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Abstract. The constructive approach within Neural Combinatorial
Optimization (NCO) treats a combinatorial optimization problem as
a finite Markov decision process, where solutions are built incre-
mentally through a sequence of decisions guided by a neural pol-
icy network. To train the policy, recent research is shifting toward
a ’self-improved’ learning methodology that addresses the limita-
tions of reinforcement learning and supervised approaches. Here, the
policy is iteratively trained in a supervised manner, with solutions
derived from the current policy serving as pseudo-labels. The way
these solutions are obtained from the policy determines the quality
of the pseudo-labels. In this paper, we present a simple and problem-
independent sequence decoding method for self-improved learning
based on sampling sequences without replacement. We incrementally
follow the best solution found and repeat the sampling process from
intermediate partial solutions. By modifying the policy to ignore pre-
viously sampled sequences, we force it to consider only unseen al-
ternatives, thereby increasing solution diversity. Experimental results
for the Traveling Salesman and Capacitated Vehicle Routing Prob-
lem demonstrate its strong performance. Furthermore, our method
outperforms previous NCO approaches on the Job Shop Scheduling
Problem.

1 Introduction

Combinatorial optimization (CO) problems, which are characterized
by their discrete nature and often NP-hard complexity, are essen-
tial in many areas, including logistics, manufacturing, process de-
sign, and scheduling. Traditional methods often rely on heuristics
that require domain expertise and struggle with scalability. In recent
years, Neural Combinatorial Optimization (NCO) has emerged as a
research area that aims to let deep neural networks learn to gener-
ate heuristics from the instance distribution of the problem at hand
[4]. Among various strategies within NCO, the constructive approach
formulates a CO problem as a finite Markov decision process and
represents a solution to an instance as a sequence of incremental de-
cisions. A neural network computes a policy to guide these decisions.

The policy network is typically trained with supervised learning
(SL) techniques [38, 14, 9, 21, 8, 24] or reinforcement learning (RL)
[3, 17, 27, 12, 22, 15, 28, 40, 29, 42, 13, 43]. Both approaches have
particular challenges: SL-based methods require a large number of
high-quality expert solutions to be used as labels, which are usually
obtained from existing (exact) solvers. In the case of larger instances
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or complex problems, it can be challenging, if not infeasible, to pre-
generate high-quality solutions. Conversely, RL-based methods do
not necessitate the use of expert solutions, yet they are susceptible
to the sparse reward problem [10] and high hyperparameter sensitiv-
ity [32]. Furthermore, RL-based approaches typically use policy gra-
dient methods (in particular, variants of REINFORCE [39]), where
gradients are derived from complete trajectories, resulting in high
computational cost. While state-of-the-art constructive RL-based ap-
proaches such as POMO [22] demonstrate remarkable performance
on the training distribution, they exhibit limited generalizability to
larger problem instances. To further complicate matters, it has re-
cently been shown [24, 8] that the poor generalization is likely due
to the lightweight decoder structure of commonly used architectures
[17]. Instead, Luo et al. [24] and Drakulic et al. [8] suggest increas-
ing the decoder size, which leads to significant memory requirements
for policy gradient methods.

To bridge SL- and RL-based methods, recent work [24, 6, 30, 25]
diverges from RL to a more straightforward, self-improved learning
(SIL) approach: During training, the current policy network is de-
coded (e.g., by sampling) to generate (or refine) solutions to ran-
domly generated instances. The best solutions generated are used as
pseudo-labels, which the network is trained to imitate via SL. Re-
peating this process creates a "self-improving" loop. As no gradi-
ents need to be collected during decoding, large architectures can
be trained in this way. The challenge lies in identifying an effec-
tive decoding method that is (a) capable of rapidly generating so-
lutions for potentially thousands of instances that can be utilized in
a single training epoch; (b) able to provide diverse sequences for
sufficient exploration but can be adapted to exploit the model in
later training stages; and, (c) generalizable across different problems,
with few hyperparameters to adjust to the specific problem at hand.
Given (a), time-consuming search methods such as Monte Carlo Tree
Search (MCTS) are unsuitable. Although naive Monte Carlo i.i.d.
sampling from the policy is theoretically sound [6], its output is of-
ten not diverse. Furthermore, it can require a large number of sam-
ples (even at low annealing temperatures or Top-p/-k sampling [11])
to let the model improve in later stages of training [19, 33, 22, 30].
On the other hand, sampling sequences without replacement (WOR)
[19, 33, 26] yields diverse sequences. However, for CO problems, it
has been observed that the advantage of sampling WOR over sam-
pling with replacement diminishes with increasing solution length
[33, 30].

