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Abstract. Text steganography involves discreetly concealing sensi-
tive messages within natural text, while text steganalysis serves as
its counterpart by aiming to detect suspicious text that may con-
tain embedded secret information. Detecting steganographic text
has become increasingly difficult because evolving steganographic
algorithms produce ever-changing text distributions. Consequently,
few-shot text steganalysis, which identifies steganographic text with
scarce examples regardless of its distribution has become a research
hotspot. The state-of-the-art few-shot text steganalysis relies on the
inter-class variance between classes, i.e., they behave satisfactorily
in detecting large-variance classes while being incompetent in dis-
tinguishing confusable samples from similar steganographic settings.
In this paper, we propose an Adversary-Refinement Framework for
Text Steganalysis, namely ARTS, which employs a task-invariant ex-
tractor and a task-relevant projector to implement an "attract and
repel" process. Specifically, in the "attract" stage, we align task-
invariant features through adversarial training to shorten the intra-
class distance. Afterward, the refined prototypes are projected to a
new space in the "repel" stage, and then a refined penalty item is ap-
plied to enlarge the inter-class distance. Extensive experiments con-
ducted in six datasets with different inter-class variances demonstrate
the superiority of the proposed model over the SOTA models.

1 Introduction

The seemingly innocuous text that nevertheless hides sensitive data
is known as steganographic text (or stego) [5, 26, 38]. Currently,
the most hard-to-detect steganographic text is created by generative
text steganography models [27, 48, 54, 2, 52], which utilize a lan-
guage model to generate the probability of the next token, but in-
stead of sampling by probability, they encode words and select the
ones matching the secret bits. In Figure 1, consider a language model
that generates the statement "I have a" and is about to determine the
next word. The probability distribution indicates that the expected
word is "dream". However, if a criminal intends to hide the secret
bitstream "101" in the following words after "a", they may select the
word "plan" from the candidate pool, which corresponds to the code
"101". As the interception technique, text steganalysis utilizes high-
precision detection of natural text (cover) or stego text. As shown in
Figure 1, both "I have a dream" and "I have a plan", generated by the
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Figure 1. The framework of text steganography and text steganalysis. In
the text steganography model, a language model is utilized to compute the

probability distribution of the next token and generate a candidate pool
based on the chosen sampling strategy. The selection of the subsequent token

is then determined by the secret message bits, resulting in an innocuous
stego text. Conversely, text steganalysis involves monitoring and capturing

suspicious messages from social media. The captured message is then
converted into a word vector and subjected to classification based on feature

distributions to identify the cover text or steganographic text.

same language model, appear coherent and complete, but the latter
contains a hidden message encoded in the word "plan". This tech-
nique poses a challenge in distinguishing between steganographic
and natural text, particularly considering features such as semantics
and affective bias. Consequently, text steganalysis focuses on analyz-
ing the probability distribution of words to detect malicious entities,
that conceal harmful information within seemingly natural text. In
summary, text steganalysis is essential for ensuring network security.

To combat the evolving text steganography, neural-network-based
text steganalysis attracts researchers’ attention and plays a key role in
detecting stego texts by modeling the statistical differences between
the normal text and the stego text [39, 49, 31, 55, 32]. One com-
monality of these methods is that they train the networks by using a
large amount of training data independent and identically distributed
with the testing data. However, stego texts obtained from different
steganographic settings, such as steganography methods, sampling
strategies, or language models, may vary in distribution. Evidence
shows that when one aspect of the setting changes, the detection per-
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Figure 2. The illustration of the "attract and repel" process. Points of
different shapes are steganographic samples generated by different language
models (LM ) or sampling strategies (S), represented as "LMi − Sj" for

simplicity. Initial prototypes are calculated from randomly selected samples
framed with dotted lines.

formance drops greatly [44, 41]. This problem is also known as do-
main mismatch in linguistic steganalysis.

To detect multi-source steganographic texts with target distribu-
tions, Xue et al. [44] design a domain adaptation text steganaly-
sis model to align domain-invariant features between the target and
source domain. To reduce the number of required labeled samples,
Wen et al. [41] propose FS-Stega based on the meta-learning frame-
work, which enhances the model’s performance to learn over diverse
origins of stego texts, enabling the model to quickly adapt with a few
training samples.

Although the current studies have contributed to mitigating the text
steganalysis mismatch issue by extracting useful task-invariant fea-
tures, we argue that excessive concern on task-invariant features will
fail to detect confusable samples. In Figure 2(a), the confusable sam-
ple belonging to the parallelogram class will be misclassified to the
triangle class based on the feature space of the previous work since
this sample has less inter-class variance (note that these two classes
are obtained by the same language model LM1).

