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Abstract. Clustering is a widely used unsupervised learning tool
with applications in numerous real-world problems. Traditional clus-
tering methods can result in highly skewed clusters where one cluster
is notably larger than others, rendering them unsuitable for scenar-
ios such as logistics and routing. In response, capacitated clustering
approaches have emerged over the past decade. These approaches
limit the number of data points each cluster can accommodate, thus
resulting in more uniform cluster formations. In an online version
of capacitated clustering, the algorithm must make an irrevocable
decision for each incoming data point, determining whether to estab-
lish it as a new center or allocate it to existing centers. The goal is
to minimize the count of opened centers while adhering to capacity
constraints and achieving a satisfactory approximation of the cluster-
ing cost compared to the optimal solution. Although exploring online
capacitated clustering remains uncharted, we are the first to propose a
probabilistic Capacitated Online Clustering Algorithm (called COCA) for
h-dimensional euclidean spaces. We theoretically bound the number
of centers opened and provide constant cost approximation guaran-
tees. Additionally, we conduct rigorous experiments to validate the
computational efficacy of the proposed approaches.
Keywords: Unsupervised Learning, Capacitated Clustering, Online
Algorithm, Doubling Trick, Coupon Collector Problem

1 Introduction

Clustering is a widely used tool in data mining and finds practical
application in many real-world scenarios, including, but not limited
to, automatic resume screening, detecting fraudulent claims, and tar-
geted advertisements [45]. The past decade has witnessed various
notable clustering methods such as k-means, k-medoid, k-median,
and k-center [36, 30]. The fundamental principle that underlies these
methods is partitioning the data points into k distinct groups (called
clusters) such that data points within the same cluster are more similar
than others. The similarity measurement involves different distance
metrics, with each cluster represented by a center. The objective of
cluster formation varies across these methods; for example, k-means
seeks to minimize the sum of square distances (�2 norm) between the
data points and their respective centers 1. In contrast, k-median and
k-center minimize the sum of absolute distances (�1 norm) and the
maximum distance within a cluster, respectively [22].

However, these traditional methods do not impose restrictions on
the sizes of the clusters, leading to clusters with arbitrary sizes. This
lack of constraint can result in highly skewed clusters, where one
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cluster is significantly larger than the others with small sizes, thus
hampering their applicability to real-world problems. For example, in
logistics distribution (stores/garbage) or workforce team formulation,
capacity constraints are defined by the number of customers (or em-
ployees) an individual salesperson (or manager) can serve. This poses
management and productivity challenges [43, 23, 42]. To address the
need for more uniform cluster sizes, researchers have delved into
clustering with size constraints i.e., ‘capacitated clustering’ [15].

The capacitated clustering algorithms can be categorized based on
data access and applications, dividing them into offline, streaming,
and online environments. In the offline environment, all the data
points are known in advance and are available in memory. This model
provides the most flexibility in terms of data availability and finds
application in fields such as group team formations, student project
teams, facility location, and employee allocation [12, 46]. However,
the scalability of these offline solutions is constrained by the size of
the main memory. In contrast, streaming environments divide data
into chunks that can easily fit into the memory. The performance of
such algorithms is compared based on the number of passes performed
over the complete data points [37]. Existing state-of-the-art (SOTA)
approaches in capacitated streaming are reviewed in [49, 47].

A more stringent variation of these environments is online cluster-
ing (OC), where an endless stream of data points arrives over time.
Due to limited memory, the algorithm must make an irrevocable
decision about incorporating an incoming data point into existing
clusters or opening it as a new center. Once a data point becomes
a center, it remains so forever. Similarly, any data point previously
seen cannot be chosen as the center when a new data point arrives
[11, 13, 18, 20, 35, 6]. An important aspect to note in OC pertains
to the absence of information regarding the ordering of arrival of
points in the stream. As a result, the algorithm ends up opening
more number of centers (kactual) than the desired target (ktarget),
i.e., kactual ≥ ktarget to maintain good approximation guarantees on
objective cost. In online capacitated clustering (OCC), all these con-
straints are imposed while adhering to a given capacity requirements.
Note that ktarget and k are used interchangeably for ease of reading.

To understand the need for OCC, consider the dynamic landscape
of wholesale distribution networks. In this scenario, retailers em-
ploy salespersons who navigate cities to promote products, offer
discounts, and build relationships with consumers [43]. To enhance
consumer retention, it becomes imperative to provide specialized
salespersons. Efficient market coverage is achieved by clustering
consumers (shopkeepers and direct customers) based on various fea-
tures such as product consumption, order volume, and location [43].
The resulting clusters group similar consumers together for person-
alized marketing. However, a crucial limitation arises in the form
of workload constraints, with each salesperson having a maximum
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capacity to maintain a healthy work-life balance and also offer quality
service. Furthermore, the continuous influx of new consumers in a
growing market makes handling such a vast network challenging.
Traditional offline solutions face computational hurdles in adapting
to these changes, emphasizing the need for online solutions. Our ex-
ample acknowledges that decisions made in online solutions, such
as salesperson and consumer allocations, are irrevocable. This per-
manence is vital as salespersons develop trust and liaisons with con-
sumers over time, and making changes to assignments is impractical
and potentially detrimental to established relationships.