In this paper, we propose a simple yet effective decoding mecha-
nism for sequence models that exploits the diversity and paralleliza-
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tion capabilities of Stochastic Beam Search (SBS) [19] in an MCTS-
like manner: We maintain a search tree where each node represents a
partial solution and leaf nodes are complete solutions. Given a beam
width k and a step size s, we sample k leaf nodes WOR from the
model using SBS. We then remove the probability mass of the leaves
from the tree, which marks the sequences as sampled. We select the
best solution from the sampled leaves and, assuming it corresponds
to a sequence (a1, . . . , an), follow it for s steps. After shifting the
tree’s root to the partial solution (a1, . . . , as), we repeat the process
of finding a better solution until we have traversed the entire tree.

The decoding method is fast, generalizable, and possesses only
two intuitive hyperparameters, namely k and s. These can be readily
adapted to the available computational resources and problem length.
By marking found sequences as sampled, we consistently consider
unseen alternative solutions. By following the best solution for s
steps, we gradually reduce the length of the problem. This forces
more diversity in the sampling process.

We summarize our contributions as follows:

• In the recent spirit of simplifying and scaling the training pro-
cess of NCO methods, we propose a novel and straightforward
sequence decoding method for SIL.

• We train two state-of-the-art architectures [8, 24] for the Travel-
ing Salesman Problem (TSP) and the Capacitated Vehicle Routing
Problem (CVRP) with 100 nodes in an SIL setting using our de-
coding method. Our method matches the performance of SL on
expert trajectories when evaluated on the training distribution and
shows similarly strong generalization performance on larger in-
stances.

• We further evaluate our method on the Job Shop Scheduling Prob-
lem (JSSP), consistently outperforming current state-of-the-art
NCO methods.

• We additionally show on various policies that our proposed decod-
ing method significantly outperforms SBS-based sampling with
the same computational budget.

2 Related work

Constructive NCO The first application of neural networks to di-
rectly predict solutions to CO problems is attributed to the Pointer
Network of Vinyals et al. [38]. Originally trained via SL, Bello et al.
[3] employ REINFORCE [39] with a learned value baseline. Since
then, as in many other areas of deep learning, variants of the Trans-
former [36] have become the standard architecture choice for many
NCO models [17, 7, 22, 23, 8, 24, 44]. To circumvent learning a value
function, the policy networks are usually trained with self-critical
policy gradient methods [31] over complete trajectories. In particu-
lar, POMO [22] exploits problem symmetries and samples solutions
from every possible starting node for a single instance, thereby sig-
nificantly diversifying the solutions found. POMO and similar RL-
methods perform remarkably well on training distributions of up to
100 nodes in routing problems. However, they do not scale well to
larger instance sizes. The recent methods BQ [8] and LEHD [24] at-
tribute the poor generalization to the light decoder structure of the
used Attention Model [17]. In contrast, they propose significantly
increasing the decoder size (e.g., up to nine transformer blocks in
BQ). Drakulic et al. [8] and Luo et al. [24] train their models with
SL on expert solutions to instances with only 100 nodes for routing
problems and achieve state-of-the-art results when generalizing up to
1,000 nodes. However, the size of the architecture makes it challeng-
ing to train with policy gradient methods.

Self-improved learning To overcome the difficulties associated
with RL and SL for NCO, recent studies propose a "self-improving"
training paradigm. The central concept during training is to use the
current policy and generate solutions (i.e., sequences) to random in-
stances, which are then used as pseudo-labels to train the network
with SL in a next-token prediction setup. In the appendix of their
LEHD paper, Luo et al. [24] describe a self-improvement method
where the model is pre-trained with RL on small routing problems to
be computationally feasible. The resulting model is used to generate
solutions to a set of randomly generated larger problem instances.
Exploiting problem symmetries, the solutions are further improved
by re-unrolling the policy along random subtours. The policy is then
trained to imitate the resulting set of solutions. With impressive re-
sults, Luo et al. [25] further develop this approach for up to 100,000
nodes. However, the method is limited to routing problems where
an optimal solution of a complete tour guarantees the optimality of
any subtour. Corsini et al. [6] propose a "self-labeling" strategy for
the JSSP. They utilize vanilla Monte Carlo i.i.d. sampling with the
current model during training to obtain increasingly optimal solu-
tions for the model to imitate. Pirnay and Grimm [30] employ a sim-
ilar training strategy. They improve the sampling process by sam-
pling solutions WOR over multiple rounds, with each round guiding
the policy towards sequences that perform better than expected. This
method is close to ours in the spirit of diversifying sequences by sam-
pling WOR in multiple steps. However, their method requires scaling
the advantages with problem- and training-dependent hyperparame-
ters, which can be complex to tune.

