 5] aggregates the median and medoid of neigh-
boring features to mitigate adversarial effects. Pro-GNN[12] incor-
porates homophily constraints within its model architecture by pe-
nalizing edges between dissimilar nodes.
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Although these defenses show promise, recent studies reveal they
can be vulnerable to adaptive attacks[13]. We argue that this is partly
because they focus on the local neighborhood of nodes, ignoring
that graph homophily is a global concept involving multi-hop neigh-
bors. To enhance GNN robustness, we should improve the over-
all homophily of graphs. Additionally, real-world graphs are large,
and many existing defenses introduce significant computational over-
head, making them impractical. For example, GNNGuard’s[25] over-
head increases with the number of node features, and GCN-SVD[3]
and ProGNN[12] rely on expensive SVD decomposition. Efficiency
should be prioritized in defense design.

We propose a more effective and efficient adversarial defense
method, Talos, which enhances global homophily to defend against
attacks. Talos preprocesses the graph only once and is computation-
ally efficient. Our contributions are:

• Expanding defense to include multi-hop neighbors, ensuring com-
prehensive protection.

• Providing theoretical derivations to enhance the method’s validity
and effectiveness.

• Demonstrating that Talos is more effective and faster than state-
of-the-art defenses.

The rest of the paper is organized as follows: Section 2 covers
related work, Section 3 presents the methodology, Section 4 shows
experimental results, and Section 5 concludes the paper.

2 Related Work

2.1 Graph Adversarial Attacks

Due to the discrete features and transductive learning settings, gen-
erating adversarial perturbations for GNN models presents unique
challenges. To address these, Dai et al.[2] use reinforcement learn-
ing to craft generalized attacks. Nettack[29] uses a linear model
as a surrogate, bypassing the non-linear components of GNNs. IG-
FSGM and IG-JSMA[17] use integrated gradients to estimate gradi-
ents in discrete states, enabling precise measurement of perturbation
impacts. Additionally, PGDAttackPGDAttack[20] optimizes attack
strategies using gradient descent, disrupting GNNs by manipulating
edges. However, these approaches primarily focus on local attacks
targeting specific nodes. Metaattack[28] employs meta-learning to
perform poisoning attacks during the training process, reducing ac-
curacy in tasks like classification and clustering. Most existing meth-
ods are gradient-based, making them difficult to apply to large-scale
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graphs. PR-BCD[6] proposes a sparsity-aware attack method that
modifies edges based on Randomized Block Coordinate Descent (R-
BCD).

2.2 Graph Adversarial Defense and Challenges

To improve the robustness of GNN models, defense methods are
actively explored. Wu et al.[17] found that perturbing the graph
structure has a more significant impact than tampering with the
features. Attacks tend to add edges rather than delete them. They
also revealed that edges are mostly added between dissimilar nodes.
Based on such observations, they proposed GCN-Jaccard, which
utilizes Jaccard similarities to identify and eliminate the perturbed
edges. This effectively purifies the graph data and enhances its ro-
bustness against attacks. Some other methods use a similar idea
to filter out dissimilar edges. For example, SoftMedian [6] and
SoftMedoid[5] take advantage of recent advancements in differen-
tiable sorting to design robust aggregation functions in GNN mod-
els. As mid-frequency signals partly correspond to moderately sim-
ilar edges, Mid-GCN[11] preserves the mid-frequency signals while
abandoning the high/low-frequency signals to defend against adver-
sarial attacks. GNNGuard[25] employs an attention mechanism to
assign higher weights to edges between similar nodes. GRAND[4]
uses random feature augmentations together with neighborhood aug-
mentation to avoid the over-reliance on directly connected neigh-
bors. However, the above methods focus solely on the local neigh-
borhood of nodes, neglecting to consider the overall structure of
graphs. This could potentially expose them to adaptive attacks by
adversaries[13].as attackers can allocate more attacking budget to
further neighbors of nodes to achieve adaptive attacks.

In addition to removing adversarial neighbors, some defense meth-
ods modify the model architecture. GCN-SVD[3] purifies the graph
by replacing the perturbed graph with its low-rank approximation.
Pro-GNN[12] adds a regularization term during training to generate
a low-rank and sparse graph. Since most adversarial attacks target
graph structures, Wu et al.[18] propose a co-training mechanism that
uses different models to fully utilize both node features and graph
structures. However, these methods often involve time-consuming
processes, making them inefficient for handling larger, more complex
real-world graphs. Moreover, existing adversarial defenses heavily
rely on empirical observations and lack theoretical analysis, reduc-
ing their reliability in real-world scenarios.

We propose Talos, which considers the entire graph structure. Ta-
los preprocesses the graph by enhancing homophily while leaving
model training unchanged, making it more efficient and suitable for
large-scale graphs.