This necessitates investigating online clustering solutions that in-
corporate capacity constraints. Given that this is a comparatively
challenging and hard problem [23], only a few works are available in
one [16, 14] and two-dimensional [17] space. These works specifically
address the k-center objective and exploit the geometrical structural
properties of one, two-dimensional spaces to devise deterministic
algorithms. However, they are not directly extendible to higher dimen-
sional spaces and alternative objective functions such as k-means or
k-median, which focus on minimizing the distance between each data
point assignment and its center. To this, we propose a probabilistic
approach that handles capacity constraints and works well for any
h-dimensional euclidean spaces similar to [35, 6] available in unca-
pacitated OC. This paper addresses the problem of minimizing the
clustering objective while satisfying the capacity constraints in an
online setting 2. The challenge arises when there is an upper limit on
the number of cluster centers that can be opened; either many data
points are assigned to a single (or a few) cluster(s), resulting in skewed
clustering and a violation of capacity constraints, or an inefficient
assignment, leading to high objective costs. Our proposed algorithm
(COCA), addresses this problem by randomized assignments. After a
certain initial number of centers are created, with probability 1− pt
each incoming data point is assigned to the closest available center
with remaining capacity (see Algorithm 2) and with probability pt is
designated as a new center. Next, we summarize our contributions.

1. With careful choice of pt, we establish an upper bound on the
number of centers opened by COCA, that matches with that of the
uncapacitated setting.

2. We provide a constant approximation guarantee for the objective
cost compared to optimal offline capacitated clustering. These guar-
antee enhances existing bounds in an uncapacitated setting [35] by a
logarithmic factor.

3. We estimate the challenging, a-priori unknown total number of
data points using the doubling trick.

4. We establish an interesting connection between our framework
and a well-known coupon collector problem to determine the initial
number of centers to be opened.

5. Empirical evaluations demonstrate the comparable performance
of COCA with existing SOTA in uncapacitated OC on variety of datasets.

Organization: Section 2 reviews the literature. Section 3 outlines
the preliminaries needed for the paper. Section 4 and 5 present the
proposed algorithms with Section 6 evaluating their efficacy experi-
mentally. Finally, Section 7 concludes with potential future directions.

2 Related Work

The existing clustering literature encompasses various methods, rang-
ing from hierarchical to centroid-based. This work focuses on centroid-
based clustering due to its computational efficiency, scalability3, and

2 With unrestricted capacity constraints, our problem reduces to the problem
of uncapacitated online clustering.

3 In terms of dataset size and dimensionality.

interpretability4. We now review various SOTA approaches to approxi-
mate the capacitated clustering problem (CCP) available in different
environments based on data access and applicability.
Offline CCP: The first attempt in offline CCP is by [41]. The authors
proposed a heuristic that modifies uncapacitated clustering by vali-
dating capacity constraints before assignment. Building on this work,
[38] extended the heuristic method. Later, [7] proposed a more effec-
tive and exact solution using cutting plane algorithms. The complete
list of offline capacitated clustering approaches is available in [24, 44].
Notably, the best approximation factor for the k-means/median ob-
jective in euclidean spaces is (1 + ε) [12] where ε > 0, and for the
k-center method, it is two [25].
Streaming CCP: An initial attempt to achieve uniform (almost equal-
sized) clustering is by [5]. The algorithm they propose requires three
passes over the data stream. Later, [21] improves the work and pro-
poses a single-pass algorithm. However, their algorithm is not directly
applicable to the online environment as it involves generating coresets
first and then obtaining the final assignment. In contrast, in the online
environment, decisions must be made as soon as the data point arrives.
Online CCP: Recent investigations into k-center problem have ex-
plored the one-dimensional case [16, 14]. In these works, each cluster
is a closed interval with no restriction on the cluster’s diameter. When-
ever a data point falls in a specific interval, that interval opens as a
cluster for future data points. The goal is to minimize the sum of the
diameter of clusters while accommodating all data points. Extending
this concept to two-dimensional space involves replacing intervals
with squares [17]. The algorithm initiates a new cluster whenever a
point falls within an unopened square-grid cell, and the goal is to
reduce the sum of the area of the opened clusters. However, the study
of k-means or k-median objective, especially in higher dimensions,
remains an open problem, a concern we tackle in this paper.
Deep and Contrastive clustering: Deep clustering methods require
model training with data before responding to online queries [28,
29, 48]. In contrast, our setting is much stricter, and mini-batches
of samples for training may not be available. Works that employ
contrastive clustering also face similar limitations [33, 34].
Other works: Recent studies have revealed that the clusters stemming
from the above algorithms may not exhibit a sufficient representa-
tion of different protected groups (say gender) within each cluster.
An attempt to tackle such demographic bias in offline CCP is by
[32]. The authors impose additional constraints using the concept
of Balance which requires each protected group value to have
approximately equal representation in every cluster [10]. Similarly,
works in student topic grouping problems devise knapsack-based re-
duction or fair coresets to achieve the maximum possible Balance.
However, note that CCP is a more generalized framework where the
goal is to constrain the total number of data points (n) that can be
assigned to each cluster (say c), which may not necessarily result in
maximally (or perfectly) balanced clusters (unless c = n/k). On the
contrary, Balance focuses on the ratio of the largest and smallest
protected groups within each cluster. Although a prior work refor-
mulates the Balance concept by utilizing linear programming to
set upper bounds on the number of points from each group [2], this
extension does not directly apply to online settings and is limited to
k-center. A few studies also examine online facility location [3, 4].
However, these works differ slightly from ours as they either focus on
assignment problems without addressing facility location or leverage
the benefits of multiple expert advice, which differs from online CCP.