Sequence decoding There is a plethora of search methods at in-
ference time to improve on the greedy output of a sequence model
besides pure sampling or beam search, e.g. [3, 13, 5, 11]. Related
to our approach is Simulation-guided Beam Search [5], which per-
forms beam search in an MCTS way by coupling the pruning step
in beam search with greedy rollouts. However, due to its purely ex-
ploitative nature, it is an unsuitable choice for sequence decoding in
the context of SIL. In general, AlphaZero-type algorithms [34] share
similarities with SIL. However, running multiple simulations in the
MCTS for a single action choice is time-consuming and non-trivial
to parallelize. Concerning sampling, considering a diverse set of so-
lutions can significantly improve training [22, 15]. A prominent way
of diversification is sampling WOR [19, 33, 26]. In this work, we use
SBS [19], as it can be parallelized in a manner analogous to regular
beam search.

3 Preliminaries

3.1 Problem formulation

We consider a CO problem with n discrete decision variables. A so-
lution to a problem instance is given by a tuple (a1, . . . , an), rep-
resenting the n variable assignments (we assume a given numer-
ical order). Let S be the space of all possible solutions ā1:n :=
(a1, . . . , an). The goal is to find a solution that maximizes a pre-
defined objective function f : S → R∪ {−∞}. Here, f maps infea-
sible solutions to −∞.

The constructive approach formulates the problem autoregres-
sively, where a value is chosen for a1, then for a2 given a1, and
so on, until a full solution ā1:n is created. The policy network πθ to
guide these incremental choices is a sequence model with parame-
ters θ. For a partial solution ā1:d = (a1, . . . , ad), with d < n, the
policy πθ computes the conditional distribution πθ(ad+1|ā1:d) over
the choices ad+1 for the (d+ 1)th decision variable. In particular, to
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obtain a complete solution from the policy, we begin with an empty
tuple ā1:0 := () and autoregressively decode ad ∼ πθ(·|ā1:d−1). For
a (partial) solution ā1:d = (a1, . . . , ad) with d ≤ n, we denote by
πθ(ā1:d) the total probability πθ(ā1:d) =

∏d
i=1 πθ(ai|ā1:i−1).

To simplify the notation, we do not use explicit labels to distin-
guish problem instances. However, it will always be transparent in
context to which instance a solution is to be assigned. We assume
a constant problem length n for simplicity, but our method applies
equally to varying sequence lengths.

3.2 Self-improved training cycle

current best policy

decode solutions

random instances

, , , , ...
pairs of (partial tour, next edge)

pseudo-labels
training dataset

train policy to predict next edge

Figure 1. Overview of self-improved training with TSP as an illustrative
example. A partial solution corresponds to a partial (unfinished) tour. The

next sequence element for the model to predict is the next edge to be
appended to the partial tour.

The model πθ is trained using the following simple SIL strategy,
which we generalize from [6, 30, 25]. We present an illustration of
the training cycle in Figure 3.2. We randomly initialize parameters θ
and keep best parameters θ′. Initially, we set θ′ ← θ. We repeat the
following steps for each training epoch:

(1) Generate a set of random problem instances. For each instance,
we use πθ′ to decode multiple solutions in some way, and keep
the best solution found, according to the objective function f . The
random instances and their best solutions found (used as pseudo-
labels) build the training set for this epoch.

(2) Train πθ on the generated data to predict the next sequence ele-
ment from a partial solution with a cross-entropy loss: For a batch
of size B with solutions āj

1:n = (aj
1, . . . , a

j
n) for j ∈ {1, . . . , B},

we uniformly sample a partial solution āj
1:dj

for each j and
dj < n. The loss to be minimized is then given by

Lθ = − 1

B

B∑
j=1

log πθ

(
aj
dj+1|āj

1:dj

)
. (1)

(3) At the end of the epoch, evaluate πθ and πθ′ greedily on a fixed
validation set. If πθ outperforms πθ′ , update the best parameters
θ′ ← θ.

In (1), for many problems, it is desirable to generate thousands of
instances in each epoch (for comparison, the models in BQ [8] and
LEHD [24] are trained with SL on 1M random instances and their
optimal solutions). Consequently, the efficiency of the SIL strategy
is strongly determined by the method used to decode the sequence
model.

4 Method

This section presents our main contribution, a sequence decoding
method for efficient SIL. We also briefly recall SBS [19], which
forms the backbone of our method. In the following, we omit the
parameters θ in the subscript of πθ .

4.1 Sequence decoding as tree traversal

As common for neural sequence models, we can view decoding
π for a problem instance as traversing a search tree from root to
leaf. The root node corresponds to an empty sequence. A node
in the tree at depth d corresponds uniquely to a partial solution
ā1:d = (a1, . . . , ad), and the direct children of this node repre-
sent the possible assignments to the (d + 1)th decision variable. To
be explicit, let Ch(ā1:d) be the set of direct children of ā1:d, then
any b̄1:d+1 = (b1, . . . , bd+1) ∈ Ch(ā1:d) satisfies bi = ai for
1 ≤ i ≤ d. Thus, a leaf node corresponds uniquely to a complete
solution.