3 Methodology

This section presents the design of Talos. The fundamental princi-
ple of Talos involves harnessing global homophily information to
promptly identify the edge most likely added by the attack and elim-
inate it. We will provide a comprehensive explanation and derivation
of the Talos approach.

3.1 Notations

Let G = (V, E ,X) be a graph, where V represents the set of nodes
containing n nodes {v1, · · · , vn} with |V| = n. E denotes the set of
edges, typically represented by an adjacency matrix A ∈ {0, 1}n×n.

An entry Aij = 1 indicates the presence of an edge (vi, vj) ∈ E ,
while 0 indicates its absence.

Additionally, we have the feature matrix X, where the features of
each node v ∈ V are represented as a d-dimensional feature vector
xv ∈ R

d. The feature matrix X comprises these feature vectors,
specifically X = (x1,x2, · · · ,xn)

T ∈ R
n×m, where m denotes

the number of features.
In the context of graph node classification tasks, each node is as-

sociated with a label y, and Y |V| represents the set of true labels
for all nodes. The goal of Talos is to enhance the model’s prediction
capability after an attack.

3.2 Effectiveness of High-order Neighbor Information

Existing adversarial attacks, whether approximation-based or
gradient-based, can perturb arbitrary edges in the graph. However,
defenses like GCN-Jaccard often focus only on local neighborhood
information, making them vulnerable to adaptive attacks that exploit
this limitation. As shown in Figure 1, an attacker can carefully craft
a perturbation on node A without directly manipulating its edges. By
connecting nodes B and C, the attacker indirectly contaminates node
B, leading to the misclassification of A during information propaga-
tion. If the defense strategy only considers A’s first-order neighbor-
hood and uses GCN-Jaccard, it may be ineffective.

Figure 1. Indirect Attack

From this, we can deduce the importance of considering global
information during defensive strategies. To substantiate this claim,
we conducted a fundamental augmentation experiment on the GCN-
Jaccard model by disconnecting all dissimilar second-order neighbor
node pairs. The process is as follows:

By squaring the adjacency matrix, we identify all second-order
neighbor node pairs (vi, vj) that satisfy A2[i, j] > 0 and calcu-
late their similarity using the Jaccard coefficient. Subsequently, we
select the node pairs with lower similarity and traverse all interme-
diate nodes (denoted as vk). In each traversal, we remove the edge
eik or ejk with the lower similarity, effectively pruning all dissim-
ilar second-order adjacent node pairs in a direct and intuitive man-
ner. With this technique, we evaluate the accuracy of GCN models
on the Citeseer dataset. As shown in Figure 2, utilizing higher-order
neighbor information leads to significant potential for enhancing the
overall defensive capability of the model.

3.3 Global Homophily Index

While improving robustness, high-order modifications to GCN-
Jaccard may remove too many edges, leading to reduced accuracy.
For instance, on the Cora dataset, setting the Jaccard threshold to
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Figure 2. The augmentation experiment on the GCN-Jaccard model

0.01 results in 548 first-order dissimilar node pairs, but the number
of third-order dissimilar pairs jumps to 44,799. This indicates that
removing third-order dissimilar connections could cause significant
edge loss. To address this, we propose a global homophily index that
measures the information transmitted by all edges in the graph across
all orders. By comparing the global homophily index before and after
removing an edge, we can assess the edge’s importance in informa-
tion transmission from low to high orders.

Consider the node pair (vi, vj), which may have multiple inter-
mediate nodes between them. In GNN models, the homophily infor-
mation between these nodes is conveyed through the graph aggrega-
tion mechanism (where Jaccard similarity is used as the metric for
measuring homophily). However, during the information transmis-
sion process, the message-passing mechanism can cause the loss of
homophily information, which will be further strengthened by the
number of paths. Consequently, our model construction takes into
account both the number of paths and the rate of information loss.

3.3.1 The Number of Paths

We first consider how to obtain the number of paths n. Taking the kth
power of the adjacency matrix can provide the number of k-hop paths
between node pairs, which can be represented as Ak

ij . Therefore, we
can model the kth-order global homophily index Hom(k) as follows:

Hom(k) =< Ak,J > (1)

where A denotes the adjacency matrix, J is the Jaccard similarity
matrix, and < ·, · > signifies the operation of matrix inner product.