4 In terms of visualization and interpretation.
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3 Preliminaries

Let X ⊆ R
h be an endless stream of data points with xt being the

point arriving at time t. Each data point xt ∈ X is articulated using
h dimensional real-valued features. We assume that these points are
embedded in metric space with d : X × X → R

+ measuring the
dissimilarity between any two data points. Then, the goal of any
centroid-based clustering algorithm is to partition data points into
clustering C = (C, φ). The clustering produces k disjoint subsets
([k] = {1, . . . , k}) with centers C = {cj}kj=1 using an assignment
function φ : X → C that maps each point to corresponding cluster
center. A vanilla algorithm produces a clustering which minimizes
the following cost:

Definition 1 (Objective Cost). For metric space (X, d(·)) with p-

norm, the cost is defined as W =
(∑

xt∈X d(xt, φ(xt))
p
) 1

p .

Different values of norm p leads to different objective functions,
such as, p = 1 for k-median, p = 2 for k-means, and p = ∞ for
k-center. Also, let W ∗, φ∗ represent the optimal (offline/online) objec-
tive cost and the optimal assignment function, respectively. We now
define the capacity constraint mapping γ : C → [0, 1], representing
the capacity on fraction of points each cluster accommodates. We
consider the following assumptions on capacity constraints:

• Capacities are same across all clusters i.e., γ(cj) = γ, ∀j ∈
[k]. This ensures equal treatment among clusters, avoiding any
favouritism. Furthermore, in the online setting, imposing capacity
constraints at the cluster level is infeasible due to the dynamic
nature of the number of opened centers.

• With n as the total data points that the algorithm eventually sees, we
adopt an assumption that γ is a multiple of n/k, i.e., γ = αn

k
. Here

α indicates the permissible degree of skewness among clusters and
belongs to [1, k]. When α = 1, it results in perfect uniform cluster
sizes, while α = k indicates an uncapacitated clustering problem.

We now provide a brief overview of the uncapacitated OC methods
[35, 6]. We begin with the initial work, as described by [35]. The fully
online algorithm initiates by selecting the first (k + 1) data points as
the initial set of centers to estimate the lower bound on objective cost
(w∗). The heuristic is based on the idea that clustering (k + 1) data
points should put at least two points together. Subsequently, for the re-
maining data points, the algorithm determines whether to assign each
point to the nearest center or if the data point’s distance incurs a high
assignment cost d(xt, c). This assessment is quantified using a prob-
ability that depends on the ratio of the assignment cost to the center
opening cost (fr). To prevent excessive points from being opened as
centers, value of fr for round r doubles when the center count exceeds
a predefined threshold. While [6] improves this method, the algorithm
now makes delayed decisions. This implies that if the current data
point needs to be opened as a center, it is not opened immediately but
deferred to a later time. Although this delayed approach contributes
to improved objective cost approximation by a logarithmic factor, the
current focus of the study is on immediate assignment or opening
of data points, as necessitated by the need in the running example
in Section 1, i.e., each new consumer must be promptly assigned to
a salesperson to ensure the seamless operation of the business and
timely product deliveries. A delayed response from the wholesaler
could result in a shift to alternate avenues. Consequently, we build
upon the algorithm presented in [35] by extending it to capacitated
clustering. Our approach introduces several modifications that result
in substantial enhancements over the conventional online clustering
problem (and subsequently to online CCP).

• Through experimental observation, we have noted that an initial
selection of (k + 1) data points for estimation of lower bound on
optimal cost can potentially result in a higher likelihood of opening
more centers in future. It is primarily due to bad cost estimation that
the algorithm relies on. Instead, we propose a selection criterion
based on the non-uniform coupon collector problem.

• In [35], algorithm estimates the total data points using the cur-
rent point count observed, achieving O(logn) cost approximation.
Our approach improves this by updating the estimation with the
doubling trick, providing improved constant cost approximation.

We now formally restate non-uniform coupon collector problem

with replacement [19]:

Claim 1. Given � distinct coupon types, the expected num-
ber of coupons required to obtain at least one coupon from
each type is denoted as H�, and it is calculated as follows:
H�=

∑�
a=1(−1)a−1 ∑

1≤j1,...,ja≤k
1

p(j1)+...+p(ja)
where p(i) is

the probability of obtaining a coupon of type i.

We aim to determine the expected number of data points be opened
as a center to ensure representation from each center in the optimal
capacitated clustering. As this will result in a better approximation
of w∗, which the fully online algorithm will require. To achieve
this, we employ a non-uniform coupon collector problem as follows:
consider coupons to be the data points and each coupon type to be
the centers in the offline optimal clustering (i.e., � = k in our case).
However, the main challenge lies in computing the probabilities p(i),
representing the probability of a data point belonging to cluster i.
When the capacities are uniform, i.e. n/k with α = 1 and data points
are coming uniform at random from any cluster, it becomes evident
that we obtain p(i) = 1/k ∀i ∈ [k] thus leading to Hk = k log k.
Further, since p(i)′s are not known to us, we restrict the value of
Hk to be k log k, and therefore, the total number of centers opened
by COCA remains of the same order as that of by [35]. It must be
noted that, in order to satisfy Claim 1, however, Hk may reach the
value of n (when differences in p(i)’s are arbitrarily high), which is
again consistent with the literature as shown by [40] that even with
knowledge of n, any algorithm would inevitably open Ω(n) centers
in the worst case ordering of data points. Note that our theoretical
proofs hold and remain unaffected by choice of p(i)’s and the value of
Hk. It’s just that if prior information about sampling probabilities is
known, one can leverage Claim 1 to obtain a better estimate of initial
centers (and w∗).