Before explaining how we search the tree, we briefly describe
how to maintain the tree. When decoding the model for an instance,
we create a search tree in memory and expand nodes as needed.
When expanding a node ā1:d, we query the model π(·|ā1:d) for the
transition probabilities of its children. As described later, the tran-
sition probabilities will be modified during the search. Hence, for
each node ā1:d, we additionally keep an unnormalized total proba-
bility p(ā1:d) which is set to the total probability π(ā1:d) when the
node is created. For a node ā1:d with parent ā1:d−1, we denote by
π̃(ad|ā1:d−1) the normalized transition probability

π̃(ad|ā1:d−1) =
p(ā1:d)∑

b̄1:d∈Ch(ā1:d−1)
p(b̄1:d)

. (2)

4.2 Stochastic Beam Search

Ranking nodes by their total log-probability, a beam search of some
beam width k ∈ N is a standard decoding method to obtain a set of
k unique high-probability sequences from the sequence model π. In
beam search, all nodes within the current beam can be evaluated by
π in parallel, which aligns well with the effectiveness of GPUs on
batches. Besides being classically a deterministic inference method,
the k sequences found with beam search often lack diversity. Kool
et al. [19] present SBS, an elegant modification of beam search to
sample k sequences without replacement (WOR) from the sequence
model π. The main idea is to perform regular beam search but perturb
the total log-probability log π(ā1:d) by adding noise sampled from a
standard Gumbel distribution. The Gumbel noise is sampled under
the condition that the maximum perturbed log-probability of sibling
nodes is equal to their parent’s. This persists a node’s perturbation
down its subtree.

The authors show that by sampling WOR from the distribution of
complete sequences, SBS can obtain a set of sequences with high
diversity. As it only changes the scoring of nodes, SBS can be imple-
mented and, importantly, parallelized as a regular deterministic beam
search.

4.3 Take a step and reconsider

We can now introduce our proposed decoding method. We summa-
rize the method in Algorithm 1, illustrate it in Figure 2, and give a
brief walkthrough below.
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a.) b.) c.)

best best best return

Figure 2. Example of sequence decoding with beam width k = 3 and step size s = 2. a.) We sample k leaves WOR (indicated in red) from the root node
(dashed outline), creating nodes on demand. We follow the trajectory of the best solution for s steps (indicated in blue). b.) We shift the root node s, disregard

the rest of the tree and remove the probability mass of sampled leaves (grayed out) from their ancestors. We sample k unseen alternatives from the new root and
find a better solution. We follow the new solution for s steps. c.) After shifting the root again, only one leaf is left to sample, which does not improve the

current best solution.

Algorithm 1: Sequence decoding for SIL in NCO
Input: k ∈ N: beam width; s ∈ N: step size
Input: π: policy, f : objective function for problem instance

1 ROOT ← () � root node
2 t← 0 � step count
3 b̄1:n ← NULL � best solution
4 while t < n do

5 L = {ā1
1:n, . . . , ā

k
1:n} ← SBS with π̃ (see Eq. (2)) and

beam width k from ROOT

6 b̄1:n ← argmaxā1:n∈L∪{b̄1:n} f(ā1:n)

7 t← min{t+ s, n}
8 foreach ā1:n = (a1, . . . , an) ∈ L do

9 if ā1:t = b̄1:t then

10 for i = t, . . . , n do

11 p(ā1:i)← p(ā1:i)− π(ā1:n) � mark ā1:n

as sampled in ancestor nodes

12 ROOT ← b̄1:t

13 return b̄1:n

Algorithm We require the choice of two hyperparameters: a beam
width k ∈ N and a step size s ∈ N with s ≤ n. Given a prob-
lem instance, we start with an empty tree and sample a set L of k
leaves L = {ā1

1:n, . . . , ā
k
1:n}WOR using SBS with policy π̃ (which

equals π at the beginning). We take the best trajectory b̄1:n sampled
according to the objective function f . We check for every sampled
sequence āj

1:n ∈ L if it shares its first s steps with b̄1:n, i.e., if
(aj

1, . . . , a
j
s) = (b1, . . . , bs). If so, we mark it as sampled by re-

moving the leaf’s probability π(āj
1:n) from its i-th ancestor’s unnor-

malized probability mass p(āj
1:i), where 1 ≤ i ≤ n.

Now we follow b̄1:n for s steps and set b̄1:s as the new root of the
tree. We repeat the process above from the new root, noting that we
use SBS with the updated sequence model π̃ (cf. (2)) from which
already seen sequences can no longer be sampled. We update the
currently best sequence b̄1:n if the newly sampled k solutions contain
a better one. Again, we mark the found sequences as sampled, follow
the best solution for another s steps, and so on until we have traversed
the entire tree.

Note that for numerical stability, we work with log-probabilities in

practice.