3.3.2 The Rate of Information Loss

Zhu et al. [27]formally define the representation learned by a GNN
for each node v at the kth iteration as follows:

r(k)v = COMBINE
(
r(k−1)
v ,AGGR

({
r(k−1)
u : u ∈ N̄(v)

}))

(2)
Different GNN designs show distinct AGGR() and COMBINE()

functions. AGGR() (e.g., Mean) computes the aggregation of neigh-
bor embeddings, while COMBINE() integrates the self-embedding
with the aggregated neighbor embeddings. The design of these two
functions invariably introduces information loss. Hence, we denote
the mean retention rate of the residual information following infor-
mation aggregation as α (where α ∈ [0, 1]). Subsequently, the global
homophily index can be formulated as follows:

Hom =
∞∑

k=0

αkHom(k) (3)

After deriving Formulas 1 and 3, we can calculate Hom as follows.

Hom =< (I − αA)−1,J > (4)

For the equation
∑∞

k=0 α
kAk = (I − αA)−1, certain conditions

be met. Specifically, the convergence parameter α must satisfy the
inequality α < 1

ρ(A)
, where ρ(A) denotes the spectral radius of

the adjacency matrix A. To simplify the subsequent exposition, we
employ the unified notation M = (I − αA)−1.

3.4 Derivation and Analysis

We model the global homophily index to identify and eliminate edges
that propagate the most misleading information. That is, we aim to
find an edge whose removal would maximize ΔHom. This can be
mathematically formulated as:

argmax
ΔA

ΔHom (5)

Suppose the edge ekl is removed, resulting in a new adjacency
matrix A′. Here, ΔA = A′ −A. For ΔA, ΔAkl = ΔAlk = −1,
with all other values being 0. We further derived and optimized this
result to achieve the final outcome.

ΔHom =< M ′ −M,J >= α < M ′ΔAM,J > (6)

Where M ′ = (I − αA′)−1. Given this modification, we can de-
termine the values at each position in the matrix M ′ΔAM . The cal-
culation process is detailed as follows:

[
M ′ΔAM

]
ij

=
n∑

s=1

n∑
t=1

M ′
isΔAstMtj = −M ′

ilMkj −M ′
ikMlj

(7)
By substituting Equation (6) into Equation (5), we can perform

detailed mathematical derivations and obtain the following results

ΔHom = α < M ′ΔAM,J >= α
∑
i,j

[
M ′ΔAM

]
ij
Jij

= −α
∑
i,j

(M ′
ilMkj +M ′

ikMlj)Jij

= −α
∑
i,j

(M ′
liJijMjk +M ′

kiJijMjl)

= −2α
[
M ′JM

]
kl

(8)

Further derivation leads to a conclusion.

argmax
ΔA

ΔHom = argmin
ΔA

< M ′JM,−ΔA > (9)

We have mathematically represented the impact on the global ho-
mophily index after the removal of an edge, providing mathematical
support for Talos. In subsequent content, we will present its imple-
mentation and adopt various optimizations to ensure that the strategy
is lightweight and efficient.
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3.5 Optimizations

As shown in the previous section, Talos can be formulated as solving
the problem of argminΔA < M ′JM,−ΔA >. However, there is
a notable challenge to implement it. Whenever the decision is made
to remove a specific edge, it necessitates traversing and comput-
ing the matrix M ′JM , which significantly increases the computa-
tional complexity. Fortunately, our primary objective is not to obtain
precise numerical values but rather to effectively rank and evaluate
edges with greater levels of harm. In light of this, we introduce an
approximate optimization to the method, which enables substantial
enhancement for computational efficiency.

3.5.1 Approximate Optimization Strategy

Due to the minor perturbation of state A before and after defending
a specific edge, we reasonably postulate the approximation between
A and A′. Consequently, we can also approximate the similarity be-
tween M ′ and M . Grounded in this approximation, we can approxi-
mate the original formula as follows:

argmax
ΔA

ΔHom ≈ argmin
ΔA

< MJM,−ΔA > (10)

This approximation allows us to circumvent the intricate compu-
tation involving M’, thereby simplifying the computation.

3.5.2 Efficient Batch Selection Strategy

If the recalculation of MJM is required every time an edge is re-
moved, the computational cost becomes prohibitively high. However,
in essence, precise calculations are not our primary need; rather, we
seek to obtain a ranking of edges based on their homophily. There-
fore, we can directly identify the edges corresponding to the posi-
tions of the smallest n values in the matrix MJM and focus our
defense efforts on these edges. This approach eliminates the need for
performing n iterations and repeatedly computing a new MJM to
select the minimum value in each iteration.

3.5.3 Matrix Computation Strategy

Considering that node features in graph datasets are often discrete,
as exemplified by common graph datasets such as CORA where the
feature matrix X contains elements with values limited to 0,1. Given
this context, we can compute the Jaccard coefficient between node vi
and node vj using the following approach:

Jij =
xix

T
j

1− (1− xi) (1− xj)
T

=
xix

T
j

1− x̄ix̄T
j

=
xix

T
j

x̄ix̄T
j

(11)

This further leads to J = XXT

X̄X̄T

By employing matrix operations, we can achieve significant com-
putational savings, as the division operation here refers to element-
wise division between corresponding positions in the matrices.