To tackle this, in this paper, we propose ARTS - an Adversary-
Refinement Framework for Text Steganalysis, consisting of a task-
invariant extractor and a text-relevant projector to complete a "at-
tract and repel" process for better feature representations based on
meta-learning strategy in few-shot scenario. Specifically, in the "at-
tract" stage, we use adversarial training to get task-invariant features
to diminish the intra-class gap between samples and enhance model
adaptability in shifts of distribution space (Figure 2(b)). Next, in the
"repel" stage, we refine the prototypes of the first stage and map it
into a new space via a learned matrix, while containing the intra-
class distance. In addition, we propose the refined penalty item to
magnify the prototype distances (Figure 2(c)). Our main contribu-
tions are summarized as follows:

• We propose ARTS for few-shot text steganalysis. Aligning ref-
erence set with the query set by supervision loss in adversarial
training promotes the model adaptability for gaining better task-
invariant metric space and tight intra-class distance.

• We refine prototypes by projecting them to a task-relevant met-
ric space through a sharing matrix. We also apply refined penalty
items to magnify the inter-class divergence.

• We evaluate the performance of the proposed model on six
datasets with different variances. Experimental results demon-
strate that ARTS achieves significant enhancement over other
SOTA methods in few-shot scenarios.

2 Related Work

2.1 Text Steganalysis

Text steganalysis stabs at detecting stego text from normal text. Initial
methods rely on designed handcrafted features [4, 46, 43, 29, 42]. Af-
terward, neural networks draw researchers’ attention. LS-CNN [39]
utilizes words’ local correlations, while Niu et al. [31] are devoted
to capturing long-term semantic features. In addition, constructing
multi-scale representation in steganalysis models [32, 55, 47, 44]
continues to be a hot topic.

Nevertheless, when testing samples are differently distributed
from the training text, it would cause performance degradation. To
enhance model adaptability Xue et al. [44] apply transductive learn-
ing to match different domain embeddings. Wen et al. [40] draw on
the ideas of lifelong learning to solve multi-task text steganalysis.
Besides, a few researchers contribute to fine-grand text steganalysis
that distinguishes various stego texts from different origins. Yang et
al. [49] utilize Recurrent Neural Networks (RNNs) to prove effec-
tiveness in detecting stego with diverse embedding capacities. Jia et
al. [18] propose HAM-Stega to detect the hierarchical information of
stego text.

To avoid large target data to guarantee the fine-tuned model’s per-
formance, Wen et al. [41] propose FS-Stega, which utilizes a meta-
learning framework in few-shot text steganalysis to detect stego text
and cover text. Motivated by this, we propose a fine-grand few-shot
text steganalysis method that detects multiple categories of stegano-
graphic text based on a meta-learning framework, solving the domain
mismatch problem caused by diverse distributional stego text.

2.2 Meta-Learning

Meta-learning intends to enhance the model’s learning ability to un-
seen tasks through a few examples. The existing meta-learning ap-
proaches consist of three main categories: (1) Gradient-based meth-
ods, which use backpropagation to learn a proper neural network ini-
tialization [10, 33, 22]; (2) Model-based methods, which are easier
to optimize than gradient-based methods. MANNs [35] and SNAIL
[30] are the representative methods. (3) Metric-based methods, such
as PROTO [36] and Siamese Network [21] aim to optimize the trans-
ferable embedding by metric learning.

In particular, meta-learning has been applied to tackle few-shot
text classification. Bao et al. [1] and Han et al. [15] design specific
feature generators. Geng et al. propose an Induction Network and
DMIN [12, 13] utilizing dynamic routing to adapt a support set. An-
other group of methods improves accuracy with the help of additional
knowledge [7, 3, 17]. There are also existing methods that further re-
vised PROTO [11, 8, 34, 16, 23]. In this study, we improve the fea-
ture representation of PROTO-based model under a small inter-class
variance scenario.

3 Methodology

In this section, we first discuss the problem definition of text ste-
ganalysis. Then, the overview of ARTS is presented in section 3.2.
The model details are described in the following sections.