Exploring unseen alternatives The critical thing to note is that by
removing the probability mass of a leaf node from all its ancestors,
sampling from the updated policy π̃ for SBS becomes equivalent to
sampling WOR from π under the condition that already encountered
sequences can not be sampled again. This strategy was originally
proposed by [20, 33] to sample sequences WOR incrementally. By
taking only a limited number of steps s from the best solution found
and sampling again, the model is forced to consider only unseen al-
ternatives. Furthermore, the length of the sequences to sample gradu-
ally shrinks. This is beneficial when refining the best solution further
down in the tree, as sampling WOR is much more potent (compared
to sampling with replacement) on shorter sequences [33, 18, 30].

Simplicity One of the advantages of SIL approaches lies in the
simplicity of its training cycle (see Section 3.2), as it can foster repro-
ducibility and adaption of the method. We aim to devise the sequence
decoding - the heart of SIL - in the same spirit. The interpretation of
the two hyperparameters is intuitive: k is the number of sequences to
consider before temporarily committing to a solution (’the more, the
better’), and s is how long to commit to a solution before exploring
alternatives (’the shorter, the better’). Furthermore, k and s can be
easily adjusted to available computational resources (or as training
progresses), where s = 1 leads to an MCTS-like search, and s = n
reduces to simple SBS with width k.

For inference We couple the sequence decoding with Top-p (nu-
cleus) sampling [11] to use it as an inferencing method for a trained
policy. Here, the unreliable tail of the distribution is trimmed from
π̃ in each expansion step of SBS. We evaluate its effectiveness in
Section 5.

5 Experiments

We evaluate the efficiency of our sequence decoding method within
the SIL framework (cf. Section 3.2) on the Euclidean TSP and CVRP
and the standard JSSP.

Code Our code in PyTorch and models are available at https://
github.com/grimmlab/step-and-reconsider. We perform training and
evaluation using four NVIDIA GeForce RTX 3090 with 24GB RAM.
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5.1 Routing problems

Traveling Salesman Problem A problem instance of the two-
dimensional Euclidean TSP in the unit square is given by the coordi-
nates of N nodes x1, . . . , xN ∈ [0, 1]2 ⊆ R

2. The goal is to find a
roundtrip that minimizes the total tour length, where the distance be-
tween two nodes xi, xj is given by the Euclidean norm ‖xi−xj‖2. A
complete tour is constructed sequentially by choosing one unvisited
node after another (see Figure 1).

Capacitated Vehicle Routing Problem In the CVRP, a delivery
vehicle of capacity D ∈ R>0 needs to visit N customer nodes
x1, . . . , xN ∈ [0, 1]2 ⊆ R

2. Each customer xi has a demand
δi ∈ R>0, which must be fulfilled by the vehicle. A feasible so-
lution is given by a set of subtours which all start and end at a given
depot node, where all customers are visited, and the sum of customer
demands satisfied by each subtour does not exceed the capacity D.
The aim is to find a feasible solution with minimal total tour length.
Following the standard constructive formulation [17, 8, 24], visiting
the depot is not seen as a separate step: a complete tour is constructed
by deciding for each unvisited customer node whether it is reached
via the depot or directly from the previous customer. This ensures so-
lution alignment, as the length of two feasible solutions is the same,
even if they contain a different number of subtours. Our problem
setup is identical, so we refer to [24] for details.

Data generation and optimal solutions We consider TSP and
CVRP instances of size N ∈ {100, 200, 500}. We generate random
problem instances in the standard way by sampling node coordinates
uniformly from the unit square. Additionally, for the CVRP, demands
are sampled uniformly from {1, . . . , 9}. The capacity of the delivery
vehicle is set to 50, 80, and 100 for a corresponding number of nodes
100, 200, and 500. For both problems, we train only on instances
of size N = 100 and test generalization on the larger sizes. For
comparison with SL, we generate a random training dataset of one
million instances and a validation set of 10k instances. The test set
consists of 10k instances for N = 100 (same set used in [17] for the
TSP and [24] for the CVRP) and 128 instances for N ∈ {200, 500}
(same sets used in [8] for the TSP and [24] for the CVRP). For the
TSP, we obtain optimal solutions from the Concorde solver [1] to use
as labels in SL and compute optimality gaps. For the CVRP, (near)
optimal solutions are obtained from HGS [37].

Policy network architecture We evaluate our approach using two
recent state-of-the-art architectures for routing problems: the BQ ar-
chitecture by Drakulic et al. [8] and the LEHD architecture by Luo
et al. [24]. Both architectures are based on the Transformer [36] with
a heavy decoder structure. In the original works, the models obtain
strong generalization results but are trained with SL on expert data as
the large architectures are unsuitable for training with RL. For CVRP
with BQ, we stick to the original setup of nine transformer blocks
with 12 attention heads and a latent dimension of 192. For TSP with
BQ, the number of layers is the same, but with eight attention heads
and a latent dimension of 128. For CVRP and TSP with LEHD, we
use six transformer blocks in the decoder with eight heads and a la-
tent dimension of 128. Similar to BQ, we use ReZero normalization
[2] also for LEHD, as we found the training to be more stable (com-
pared to no normalization as suggested in the original paper). For
BQ and LEHD, the hidden dimension of the feedforward network in
a transformer block is set to 512.