3.6 Overview of Talos

As shown in Algorithm 1, Talos can be seamlessly incorporated into
existing GNNs. Given a graph Gp = (V, Ep,X) subjected to poison-
ing attacks, we can efficiently identify and remove suspected attacked
edges, thus obtaining a clean graph structure data Gc. Talos first cal-
culates the Jaccard similarity matrix with reference to Eq. (11). Then
it computes the similar gradient matrix MJM , and we only need to
select the smallest n values in the lower triangular part of this sym-
metric matrix and delete the corresponding edges.

Algorithm 1 Defense procedure of Talos
Require: Poisoned graph Gp = (V, Ep,X) with adjacency matrix

Ap; Retention Rate α; Number of edges to cut n
1: Compute the Jaccard similarity matrix J using Eq. (11);
2: Evaluate MJM , where M = (1−Ap)

−1;
3: Identify the n edge zeroes in Ap corresponding to the smallest

values in MJM , resulting in matrix Ac;
4: Purifying the edge set of the graph structure into Ec based on

Ac, we obtain the sanitized clean graph Gc = (V, Ec,X);
5: return Gc

4 Experiments

In this section, we assess the efficacy of Talos against non-targeted
adversarial attacks on graphs. Experiments were conducted on
servers equipped with NVIDIA Tesla V100-SXM2 32GB GPUs.
Through the experiments, we evaluate how Talos performs compared
with the state-of-the-art defense methods. We also show that Talos
can be applied to different types of GNN models.

4.1 Setup

4.1.1 Datasets

In this study, we primarily utilized three widely recognized datasets:
Cora[21], Amazon Photo[22], and Amazon Computers. The selec-
tion of these three datasets was based on three main considerations:

Firstly, these datasets are commonly used to evaluate the perfor-
mance of GNN algorithms.

Secondly, their scales cover the needs of small, medium, and large-
scale graph-structured data, allowing for a more comprehensive eval-
uation of the algorithms.

Thirdly, under the constraints of our experimental conditions,
these three datasets could undergo a thorough evaluation. As for
the widely regarded large dataset, Pubmed, due to experimental con-
straints, we followed the work of Daniel Zügner [6] and conducted
separate tests on it. In the experiments, we operated on the largest
connected subgraph for each dataset. All datasets were randomly di-
vided, with 10% of the data allocated for training, 10% for valida-
tion, and the remaining 80% for testing, thereby providing a rigorous
environment for evaluating model performance.

4.1.2 Generating Adversarial Attacks

To evaluate the effectiveness of Talos, we first conducted attacks on
graph data. We utilized two global attack methods: Metattack[28]
and Projected Gradient Descent (PGD)[20]. During the implementa-
tion of the Metattack, we employed a simple GCN as a proxy model
to guide the direction of the attack. This proxy model was configured
with a two-layer structure, including a hidden layer with 64 nodes.
To reduce the risk of overfitting and enhance the model’s general-
ization ability, we set a dropout ratio of 0.5. The learning rate (lr)
was set to 0.01, and the weight decay was set to 0. Additionally, the
model was trained for 1000 epochs with an early stopping strategy to
prevent overfitting. For Metattack itself, we utilized a meta-gradient
approach with self-training and set the momentum parameter to 0.9.
During the implementation of the PGDAttack, we conducted mul-
tiple attacks on datasets (Cora, Amazon Photo, and Amazon Com-
puters) using these two adversarial attack methods. In these attacks,
we perturbed the edges in the graph, with the proportion of attacked
edges ranging from 5% to 25% in steps of 5%. After the attacks, we

D. Li et al. / Talos: A More Effective and Efficient Adversarial Defense for GNN Models Based on the Global Homophily of Graphs1938



used a GCN with the same settings as the Metattack proxy model
for detection to evaluate the performance of the graph data after poi-
soning attacks. We have detailed the results of the attacks in Table 1,
and the attacked graph data will serve as the foundation for further
defense evaluation.