4 Capacitated Semi-Online Clustering Algorithm
(CSCA)

We first begin by looking into semi-online clustering wherein the
total number of points (n) and lower-bound on optimal cost (w∗)
is known. Note that most restrictions in fully online clustering (i.e.,
when both these n,w∗ are unknown) apply to semi-online clustering.
This means that for each data point, the algorithm must make an
irrevocable decision of either assigning it to the existing centers or
open it as a new center.

The algorithm, referred to as the Capacitated Semi-online Clustering
Algorithm (CSCA), is described in Algorithm 1. CSCA begins by open-
ing the first data point as the center. Since we know w∗, we do not
use Hk. Subsequently, for the remaining data points, with probability
based on distance to closest center with remaining capacity a data
point is opened as a center otherwise the algorithm assigns it to the
nearest vacant center. We now look into CSCA’s theoretical guarantees.
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Algorithm 1 Capacitated Semi-online Clustering Algorithm
Input: X , n, w∗ and capacity constraint γ
Output: Centers C and assignment function φ̂.

1: Initialize Γ ← ∅.
2: Open first point as center (c1) and set Γ(c1) = γ .
3: Initialize φ ← ∅, r ← 1, qr ← 0.

4: Initialize center opening cost fr = w∗α/k log(n)
5: for remaining xt ∈ X do

6: c ← argminc∈C:Γ(c)>0 d(xt, c)
7: with probability pt = min (d(xt, c)/fr, 1)
8: C ← C ∪ {xt}; φ(xt) = xt; Γ(xt) = γ; qr ← qr + 1
9: otherwise with 1− pt

10: φ(xt)=c; Γ(c) = Γ(c)− 1

11: if qr ≥ 3k
α
(1 + log n) then

12: r ← r + 1; qr ← 0; fr ← 2 · fr−1

13: end if

14: end for

15: return (C, φ).

4.1 Theoretical Results

We now first look into the expected number of centers opened by
Algorithm 1, and subsequently, cost approximation bounds. To this,
let us denote optimal clustering as C with corresponding clusters {C∗

1 ,
. . . , C∗

k} and assignment function φ∗. We omit the p-norm factor
from the distance function in the proofs for ease of reading. However,
proofs hold for all finite values of p and also for special cases: 1
(k-median) and 2 (k-means).

Theorem 2. Let C be a set of cluster centers opened by Algorithm 1.
Then, E[|C|] = O

(
k
α
log (n) log

(
W∗
w∗

))
.

Proof. Let W ∗
i be the optimal capacitated clustering cost of cluster

i and is given by W ∗
i =

∑
x∈C∗

i
d(x, φ∗(x)). So the total optimal

cost is W ∗=
∑k

i=1 W
∗
i . Further, let A∗

i denote the average distance
from points in the ith optimal cluster to its center and is computed as
A∗

i = 1
|C∗

i |
∑

x∈C∗
i
d(x, φ∗(x)) = W∗

i
|C∗

i | .
Now, our primary goal is to bound the number of centers opened.

We have k optimal clusters, and as the arrival of points is unknown in
the online setup, we end up opening more centers in each cluster as
an estimation of the optimal center. Let us now divide the k optimal
clusters into different rings motivated from [8, 9, 39]. The broader
idea is to compute the expected number of centers that we end up
opening in each of these rings. The 0th ring is denoted by C∗

i,0={x ∈
C∗
i : d(x, φ∗(x)) ≤ A∗

i }. The subsequent rings, from 1 to τ , are
given by C∗

i,τ={x ∈ C∗
i : 2τ−1A∗

i < d(x, φ∗(x)) ≤ 2τA∗
i }. Note

that a cluster C∗
i will be divided into (1 + log n) rings, as all rings

after log n will be essentially empty. Let r′ be the first round when
the center opening cost fr′ becomes some fraction of W ∗ such that,
fr′ ≥ 24W∗α

k logn
. Now, we bound the expected number of centers in two

separate parts, i.e., before round r′ and second during and after round
r′. Let us first begin with the former,
Case 1: By the definition of r′, we have fr′−1 < 24W∗α

k logn
. Further,

since the center opening cost becomes twice at every round, we have,
fr′−1 = 2r

′−1f1. Substituting the value of f1 = w∗α
k log(n)

, we get,

r′ ≤ log
(

W∗
w∗

)
+ 5. Therefore, before round r′, the number of

centers opened by the algorithm is,

E(|C|before r′) = O

(
3k

α
(1 + log n) log

(
W ∗

w∗

))
(1)

Case 2: Now, let’s look into computing the number of centers opened
during and after round r′ in each of these rings. To avoid getting struck
due to not knowing order of arrival of data points, we will loosely
estimate the expected number of centers present in any ring during or
after round r′. To this, we divide the bounds into three subparts-

Case 2(a): First, we estimate the number of new centers that will
open for the first time in each ring. Let’s denote these centers as K1

τ .
Since there are a total of (1 + log n) rings in each cluster, therefore
the total number of such centers are

∑
k

∑
τ 1 = k(1 + log n).