Training For the SIL training, we decode in each epoch solu-
tions in parallel to 1,000 random instances. We use a beam width
of k = 64 and step size s = 10. Generating the solutions takes

about 2 minutes on our setup. Using the generated best solutions as
pseudo-labels, we train the model on 1,000 batches of 1,024 uni-
formly sampled subtours as in [8]. We apply the same training struc-
ture to LEHD. We use the Adam [16] optimizer with an initial learn-
ing rate of 2e-4, clipping gradients to unit norm. To evaluate the
improvement of the model, we test the policy on the pre-generated
validation set after each epoch. We train the policy until we see no
improvement on the validation set for 50 epochs. The setup is the
same for both routing problems. However, we found the generaliza-
tion performance for the CVRP to improve noticeably when, after the
regular training, finetuning the model on solutions where the policy
was heavily exploited. To this end, we decode another 30k solutions
with k = 256 and s = 1 and Top-p sampling with p = 0.8 and
continue to train the model for another 100 epochs. For comparison
with SL, we use the same training setup but sample batches from the
pre-generated training set of 1M instances.

In total, this amounts to training the BQ model with SIL for ∼3k
epochs on the TSP (∼4.5k with SL) and ∼3k epochs on the CVRP
(∼1.5k with SL). The LEHD model converges faster. With SIL, it is
trained for ∼2k epochs on the TSP (∼2k with SL) and ∼1k epochs
on the CVRP (∼1k with SL).

Baselines The primary baselines are given by SL with the cor-
responding identical BQ or LEHD architecture. Furthermore, we
include four common constructive NCO baselines, namely (a) the
widely used Attention Model (AM) with a beam search of width
1,024 [17], (b) its multi-decoder counterpart (MDAM) [41] with
beam search of width 50, (c) POMO [22], the state-of-the-art con-
structive method on the training distribution, with their most po-
tent inference technique, and (d) Simulation-guided Beam Search
(SGBS) [5] with POMO backbone and parameters (β, γ) set to
(10, 10) for TSP and (4, 4) for CVRP. As comparison partners for
SIL methods, we list the results (TSP only) of (e) LEHD pre-trained
with RL on small-scale instances and finetuned with SIL (LEHD
RL+SIL) as reported in [24], and (f) the Gumbeldore (GD) train-
ing strategy (GD SIL (BQ resp. LEHD)) [30], where the sampling
process is pushed toward regions with higher advantage.

Results We summarize the results in Table 1 and group them by the
used architectures. Bold indicates the best optimality gap per group.
Results for LEHD RL+SIL and GD SIL are taken from the original
papers [24, 30]. On the TSP, we obtain excellent greedy results that
even outperform the SL counterpart on the training distribution of
N = 100, with similarly strong generalization capabilities. In par-
ticular, we outperform GD SIL, which has a more complex decoding
strategy. The same dynamic can be observed on the CVRP with BQ,
with worse but still strong generalization results. Our SIL method
with LEHD is close to, but does not fully reach, the SL results for
CVRP. We note a general gap of about 1% between the LEHD SL
results for CVRP in the original paper [24] and our reproduced re-
sults, which we attribute to the slightly different training method we
aligned with BQ. At the bottom, we group the non-greedy results of
our trained BQ model using beam search and our sequence decoding
method as an inference technique (coupled with Top-p sampling).

5.2 Job Shop Scheduling Problem

Problem setup The standard JSSP of size J ×M is a CO problem
with J jobs, each consisting of M operations with given processing
times. Each job operation must run on exactly one of M machines
(precedence constraint), which are assigned to the operations bijec-
tively. A machine can only process one operation at a time. The op-

J. Pirnay and D.G. Grimm / Take a Step and Reconsider: Sequence Decoding for Self-Improved Neural Combinatorial Optimization 1931



Table 1. Results for TSP and CVRP. ’bs’ means beam search with a given width. The last two rows result from applying our proposed decoding method with
Top-p sampling (p = 0.95 for TSP and 0.8 for CVRP). LEHD RL+SIL and GD SIL (LEHD) only report results on the TSP. Gaps are obtained with respect to

Concorde [1] for TSP and HGS [37] for CVRP. Reported times are the duration of solving all instances.

Method Test (10k inst.) Generalization (128 inst.) Test (10k inst.) Generalization (128 inst.)