Table 1. Attack Result

Dataset Ptb Rate(%) Metattack(%) PGD(%)

Cora

5 79.38±0.72 78.74±0.21
10 75.31±0.50 75.80±0.77
15 64.16±1.00 74.78±0.53
20 55.23±1.01 73.01±0.63
25 52.44±0.39 71.86±0.58

Photo

5 90.19±1.11 85.23±0.21
10 84.18±1.06 82.06±0.30
15 73.84±2.83 79.56±0.70
20 59.54±0.43 78.42±0.45
25 57.65±1.57 76.46±1.03

Computers

5 81.68±1.06 79.22±0.56
10 74.20±1.84 74.40±0.74
15 72.10±1.57 70.72±0.69
20 71.06±1.40 68.58±0.89
25 69.50±1.16 66.66±0.88

4.2 Defense Performance

In this section, we conduct a comprehensive evaluation of the node
classification accuracy and execution time for various defense mech-
anisms against non-targeted attacks. Our Talos is compared with sev-
eral state-of-the-art defense methods, including GCN-SVD, GCN-
Jaccard, RobustGCN [26], GNNGuard, and Pro-GNN.

Specifically, in the case of the Cora, we meticulously followed
the hyperparameter configurations outlined in the respective base-
line defense methodologies. For the Photo and Computers, since the
original defense algorithms did not have experimental results, we ad-
justed the hyperparameters for each method to ensure the fairness
of the experiment. The precise hyperparameters are as follows: for
GCN-SVD, k = 100; for GCN-Jaccard, threshold = 0.1; for Ro-
bustGCN, γ = 0.2. GNNGuard and Pro-GNN utilized their default
settings. For the hyperparameters of Talos, validation sets were used
for optimization. In addition, in order to ensure the fairness of the
experiment, all the above algorithms adopt a two-layer GNN during
the experiment, and the number of hidden units is 16.

4.2.1 Accuracy Evaluation

We initially assess the accuracy of node classification for various de-
fense methods against non-target adversarial attacks. The adversarial
attack dataset, generated in a prior section using Metattack and PGD,
was employed for our experiments. Tables 2 present the mean accu-
racy along with the standard deviation under the two respective attack
methods. Performance rankings are indicated in the upper right cor-
ner, with the top-performing results highlighted in bold. As observed
from the tables, our approach consistently leads under diverse distur-
bance rates, demonstrating significant efficacy under higher levels of
disturbance. Despite the decmidrule in classification accuracy across
all defense methods as the attack intensity increased, it is worth not-
ing that Talos tended to maintain a high classification accuracy and
showed strong robustness under higher attack intensity.

In scenarios involving origin graphics and low percentage attacks,
GCN’s accuracy is not substantially compromised. Defense strate-
gies that employ structure purification (such as GCN-Jaccard) often
damage the original structure and have the opposite effect on graphs.
Through cumulative means, Talos can more accurately differentiate
dissimilar edges, thus better filtering out attacked edges.

4.2.2 Execution Time

Execution time is a crucial metric for evaluating defense methods.
However, comparing their practicality based solely on time complex-
ity is challenging due to various parallel computing techniques and
defensive strategies. For example, GCN-Jaccard focuses on graph
structure purification and doesn’t include GNN fitting processes,
while methods like RobustGCN do. To demonstrate practicality ac-
curately, we measure execution time from the start of each retraining
session to the completion of model fitting. Across six experiments
with attack ratios from 0 to 25%, each group was conducted ten
times, yielding an average running time recorded in Table 3.

To ensure fairness, both graph structure purification methods
(GCN-Jaccard, GCN-SVD, and Talos) and methods employing ro-
bust graph neural networks (RobustGCN, GNNGuard, Pro-GNN)
utilized similar configurations, including a two-layer GCN with 16
hidden units and a learning rate of 0.01. Talos operates significantly
faster than almost any other defense method, as shown in the table.
Although the experiment was conducted on a cloud computing plat-
form where concurrent GPU usage may have influenced execution
times, Talos closely resembles the processing speed of GCN, indicat-
ing its efficiency. Further investigation revealed that the average op-
eration times for Talos across different datasets were 0.040s, 0.378s,
and 2.582s for Cora, Photo, and Computers, respectively. Given its
faster processing time compared to GCN, Talos emerges as an effec-
tive and practical strategy for purifying GNN data before defense.

4.2.3 Larger Scale Graph Application

Due to platform limitations, we were unable to perform Metattack
on Pubmed, making subsequent defense experiments infeasible. To
test whether Talos is more effective on larger graphs, we conducted
experiments on Pubmed using PR-BCD to perturb the graph with
1%, 5%, and 10% attacks. We compared the results with baselines
like Vanilla GCN, Vanilla GDC, GCNJaccard, and SoftMedian [6].
For fairness, all models used the same GCN structure with 64 hidden
units. For SoftMedian, we used the SoftMedian GDC (T=1) method
and also tested replacing GDC with Talos for preprocessing, combin-
ing it with SoftMedian. The accuracy results are shown in Figure 3.