3.1 Problem Definition

Our goal is not only to differentiate normal text and stego text but also
to distinguish different stego texts originating from diverse distribu-
tions. According to the characteristics of generative text steganog-
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Figure 3. The overall structure of ARTS.

raphy, the probability distribution of a certain type of stego text is
determined by the language model lm, the embedding capacity c,
and the steganographic algorithm a involving a sampling strategy. In
this way, a stego sentence x can be derived from a given generative
distribution p:

x ∼ p (lm, c, a) (1)

where the embedding capacity c is a parameter to control the num-
ber of bits embedded in one word.

Task set A task set is a collection of samples derived from the
same distribution. e.g., a specific task set Ti can be denoted as:

Ti =
{(

x1
i , yi

)
,
(
x2
i , yi

)
, · · · (xni

i , yi)
}

(2)

where xj
i ∼ pi denotes the jth text sample in task Ti, i ∈

{1 · · · |p|}, |p| denotes the size of probability spaces. ni is the num-
ber of samples in Ti. Note that all samples in Ti share the same task
label yi, which takes the value of a unique integer.

Meta-set A meta-set is a set of task sets. Let’s say we have a total
of |p| task sets, meta-set can be denoted as T = {Ti}|p|i=1. On account
of the effectiveness of the prior works [1, 15], we fully refer to their
episode training and testing strategies and split T into two subsets
with non-overlapping label space: meta-training set Ttrain and meta-
test set Ttest.

Meta-training we sample N tasks from Ttrain and select K and
Q instances from each task to contribute to the support set T s and
the query set T q , respectively. To leverage more statistical character-
istics in the "attract" stage, we extract other Q × N samples from
N different tasks to form the reference set T r . The goal of model
training is to determine the task label ŷ for a given sample x.

Meta-testing During meta-testing, We sample N new tasks from
Ttest and select K and Q instances from each task to contribute to the
support set and the query set, respectively. Finally, we calculate the
average classification performance across all meta-testing episodes.

3.2 Overview

Our model consists of two main components: a task-invariant ex-
tractor and a task-relevant projector (Shown in Figure 3). The for-
mer follows an adversarial procedure to encourage the query set to
be aligned to the reference set, promoting the model to learn bet-
ter task-invariant features. The latter projects the original prototype
to a new metric space to magnify the relative distances of sampled

classes based on a sharing matrix, alleviating the negative impact of
the smaller inter-class variance of support sets. Finally, the predic-
tion is performed by assigning each text a class label of the closest
prototype in the new metric space.

3.3 Word Representation Encoder

We obtain the initial word embeddings by applying a pre-trained
BERT with B transformer layers [6]. Given the sentences ts ∈ T s,
tq ∈ T q , and tr ∈ T r , we map them to three matrices Ws ∈
Rb1×768, WQ ∈ Rb2×768, and Wr ∈ Rb3×768 as the common fea-
tures, where b1, b2 and b3 are the number of words in ts, tq , and tr ,
respectively.

3.4 Task-invariant Extractor

To obtain the aligned and imperative common features shared among
different distributions, we design a task-invariant feature extractor
through an adversarial learning process with a generator and a dis-
criminator. The generator confuses the discriminator in distinguish-
ing whether the sample is from the query or reference set. In this way,
they would curtail the gap among the same labeled samples and gain
better contextual embeddings to boost the prediction accuracy.

Generator Gα (·) The generator is a CNN-based structure [39]
consisting of convolution kernels with different sizes h, empirically
valued 3, 4, and 5. Based on the generator, the task-invariant fea-
tures of support set, query set, and reference set can be expressed
as Gα (Ws), Gα (Wq), and Gα (Wr), respectively, where α is the
generator parameters. For convenience, we denote:

Xs = Gα (Ws) (3)

Xq = Gα (Wq) (4)

Discriminator Dβ (·) The discriminator is to guide the genera-
tor to get better task-invariant features. Treating Ws and Wq as the
target domain and Wr as the source domain, the discriminator de-
termines whether the sample is from the source or the target do-
main. We employ a three-layer feed-forward neural network to con-
struct the discriminator. The output probability of the ith sample
di = Dβ (Gα (Wi)) is calculated by softmax function. We utilize
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the cross-entropy loss to execute gradient updates, shown as follows:

LD (β) = − 1

2len

2len∑
i=1

[dli log di+

(
1− dli

)
log(1− di)]

(5)

where β donates the parameters of the discriminator, dli represents
the ground-truth label of the ith sample, and len is the number of
samples in the query or the reference set.

3.5 Task-relevant Projector

The adversarial training can shorten the intra-class distance; how-
ever, it will also compress the inter-class distance. Consequently, the
query instance may be misclassified to the nearest estimated pro-
totype class. To enlarge the distance between prototypes, we intro-
duce the task-relevant projector to map prototypes to a refined space,
where the inter-class distance between different prototypes is magni-
fied apart, while samples and the corresponding prototypes are still
tight.