TSP N = 100 TSP N = 200 TSP N = 500 CVRP N = 100 CVRP N = 200 CVRP N = 500
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

AM, bs1024 [17] 2.49% 5m 6.18% 15s 17.98% 2m 4.20% 10m 8.18% 24s 18.01% 3m
POMO, augx8 [22] 0.14% 15s 1.57% 2s 20.18% 16s 0.69% 25s 4.87% 3s 19.90% 24s
SGBS [5] 0.06% 4m 0.67% 14s 11.42% 5m 0.08% 7m 2.58% 20s 15.34% 6m
MDAM, bs50 [41] 0.40% 20m 2.04% 3m 9.88% 11m 2.21% 25m 4.30% 3m 10.50% 12m

BQ SL, greedy [8] 0.40% 30s 0.60% 3s 0.98% 16s 3.03% 50s 2.63% 4s 3.75% 22s
GD SIL (BQ), greedy [30] 0.41% 30s 0.64% 3s 1.12% 16s 3.26% 50s 3.05% 4s 3.89% 22s
Ours (BQ), greedy 0.37% 30s 0.60% 3s 1.10% 16s 2.96% 50s 3.27% 4s 5.77% 22s

LEHD SL, greedy [24] 0.58% 25s 0.95% 2s 1.72% 11s 4.26% 40s 3.77% 6s 4.36% 12s
LEHD RL+SIL, greedy [24] 1.07% 25s 1.45% 2s 2.58% 11s - - - - - -
GD SIL (LEHD), greedy [30] 0.40% 25s 0.72% 2s 1.43% 11s - - - - - -
Ours (LEHD), greedy 0.39% 25s 0.66% 2s 1.40% 11s 5.08% 40s 4.60% 6s 5.51% 12s

Ours (BQ), bs64 0.004% 7m 0.04% 45s 0.33% 3m 1.07% 10m 1.48% 50s 3.40% 3m
Ours (BQ), k = 64, s = 25 0.003% 10m 0.04% 70s 0.22% 12m 0.42% 25m 0.62% 2m 2.69% 20m
Ours (BQ), k = 128, s = 10 0.0009% 35m 0.02% 4m 0.18% 50m 0.14% 50m 0.27% 6m 2.19% 50m

erations of a job must run in order. The objective is to find a feasible
schedule that processes all operations of all jobs and has a minimum
makespan. We follow the constructive formulation [6, 30] where an
unfinished job is chosen of which to schedule the next ready oper-
ation at each iterative step. In particular, a feasible solution can be
represented by a (not necessarily unique) sequence of jobs.

Data Random instances are generated in the standard way by uni-
formly sampling integer processing times from [1, 99] and randomly
permuting the M machines to determine the machine order for a
job’s operations. We generate a random validation set of 100 in-
stances of size 20×20. We perform testing on the widely used bench-
mark dataset by Taillard [35].

Policy network architecture We use the recent architecture by
Pirnay and Grimm [30], where the operations attend to each other
through stacked transformer blocks, switching between different
masking schemes. We refer to the appendix of [30] for a detailed
architecture description. We use the same setup with six transformer
blocks with eight heads and a hidden dimension of 256 in the feed-
forward network. We note that the downside of the transformer-based
architecture is its quadratic complexity with respect to the total num-
ber of operations.

Training We follow the training scheme of [30]. We train the
model with SIL for 450 epochs. In each epoch, we decode solu-
tions to 512 instances of size randomly chosen from {15× 10, 15×
15, 15 × 20}. We use a beam width of k = 64 and a step size of
s = 50. For the largest size 15 × 20, this takes about 5 minutes. As
for the routing problems, we set the initial learning rate of the Adam
optimizer to 2e-4, clipping gradients to unit norm. In each epoch,
we train the model on 1,000 batches consisting of 512 subschedules
each.

Baselines We compare our method to (a) L2D [42] and (b) Sched-
uleNet [29], two constructive RL approaches using graph neural net-
works, (c) L2S [43], a recent impressive deep RL guided improve-
ment heuristic with 500 and 5000 improvement steps, (d) SPN [6],
a SIL approach which samples sequences with replacement during
training, and (e) GD [30], a SIL approach which shares the same
network architecture with our model.

Results We summarize the results in Table 2. Our greedy results
outperform the baseline greedy results and L2S with 500 steps (com-
parable runtime) by a wide margin. Notably, we achieve an improve-
ment of > 4% on 30 × 20 compared to GD, which uses the same
network architecture and already outperforms the other methods. We
can further shrink the optimality gap by using our decoding approach
as an inference technique (with Top-p sampling with p = 0.9). Be-
cause a solution to a JSSP instance of size J × M is a sequence
of length J ·M , the results showcase the strength of our sequence
decoding method, especially in tasks with a longer planning horizon.