Case 2(b): Next, suppose there is a data point x that arrives and
the closest center to x has already reached its capacity; in such a case,
the data point will continue searching for the next closest center in
any of the rings in increasing order of distance. There are two possi-
bilities: either data point x will find a vacant center or its likelihood
of becoming a center increases as it delves further into the chain if
the next closest center is too far away (handled in next case). Let’s
denote the extra number of centers that need to opened up in any ring
τ due to exhausting of capacity of first centers of Case 2a, be denoted
by Kc

τ . It is important to note that once a center K1
τ fills up and we

need to open second center within the ring, then atleast αn
k

data points
have already arrived and been assigned. Therefore, the total number
of such Kc

τ centers over all rings and clusters is upper bounded by
k/α i.e.,

∑
Kc

τ ≤ k/α.
Case 2(c): Now since there were two possibilities: either data point
x will find a vacant center or its likelihood of becoming a center
increases as it delves further into the chain if the next closest center is
too far away. Now, the remaining task is to bound the probabilistically
opened centers in each ring apart from the centers opened in previous
two subcases. To do this according to Algorithm 1, if a data point x
is the initial center opened within any ring, then the probability of
subsequent point x′ from the same ring opening as a center is defined
and bounded using the properties of rings as follows:

d(x, x′)
fr′

≤ d(x, φ∗(x)) + d(x′, φ∗(x))
fr′

≤ 2 · 2τ A
∗
i

fr′
(∵ Using triangular inequality and ring property)

So, the expected number of centers that will open in any ring
over all rounds r ≥ r′ is

∑
r≥r′

2·2τA∗
i

fr
|C∗

i,τ,r|. Summing these
probabilistic centers over all rings and using fr ≥ fr′ we obtain the
number of centers opened for estimating one optimal cluster center
as,

Kp
τ =

∑
τ≥0

⎛
⎝∑

r≥r′

2 · 2τA∗
i

fr
|C∗

i,τ,r|
⎞
⎠ ≤

∑
τ≥0

2 · 2τA∗
i

fr′

∑
r≥r′

|C∗
i,τ,r|

≤
∑
τ≥0

2 · 2τA∗
i

fr′
|C∗

i,τ | ≤
2A∗

i |C∗
i,0|

fr′
+

4

fr′

∑
τ≥1

∑
x∈C∗

i,τ

2τ−1A∗
i

≤ 6W ∗
i

fr′
(Using W ∗

i = A∗
i |C∗

i | and 2τ−1A∗
i ≤ d(x, φ∗(x)))

Summing this up for all k cluster centers and considering the estimate
of fr′ ≥ 16W∗α

k logn
we get,

Kp
k ≤ 6W ∗

fr′
≤ 6k log n

16α
(2)
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Therefore, number of total centers opened in Case 2 are as follows

E[|C|during and after r′ ] = O

⎛
⎝K1

τ +
∑
τ ,k

Kc
τ +Kp

k

⎞
⎠

= O

(
k(1 + log n) +

k

α
+

k log(n)

α

)
= O

(
k

α
log(n)

)
(3)

Thus, combining Equation 1 and 3, completes the proof, result-
ing in the total expected number of centers opened by CSCA as
O
(

k
α
log (n) log

(
W∗
w∗

))
. Note that for the unbounded capacity case,

when α = k, our bounds in semi-online algorithm CSCA match with
that of Liberty et al [35].

Theorem 3. Let WCSCA represent the cost of the semi-online capaci-
tated cost and W ∗ denote the optimal offline capacitated cost. Then,
E [WCSCA] = O (W ∗).

Proof. To approximate the cost guarantees, our primary focus is on
bounding the assignments in line 10 in CSCA. In all other assignments,
data points are centers themselves, resulting in zero cost. However,
after the opening of these initial centers, the data points have two
possibilities of getting assigned. Firstly, they may be assigned to one
of the centers within the same ring as the data point’s optimal ring.
Secondly, suppose the center within the same ring is already occupied;
in that case, points may be assigned to a center located in a different
ring within the same cluster or in a ring belonging to a different cluster.
We first bound the latter as follows:

Case 1: Note that the cost of points (say xt ∈ X) going to rings
other than the optimal one incurs a cost equal to the distance to the
assigned center from set C. We will use the Lemma 1 of [35] to bound
these costs, i.e., E(d(xt, C)) and restate the lemma below:

Lemma 4 ([35]). Given a sequence of n independent experiments,
each of which succeeds with probability atleast min (Ai/B, 1) where
B ≥ 0 and Ai ≥ 0 ∀i ∈ [n]. Let t be the (random) number of
sequential unsuccessful experiments, then, E(

∑t
i=0 Ai) ≤ B.

Now, before we delve into using the above lemma, let us first
understand the mapping between our problem and the technical
lemma. In CSCA probability of event (center opening) is atleast
min(d(xt, C)/fr′ , 1) where xt is any data point and C is set of
existing vacant centers. On using the fact that given R as the last
round, fR > fr′ for any round r′ < R, the denominator can be made
constant as in the lemma. Now, each independent unsuccessful exper-
iment represents the assignment of one data point, and we can use the
lemma to bound the expected value of the sum of Ai’s (d(xi, C)’s in
our problem) by B(= fR). Note that once the event gets successful,
i.e., the center in any ring gets opened, we will bound the cost of
assignments to the opened center in the next case, but here we look
into the scenario once this center gets filled up. In such a situation,
assignments are again upper bounded by O(fR) along similar lines.