Regarding experiment times, Vanilla GCN and Vanilla GDC took
1.63s and 5.80s, respectively. With defenses, GCNJaccard, Soft-
Median GDC, SoftMedian Talos, and GCN Talos took 14.24s,
21.29s, 16.92s, and 11.61s, respectively. GCN Talos had the short-
est time overall.

The experiments demonstrate that Talos offers the best defense
under PR-BCD attacks on large graphs and has the lowest time con-
sumption among the methods compared.

4.3 Universality of Talos Over GNNs

Talos only uses the information of the graph itself and the assumption
of homophily property. Therefore, Talos is theoretically applicable to
all kinds of GNNs. Although previous experiments have been tested
on GCN to verify its effectiveness against other defense methods, it is
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Table 2. Node Classification Performance under Metattack and PGD(%)

DataSet Attack Ptb Rate(%) GCN GCN-Jaccard GCN-SVD RobustGCN GNNGuard Pro-GNN Talos

Cora

Metattack

0 83.11±0.41 80.89±0.104 76.51±0.526 81.49±0.333 76.62±1.245 81.66±2.502 82.71±0.491

5 79.38±0.72 79.31±0.452 75.11±0.575 77.65±0.834 75.00±0.456 79.08±1.603 80.83±0.741

10 75.31±0.50 77.08±0.072 72.34±0.346 73.37±1.125 74.84±0.514 76.64±2.153 78.31±0.761

15 64.16±1.00 72.90±0.382 66.05±0.335 63.61±1.316 71.00±1.654 72.21±1.533 74.17±0.391

20 55.23±1.01 65.88±1.393 54.09±0.816 55.31±1.225 65.98±2.572 58.47±1.124 68.19±0.981

25 52.44±0.39 60.96±0.683 50.01±0.796 50.60±0.465 65.81±1.781 53.12±0.764 65.28±1.162

PGD

0 82.87±0.45 80.94±0.284 75.60±0.486 81.95±0.231 76.81±0.365 81.16±2.172 81.06±0.913

5 78.74±0.21 79.03±0.431 76.73±0.715 77.40±0.464 76.07±0.616 78.52±1.383 78.81±0.472

10 75.80±0.77 76.24±0.302 76.07±0.443 75.90±0.844 75.30±0.626 75.57±0.485 78.42±0.541

15 74.78±0.53 74.56±0.734 73.84±1.056 74.78±0.513 75.63±0.742 74.01±0.585 75.97±0.411

20 73.01±0.63 73.01±0.663 71.77±1.076 72.38±0.735 74.16±0.162 72.39±0.474 75.40±0.641

25 71.86±0.58 72.39±0.563 72.36±0.134 71.94±0.295 72.71±1.092 71.79±0.116 73.98±0.341

Photo

Metattack

0 93.80±0.21 93.09±0.074 90.82±0.155 93.35±0.212 93.20±0.443 90.36±1.396 93.60±0.271

5 90.19±1.11 92.29±0.221 87.73±0.245 89.19±1.413 88.70±2.544 87.52±1.366 92.17±0.382

10 84.18±1.06 90.20±0.422 84.00±0.624 84.00±0.355 85.57±0.433 83.78±3.036 90.34±0.491

15 73.84±2.83 84.28±1.162 68.63±4.446 71.73±3.195 79.28±0.803 77.82±2.044 88.60±0.701

20 59.54±0.43 82.87±1.522 62.59±3.215 60.53±3.456 66.56±1.994 76.54±2.273 87.29±0.661

25 57.65±1.57 79.71±2.882 52.09±3.976 64.55±2.464 66.23±2.043 56.70±2.755 87.01±0.981

PGD

0 93.64±0.25 93.21±0.084 90.72±0.265 93.52±0.231 93.51±0.152 90.36±1.396 93.50±0.333

5 85.23±0.21 86.72±0.122 86.42±0.383 85.88±0.114 85.51±0.155 84.11±0.576 88.86±0.241

10 82.06±0.30 83.39±0.192 82.19±0.445 83.12±0.053 82.53±0.304 81.54±0.466 86.28±0.551

15 79.56±0.70 80.37±0.693 79.40±0.276 81.04±0.082 80.25±0.294 79.62±0.475 83.91±0.621

20 78.42±0.45 78.96±0.455 78.35±0.256 79.50±0.082 79.10±0.243 79.09±0.394 81.34±0.831

25 76.46±1.03 77.78±0.045 76.51±0.986 78.33±0.422 77.95±0.394 77.98±0.283 79.62±0.771