5.3 Sampling comparison

Our decoding method relies on SBS to sample sequences WOR,
which is already an established method to diversify the model out-
put and enhance exploration. SBS is also the basis for the sampling
method in GD [30]. Therefore, we compare the quality of the best
solution obtained when decoding the policy with our method and
sampling sequences WOR (with SBS) and GD. For each considered
problem class TSP, CVRP, and JSSP, we take a checkpoint from the
middle of the training process when the policy still has room for im-
provement and exploration is advantageous. We then decode solu-
tions with beam width k and step size s using our method, and also
with SBS and GD using the same computational budget. To ensure
that we allow SBS and GD at least the same computational budget,
we count the number of times we transition from a node in the search
tree to a child node. One can show that when l is the length of a com-
plete solution, our decoding method with parameters k and s takes
g(k, s) node transitions with

g(k, s) = k ·
(
tl − st2 − st

2

)
, where t =

⌈
l

s

⌉
. (3)

Sampling k sequences WOR with SBS takes k · l node transitions. In
particular, we allow k · �h(s)� transitions for SBS and GD, where

h(s) =
g(k, s)

kl
=

2tl − st2 + st

2l
. (4)

For example, for l = 100, k = 64 and s = 10, we have h(s) = 5.5,
so we grant SBS to sample 6k = 384 sequences from the root. The
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Table 2. JSSP results on the Taillard [35] dataset. Optimal gaps are computed with respect to the best solutions found in the literature by [29, 43, 6, 30].
Results in the bottom row are obtained by applying our proposed decoding method with Top-p sampling, with p = 0.9

.

15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20
Method Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

L2D, greedy [42] 26.0% 0s 30.0% 0s 31.6% 1s 33.0% 1s 33.6% 2s 22.4% 2s 26.5% 4s 13.6% 25s
ScheduleNet, greedy [29] 15.3% 3s 19.4% 6s 17.2% 11s 19.1% 15s 23.7% 25s 13.9% 50s 13.5% 1.6m 6.7% 7m
L2S, 500 steps [43] 9.3% 9s 11.6% 10s 12.4% 11s 14.7% 12s 17.5% 14s 11.0% 16s 13.0% 23s 7.9% 50s
SPN SIL, greedy [6] 13.8% 0s 15.0% 0s 15.2% 0s 17.1% 0s 18.5% 1s 10.1% 1s 11.6% 1s 5.9% 2s
GD SIL, greedy [30] 9.6% 1s 9.9% 1s 11.1% 1s 9.5% 1s 13.8% 2s 2.7% 2s 6.7% 3s 1.7% 28s
Ours, greedy 7.7% 1s 8.5% 1s 8.7% 1s 8.4% 1s 9.6% 2s 2.2% 2s 4.9% 3s 1.0% 28s

L2S, 5000 steps [43] 6.2% 1.5m 8.3% 1.7m 9.0% 2m 9.0% 2m 12.6% 2.4m 4.6% 2.8m 6.5% 3.8m 3.0% 8.4m
Ours, k = 64, s = 50 3.0% 10s 4.1% 25s 4.1% 1m 3.9% 90s 6.2% 5m 0.4% 10m 1.7% 30m 0.1% 5h

Figure 3. Decoding the policy with our sequence decoding method (’Ours’) compared to sampling sequences without replacement with SBS (’Sample
WOR’) and to the sampling method GD [30]. The number of sequences sampled WOR and with GD are given as multiples of the beam width k to ensure

alignment of the computational effort. Points with same marker mean same compute budget. For the routing problems, we average optimality gaps across 100
instances. For the JSSP, the corresponding Taillard benchmark set is used. Sampling for each data point is repeated ten times; shades denote standard errors.

same applies to GD, where we sample for �h(s)� rounds with beam
width k, using the constants for scaling the advantages in between
rounds as reported in [30] (without nucleus sampling).

We show the decoding results in Figure 3. We observe only a small
improvement over sampling WOR and GD for the TSP model, as the
policy is already confident (< 2% optimality gap for k = 4). For
the CVRP and the JSSP model, we see a significant improvement
of about 1-2% over sampling WOR, showing that our method can
consistently take advantage of the search budget.

6 Conclusion

The SIL paradigm, where the neural policy iteratively learns from
its own decoded predictions, offers a promising path for NCO to
overcome the training complexities and generalization challenges
associated with RL methods. However, it requires the construction
of a multitude of ever-improving solutions for a substantial num-

ber of problem instances during training. Despite this need, there
needs to be more guidance apart from standard sequence decoding
techniques from natural language processing on how to effectively
build these solutions principled and exploratively. In this paper, we
have proposed a novel sequence decoding technique for constructive
NCO that is strikingly simple, does not rely on problem specifics,
and works particularly well for longer planning horizons. We have
achieved this by following a sampled, seemingly good solution for
a limited number of steps and, importantly, replanning it by con-
sidering previously unseen alternatives. We have demonstrated our
method on three prominent CO problems, showing comparable per-
formance to training directly on expert solutions and the ability to
surpass existing SIL methods. Notably, we have achieved new state-
of-the-art results for NCO on the prominent JSSP Taillard bench-
mark. Due to its flexibility, our method can in principle also be used
in other problem-specific SIL approaches, such as [25].
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