Case 2: We will next bound the cost of all data points that are
allocated within the ring. Now, after any point x is opened as
center, then cost of subsequent point x′ is given by d(x, x′) ≤
d(x, φ∗(x)) + d(x′, φ∗(x)) ≤ 2 · 2τA∗

i (Using triangular inequality
and ring property). Now, using Equation 2, the total cost over all such
x′ is given as

∑
x′ d(x, x

′) ≤ 6W ∗. It is important to note that unlike
the uncapacitated case in [35], once a center gets opened in the ring,
its capacity can eventually get exhausted, and then one returns to Case
1 and needs to wait until the next center is opened within the ring and

once a new center opens up, which is already accounted for by Case
2. Therefore, the total expected cost by combining both cases over all
rings is given as follows:

O(fRk log n+W ∗) (4)

Therefore, we must find our case’s expected value of fR. To this,
let us consider some round r′ in CSCA such that,

fr′ ≥ 16W ∗α
k log n

≥ 16W ∗α
k(1 + log n)

(5)

Using Equation 2 (i.e., 6W ∗/f ′
r), Equation 5 and Markov inequal-

ity, the probability of opening more than 3k
α
(1 + log n) centers is 1

8

and thus, CSCA concluding at round r′ is equal to 7
8

. Now, let b be
probability that CSCA terminates before round r′, then,

E[fR] ≤ bfr′−1 + (1− b)
∞∑

r=r′
fr

(
7

8

)(
1

8

)(r−r′)

≤ bfr′ +
7

8
(1− b)

∞∑
i=0

fr′+i

(
1

8

)i

< O(fr′ )

(Using fr′+i = 2ifr′ and 1
8
< 1)

=⇒ E[WCSCA] = O(fRk log n+W ∗) = O(W ∗).

5 Capacitated Online Clustering Algorithm (COCA)

Now, we delve into a fully online setup in which n is unknown, and
the algorithm needs to compute the lower-bound w∗ without any prior
knowledge of n. To approximate w∗, the algorithm leverages the
insight that once Hk (≥ k) data points are opened as center, a more
accurate estimation of w∗ can be obtained by performing clustering
on these Hk data points (see Claim 1). Further, for monitoring the
estimated value of n, the method utilizes a doubling technique in lines
16 to 17, wherein the estimate is doubled once it is achieved. The code
is outlined in Algorithm 2, with the highlighted portion illustrating
the variations compared to the semi-online setup.

5.1 Theoretical Results

Theorem 5. If C is set of centers opened by COCA, then, E[|C|] =

O
(
Hk + k

α
log (n) log(nδ)

)
where δ =

maxx,x′ d(x,x′)
minx,x′:x�=x′ d(x,x′) .

Proof. The proof will follow similarly to Theorem 2 except for the
fact that in each round instead of opening 3k

α
(1 + log n) centers,

we are opening 3k
α
(1 + log nr) ≤ 3k

α
(1 + log n) centers for all r

except the last round. Even for the last round nr ≤ 2n. Therefore, we
can simply substitute the value of w∗ and W ∗. Now, as Algorithm
2 computes w∗ as capacitated cost using [41] on Hk points. So,
w∗ ≥ minx,x′∈X:x �=x′ d(x, x′). Similarly, the optimal capacitated
cost W ∗ ≤ nmaxx,x′∈X d(x, x′) (as the maximum distance from
any center (data point) to other points is bounded by the maximum
pairwise distance). Substituting these values and adding initial Hk

centers completes the proof.

Theorem 5 indicates that the number of centers can be negatively
affected by the presence of the term Hk. However, our experiments
demonstrate that selecting the initial Hk data points as center, rather
than (k + 1) (as done in [35]), actually contributes to opening overall
fewer centers because it results in a better estimate of w∗. Further,
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Algorithm 2 Fully online COCA
Input: X and capacity constraint γ
Output: Centers C and assignment function φ̂

1: Initialize Γ ← ∅ {stores vacant capacity of center}.
2: Open first Hk points as centers. (Claim 1) and ∀j ∈ [Hk] set

Γ(cj) = γ
3: Initialize φ ← ∅, r ← 1, nr ← Hk, qr ← Hk, idx ← Hk.

4: w∗ ← objective cost on Hk using Mulvey et al [41].
5: Initialize center opening cost fr = (w∗ · α)/(k · log nr)
6: for remaining xt ∈ X do

7: c ← argminc∈C:Γ(c)>0 d(xt, c)
8: with probability pt = min (d(xt, c)/fr, 1)
9: C ← C ∪ {xt}; φ(xt) = xt; Γ(xt) = γ; qr ← qr + 1

10: otherwise with 1− pt
11: φ(xt)=c; Γ(c) = Γ(c)− 1

12: if qr ≥ 3k
α
(1 + log nr) then

13: r ← r + 1; qr ← 0; fr ← 2 · fr−1

14: end if

15: idx ← idx + 1

16: if idx ≥ nr then

17: nr ← 2nr

18: end if

19: end for

20: return (C, φ).

when k ≥ 2 and n is unknown, [40] shows that at least Θ(log n) cen-
ters for random ordering are needed to achieve constant cost approx-
imation. Our upper bound in the online capacitated setting (α = k)
aligns with lower bounds in the uncapacitated setting.

Theorem 6. Let WCOCA be the cost of online Algorithm 2 and W ∗ be
the optimal offline capacitated cost. Then, E[WCOCA] = O (W ∗).