Computers

Metattack

0 88.30±0.43 87.44±0.424 77.64±0.885 88.71±0.322 88.35±0.393 * 88.98±0.391

5 81.68±1.06 83.90±0.502 73.10±0.725 78.22±0.554 82.18±0.663 * 85.58±0.531

10 74.20±1.84 78.60±1.141 67.43±0.765 74.40±0.404 75.63±0.593 * 78.30±1.912

15 72.10±1.57 78.06±1.262 64.78±1.105 71.57±0.944 74.21±0.553 * 80.58±1.051

20 71.06±1.40 77.54±0.852 64.90±1.775 71.11±1.004 72.91±0.453 * 80.49±0.671

25 69.50±1.16 76.02±1.522 63.92±1.445 70.28±0.704 71.95±0.543 * 79.83±1.731

PGD

0 88.30±0.43 87.26±0.384 77.64±0.885 88.69±0.312 88.34±0.353 * 88.98±0.391

5 79.22±0.56 81.81±0.242 75.07±0.785 80.77±0.243 80.41±0.284 * 85.29±0.361

10 74.40±0.74 77.60±0.652 71.37±1.265 77.38±0.183 75.02±0.494 * 82.95±0.691

15 70.72±0.69 73.40±1.073 67.87±1.075 74.29±0.392 71.45±0.474 * 81.03±0.911

20 68.58±0.89 70.30±1.413 65.90±1.215 71.76±0.312 69.79±0.544 * 79.07±0.861

25 66.66±0.88 67.85±0.634 64.13±1.235 70.31±0.392 67.86±0.613 * 78.14±0.831

Table 3. Execution time(s)

DataSet Cora Photo Computers

GCN 0.63±0.14 2.67±0.37 8.12±1.90
GCN-Jaccard 1.28±0.31 3.67±0.47 8.79±1.24
GCN-SVD 3.42±0.01 46.86±0.66 328.82±6.62
RobustGCN 5.66±0.02 8.13±0.04 37.71±0.06
GNNGuard 46.98±0.58 1239.13±148.32 1346.29±240.29
Pro-GNN 973.90±100.42 16289.10±204.53 Time Out

Talos 0.60±0.10 2.80±0.20 11.90±1.54

unclear whether it is also better on other GNNs. In order to verify the
generality of Talos on GNNs, this section selects several common
GNNs for testing, including GCN, GAT[15], and GraphSage[10].
The experimental results are shown in Table 4. Due to the large scale
of the Computers dataset, on the experimental platform, Pro-GNN
failed to complete the computation and produce results within the
predetermined time frame. Therefore, we marked it as a timeout and
excluded Pro-GNN from the comparative analysis of the Computers.

As can be seen from the Table, Talos achieves significant results in
all three basic models, so Talos essentially purifies the graph struc-
ture regardless of the selected model. The defense of Talos over
GNNs is universal.

Figure 3. Model Performance on Pubmed

4.4 Why is Talos Effective

To explore why Talos is effective, we conducted a comparative analy-
sis between Talos and GCN-Jaccard. Using the PGD Attack, we gen-
erated attacked graphs with a 25% attack rate. By plotting histograms
of attack and clean edges for graphs processed by GCN-Jaccard and
Talos, we compared their abilities to distinguish perturbed edges.
Figure 4 illustrates that Talos, with its ΔHom metric, widens the
distribution gap between attack and clean edges compared to GCN-
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Table 4. Universality Performance under PGD(%)

DataSet GNN Model Defense Method Clean Graph Ptb5% Ptb10% Ptb15% Ptb20% Ptb25%

Cora

GCN
NoDefense 83.10±0.44 78.57±0.21 76.98±0.29 75.21±0.34 73.58±0.19 72.23±0.31

GNNJaccard 81.53±0.33 78.74±0.67 76.75±0.85 75.16±0.99 73.49±0.65 72.86±0.66
Talos 79.71±0.51 78.67±0.42 78.08±0.63 77.31±0.43 74.99±0.66 75.46±0.48

GAT
NoDefense 83.78±0.84 80.31±0.61 77.61±0.43 75.54±0.74 73.83±0.90 72.40±0.75

GNNJaccard 82.13±0.78 80.16±1.18 78.15±1.36 76.70±1.08 74.48±1.06 73.63±1.31
Talos 83.10±1.20 79.85±1.01 79.71±1.37 78.79±0.82 77.55±0.95 76.45±0.94

GragphSAGE
NoDefense 82.98±0.50 79.68±0.60 77.55±0.50 76.35±0.65 74.36±0.61 73.49±0.38

GNNJaccard 81.52±0.51 80.18±0.55 78.59±0.40 77.21±0.62 75.55±0.64 75.16±0.50
Talos 82.96±0.39 80.42±0.44 79.10±0.83 78.72±0.47 77.68±0.35 77.17±0.48