Proof. We begin with Equation 4 given in Theorem 3 i.e, E[WCOCA] =
O(fRk log n + W ∗). Thus, we need to estimate the value of fR
at the last round R. Let us consider any round r such that fr ≥
16W∗α
k log(nr)

. Then, number of centers opened in round r is given as
qr ≤ k

α
(1 + log(nr)) + q′r . Here, we pessimistically count one

(first) centers in each ring up to round r and q′r is the number of
centers opened in rings after opening former �k/α centers. In order
to have more rounds than r, COCA needs q′r ≥ 2k

α
(1 + log(nr)). We

will now compute the probability that COCA terminates by round r.
Applying Markov inequality by using the above information along
with E(q

′
r) ≤ 6W ∗/fr from Equation 2, we get the probability of

reaching the next round as at most 3/16. Thus, if b is the probability
that COCA terminates before round r. We have,

E(fR) = bfr−1 + (1− b)
∞∑

r
′
=r

fr

(
13

16

)(
3

16

)r′−r

< bfr + fr(1− b)

(
13

16

) ∞∑
i=0

2i
(

3

16

)i

= O(fr) = O

(
16αW ∗

k log(nr)

)
.

(Using fr−1 = 2fr and b ≤ 1)

On substituting this back, we get

E[WCOCA] = O(fRk log(n) +W ∗) = O

(
16W ∗αk log n

k log nr
+W ∗

)

Now since with high probability the algorithm will terminate at
rth round and from doubling trick, we can say, nr ≥ n. So,
E(WCOCA) = O (W ∗α+W ∗) = O(W ∗). This completes the proof.
The derived bounds exhibit a substantial reduction by a logarithmic
factor compared to [35]. Note that, due to capacity constraints in an
online setup, there may be some misassignments compared to the
offline method. However, these disruptions will be minimal owing
to constant cost bounds. Additionally, all results hold for any scalar
distance metric and for higher dimensions, manhattan or fractional
norms [1] are sometime preferred over euclidean.

6 Experimental Results and Discussion

We will now validate our approach against SOTA on following datasets
motivated by clustering literature [26]:

• Synthetic1d: consist of 1000 points sampled each from {Ni(μ =
1 + a · i, σ = 2)}ki=1, where a = 7 in well separable (s) and a = 5
in partially overlapping (o) clusters.

• Synthetic2d: consist of 1000 points sampled each from {Ni(μ =
1+a · i,Σ = I2×2)}ki=1, where a as above and I is identity matrix.
Synthetic2d is shortened to Syn2d.

• Adult: A public 1994 US census data5 of 32K people with five
features provided in Appendix A [27].

• Bank: Portuguese marketing data6 of 41K records regarding six
client features (see Appendix A [27]).

• Diabetes: US Medical records over ten years with 100K instances
over two features7.

We evaluate the performance of COCA against the following:

• Uncapacitated Online k-means We call fully online algorithm
as LIB for comparison with COCA (see prelims for details and
Appendix B for pseudo-code [27]). A heuristic approach is also
provided by the authors in which they initially open (k + 1) data
points as centers and compute w∗, by taking half sum of ten closest
neighbours instead of the pairwise minimum distance between
(k+1) data points. Further, they drop logarithmic factors by setting
qr ≥ k and increasing fr by ten times instead of doubling it. We
denote this as LIBH [35]. Note that while LIBH outperforms LIB
but, it lacks theoretical results to support it.

• Capacitated Online Clustering Heuristic (COCH): Motivated from
LIBH, we also use heuristic with a selection of (k+1) initial points
as centers, setting qr ≥ k and updating fr by ten times in COCA to
enable comparison of COCH with LIBH (Code in Appendix B [27]).

• Offline Capacitated Clustering (CAP): Assigns data points to clos-
est vacant centers and performs mean (or median) center updates
as in heuristic [41]. We focus on the k-means version in the main
paper and defer the comparison to k-median in Appendix C [27].

Experimental Setup: All experiments are performed on Intel Xeon
with 280GB RAM, and Python 3.6. We report mean and standard devi-
ation over ten independent runs and seed from set {0, 100, . . . , 900}.
Notably, the capacity parameter (α) is such that α ≥ 1, with α = 1
representing the most restrictive scenario, i.e., having uniform capaci-
ties. Consequently, we showcase the efficacy of our algorithms under
uniform capacity in the main paper. However, we observe similar
findings on other α values and defer the results to Appendix C [27]
due to space constraints. The code8 and Appendix [27] are public.
5 archive.ics.uci.edu/ml/datasets/Adult
6 archive.ics.uci.edu/ml/datasets/Bank+Marketing
7 archive.ics.uci.edu/dataset/116/us+census+data+1990
8 https://github.com/shivi98g/Capacitated-Online-Clustering-Algorithm
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Figure 1: (Left to Right): (a) Constant cost approximation of COCA to CAP kmeans. (b) COCH to CAP kmeans (c) Logarithmic trend in cost ratio
of LIB to COCA with α = k. Note: Input to online methods is ktarget but the cost for both methods is computed on the resulting centers (kactual).
Metric: We re-introduce: ktarget, kactual. The former is the input
for any online algorithm, while the latter represents the count of final
centers opened. Also, we compare COCA’s performance on cost. It
involves comparing the cost of online solutions when executed for
ktarget as input (resulting in kactual centers) v/s their offline counter-
parts when executed and compared on kactual centers. An important

note that since LIB and the proposed COCA have theoretical guaran-
tees and should thus be compared. In contrast, LIBH and proposed
COCH are heuristic approaches that warrant comparison.

Analysis on Number of Centers Opened: We compare the centers
opened by COCA, COCH with SOTA. Results for ktarget of 2, 10, and
30 are in Tables 1, 2, and 3. Results for other targets are provided
in Appendix C [27]. Notably, for a lower target of 2, COCA needs
more centers to meet capacity constraints. Conversely, as the target
increases, LIB’s performance degrades considerably validating the
opening of Hk number of initial centers instead of opening only (k +
1) points. For heuristics, the gap between ktarget, kactual is tolerable
for lower targets and slightly high in higher targets, considering the
rising uncertainty of the arrival order of points.

Dataset LIB COCA LIBH COCH

Adult 292.9±20.79 541.7 ± 79.80 9.0±0.0 9.0±0.0

Bank 311.9±33.29 544.3 ± 82.69 9.0±0.0 9.0±0.0

Diabetes 109.5±15.18 143.5 ± 16.55 8.6±0.79 9.0±0.0

Syn2d-(s) 134.2±45.52 113.9 ± 19.32 7.0±1.54 8.5±0.67

Syn2d-(o) 142.1±72.06 137.1 ± 21.39 7.0±0.44 7.8±0.60

Syn1d-(s) 104.8±98.75 57.6 ± 8.18 6.8±1.32 6.2±0.75

Syn1d-(o) 66.6±34.67 61.9 ± 7.54 7.8±1.32 6.6±0.49

Table 1: kactual on various SOTA methods when ktarget is 2.

Dataset LIB COCA LIBH COCH

Adult 1857.4±206.12 1735.8 ± 202.95 36.5±2.57 41.0±0.44

Bank 1969.5±205.36 1751.4 ± 191.69 37.3±3.00 41.3±0.64

Diabetes 246.3±20.34 189.0 ± 16.05 31.1±0.3 33.9±2.7

Syn2d-(s) 1357.8±358.48 619.3 ± 90.66 29.7±4.10 32.5±3.90

Syn2d-(o) 1357.8±358.48 675.6 ± 99.39 31.0±3.34 33.8±4.77

Syn1d-(s) 938.4±560.99 252.1 ± 44.50 28.7±2.9 31.0±0.44

Syn1d-(o) 910.4±485.25 239.1 ± 34.03 28.7±2.45 31.1±0.3

Table 2: kactual on SOTA methods when ktarget is 10.

Dataset LIB COCA LIBH COCH

Adult 7136.4±1617.56 3071.1 ± 251.07 114.7±8.1 118.7±4.00

Bank 6756.1±834.40 3485.0 ± 335.15 116.2±6.24 122.9 ± 1.58

Diabetes 271.5±1.74 252.7 ± 12.46 198.7±75.14 93.6±2.42

Syn2d-(s) 6728.9±1585.75 1479.2 ± 201.29 116.8±7.39 94.2±3.89

Syn2d-(o) 6728.9±1585.75 1775.5 ± 222.62 120.2±5.05 97.0±4.63

Syn1d-(s) 4489.2±1692.76 601.4 ± 50.25 116.8±7.39 91.9±0.83

Syn1d-(o) 4055.8±1609.87 567.1 ± 44.78 112.5±8.64 92.5±1.69

Table 3: kactual on SOTA methods when ktarget is 30.

Analysis on Clustering Cost: Let WCOCA and WCAP be costs
achieved by COCA and CAP respectively. The results for COCA v/s
CAP are depicted in Figure 1 (a). We can observe a nearly constant
cost approximation, which validates our theoretical findings. A similar
trend is noted for COCH (Figure 1b), LIB, LIBH (Appendix C [27]).
Also, we compare online to offline uncapacitated costs, reporting a
constant factor approximation (Appendix C [27]). Note that the ratio
is low in the Diabetes dataset as it suffers from local optima [26],
leading to higher value of offline cost.

Dataset LIB COCA LIBH COCH

Adult 4657.4 ± 1060.78 2566.2 ± 256.22 77.1 ± 5.37 81.0 ± 0.0

Bank 4469.8 ± 544.19 2863.4 ± 312.30 80.3 ± 2.09 82.4 ± 2.10

Diabetes 268.8 ± 1.4 211.1 ± 13.07 71.5 ± 7.81 66.0 ± 6.55

Table 4: kactual on SOTA uncapacitated methods when ktarget is 20
and α is ktarget for COCA, COCH.

Ablation Study on Variance: Table 1, 2, and 3 exhibit that proposed
COCA and COCH demonstrate significantly lower deviations than LIB,
LIBH. This is attributed to the doubling trick instead of increasing the
estimate of the number of points in a linear fashion. Reduced variance
helps online algorithms avoid opening more centers than the target.

Reduction to Uncapacitated Problem: We set α = k (unrestricted)
in our algorithms and assess their performance on kactual and cost.
The results on the number of centers resemble the uniform capaci-
ties but significantly better than LIB (see Table 4 and Appendix C
[27]) supporting choice to choose Hk initial centers instead of k + 1.
Noteworthy are the findings in the cost comparison of COCA, and LIB

(see Figure 1c), which confirm a logarithmic reduction by use of the
doubling trick.

7 Conclusion

This work extends the probabilistic algorithm available in uncapaci-
tated to capacitated OC. Our algorithm is the first online algorithm
to tackle capacity constraints in h-dimensional space for k-means or
k-median. We introduce two novel changes to existing online unca-
pacitated clustering: First, we determine the initial number of centers
to be opened by the algorithm to get a better representation, and
second, we employ a doubling trick to estimate the total number of
points. These changes result in fewer centers opening while achieving
constant cost approximation to the optimal clustering problem. An im-
mediate future direction involves extending the work in the presence
of noisy data. Another interesting problem is the extension to group
fair assignments [26] or centers [31]. Also, since capacity constraints
in online streaming can result in different assignments compared to
offline counterparts, focusing on minimizing such reassignments is
interesting.
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