Photo

GCN
NoDefense 93.88±0.18 85.27±0.26 82.18±0.30 80.04±0.35 78.79±0.47 77.72±0.58

GNNJaccard 93.29±0.16 87.17±0.31 83.75±0.40 80.81±0.26 79.28±0.25 77.91±0.43
Talos 93.62±0.19 89.73±0.20 88.56±0.35 86.68±0.32 86.37±0.49 84.53±0.64

GAT
NoDefense 94.10±0.22 85.02±0.21 82.64±0.44 80.38±0.59 78.77±1.26 77.89±0.37

GNNJaccard 93.70±0.20 87.09±0.34 83.92±0.18 81.87±0.34 80.13±0.44 79.06±0.35
Talos 93.99±0.25 90.20±0.29 88.98±0.37 87.27±0.29 86.49±0.39 85.99±0.51

GragphSAGE
NoDefense 94.41±0.21 88.06±0.25 85.19±0.49 83.78±0.49 82.61±0.45 82.03±0.48

GNNJaccard 94.18±0.27 90.32±0.28 87.64±0.26 85.94±0.46 84.44±0.33 82.89±0.68
Talos 94.16±0.19 91.43±0.21 90.54±0.33 89.26±0.56 88.89±0.34 88.50±0.30

Computers

GCN
NoDefense 88.80±0.24 80.68±0.47 74.24±1.13 70.42±1.05 67.86±1.06 65.96±1.01

GNNJaccard 88.36±0.39 82.76±0.44 79.15±0.51 75.00±1.53 70.57±1.49 68.30±1.14
Talos 88.98±0.39 85.29±0.36 82.95±0.69 81.03±0.91 79.07±0.86 78.14±0.83

GAT
NoDefense 89.22±0.19 80.89±0.46 77.05±1.61 71.65±2.58 69.82±2.50 66.74±2.85

GNNJaccard 88.24±0.45 82.76±0.47 78.80±1.07 74.54±1.90 73.19±1.76 69.10±2.29
Talos 89.41±0.48 85.22±0.42 83.66±0.58 82.58±0.63 81.72±0.48 81.46±0.50

GragphSAGE
NoDefense 88.50±0.71 81.96±1.24 78.10±1.33 75.66±1.68 74.07±1.49 71.36±1.41

GNNJaccard 87.10±0.66 83.60±0.84 81.03±0.77 79.02±1.40 77.24±0.98 75.36±2.01
Talos 87.63±0.55 84.99±0.99 83.07±1.35 81.53±1.78 80.88±0.99 81.19±1.21

Jaccard. It also creates a clustering effect on attack edges, facilitating
their identification and removal.

Figure 4. Edge distribution histogram under PGD

We also adopted two quantitative metrics to measure the distri-
bution difference between attack edges and clean edges. Firstly, we
used the Kolmogorov-Smirnov (KS) metric to quantify the differ-
ence between the two distributions. The KS metric is a measure in
statistics used to gauge the disparity between two distributions. The
range of the KS metric is from 0 to 1, with a higher KS value indi-
cating a stronger discriminative capability of the model. Generally,

a KS metric between 0.2 and 0.5 is considered to have a good dis-
criminative capability; above 0.5, the model’s discriminative capa-
bility is very strong. After calculation, for Jaccard, KScora = 0.46,
KSphoto = 0.39, KScomputers = 0.38. For Talos’ ΔHom, KScora =
0.66, KSphoto = 0.51, KScomputers = 0.57. The results indicate that
Talos has a very strong discriminative capability for attack edges and
significantly surpasses Jaccard.

Secondly, we defined and calculated the separation rate (SR) for
attack edges for both by SR =

Sattacked−Soverlap

Sattacked
where Sattacked is his-

togram area of attack edge distribution, Soverlapis area of overlap be-
tween the two histograms. After calculation, for Jaccard, SRcora =
0, SRphoto = 6.93%, SRcomputers = 6.45%. For Talos’ ΔHom,
SRcora = 29.8%, SRphoto = 22.3%, SRcomputers = 27.5%. It can
be seen that Talos has a very strong discriminative capability for at-
tack edges and significantly surpasses Jaccard.

In summary, Talos is more effective because it better distinguishes
between attack edges and clean edges. During graph purification, it
removes more attack edges while minimizing harm to the original
graph, leading to better defensive results.

5 Conclusion

This paper introduces Talos, a generalized defense method that
improves the robustness of GNN models. Talos enhances global
homophily in graphs, effectively removing adversarial edges. We
demonstrate that with proper approximations, Talos is highly effi-
cient. Comparative experiments confirm Talos’ advantages in both
time and accuracy, proving its applicability across different GNN
models.

Due to page limits, additional supplementary materials are avail-
able on arXiv.1

1 Supplementary materials: https://arxiv.org/abs/2406.03833
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