Concretely, in N -way K-shot text steganalysis scenario, assume
the task-invariant features from support set Ws with label l construct
W l

s , and we can obtain the initial prototype sl for each label l:

sl =
1

|W l
s|

∑
wi∈W l

s

Gα (wi) (6)

Overall, There are three steps involved in converting initial pro-
totypes into the refined space. Firstly, We utilize the linear layer Lθ

to learn the auxiliary points {a1, . . . , aN}, which contributes to the

formation of the weight matrix A =
[

a1
‖a1‖ , . . . ,

aN
‖aN‖

]
. It is crucial

to note that the auxiliary points are vector representations that play
a vital role in the calculation of A, which assigns weights to each
extracted class. In the second step, the sharing matrix Mθ is com-
puted using the equation XsMθ = A, where Mθ ∈ R768×768 and
A ∈ RN×768. Here, X+

s represents the generalized inverse of the
non-square domain-invariant features matrix of the support set Xs,
and it is calculated as follows:

X+
s =

{
XT

s Xs

}−1

XT
s (7)

Moreover, Mθ is trained to enhance the discriminability among dif-
ferent classes, facilitating accurate identification of confusable sam-
ples (as shown in Figure 2), while also preserving a compact intra-
class distance. Essentially, Mθ can learn task-specific features while
retaining domain-invariant characteristics. Finally, based on Mθ , we
transform the query set vector Xq to the refined query vector by cal-
culating XqMθ . It is worth mentioning that the sharing matrix and
relevant weights together constitute the Projecting Module (PM).

The softmax function is used to estimate the probability that each
query vector xq ∈ Xq belongs to a certain refined prototype in the
new mapping space. Concretely, given the initial prototypes S =
{sl}Nl=1, the posterior probabilities is computed as:

p (y = l |xq ) =
exp (−dis (xqMθ, slMθ))∑

sl∈S

exp (−dis (xqMθ, slMθ))
(8)

The distance function dis can be adopted either the squared Eu-
clidean distance or the cosine distance. Moreover, sl ∈ S signifies

Algorithm 1 Training Procedure for ARTS
Require:

1: Meta-training set Ttrain and the corresponding label Ytrain; R
episodes and ep epochs

2: Randomly initialize the parameters of the generator α, discrimi-
nator β, and the projector θ.

3: for each i ∈ [1, ep] do

4: Randomly sample N task sets from Ttrain and the corre-
sponding label from Ytrain.

5: for each j ∈ [1, R] do

6: Xs, Xq, Xr ← ∅, ∅, ∅
7: Sample K and Q disjoint data to form the support set T s

and the query set T q , respectively. The remaining data in Ttrain

form the reference set T r

8: Input T s to the model
9: Compute the initial prototype sl by eq. 6

10: Update weight A ←
[

a1
‖a1‖ , . . . ,

aN
‖aN‖

]

11: Compute X+
s by the eq. 7

12: Compute the sharing matrix M = X+
s A

13: Input T q to the model
14: Compute Lc and LRPI by eq.9 and eq.10
15: Input T r to the model
16: Fix α, θ, update β by minimizing eq.5
17: Fix α, β, update θ by minimizing eq. 11
18: Fix θ, β, update α by minimizing eq.11

that the variable sl iterates over all prototypes in S to optimize the
distance between xq and all other prototypes. The classification loss
is formatted as:

Lc =
1

|Xq|
∑

xq∈Xq

[dis (xqMθ, slMθ)+

log
∑
sl∈S

exp (−dis (xqMθ, slMθ))]
(9)

3.6 Training by refined penalty item

Note that the task-relevant projector focuses on pushing samples
away from prototypes of different classes. When the distance be-
tween different prototypes in the mapping space is relatively close,
the performance may be greatly compromised. Thus, we propose the
Refined Penalty Item (RPI) to drive refined prototypes further apart
from each other, shown as follows:

LRPI =
∑

i �=j,s∈S

−dis (siMθ, sjMθ) (10)

Accordingly, the total loss for ARTS is:

L = Lc + λLRPI − σLD. (11)

Empirically, we set λ = 0.5 and σ = 1 in the subsequent experi-
ments for satisfied performance. The training procedure is summa-
rized in Algorithm 1.

4 Experiments

4.1 Experimental Basis

To evaluate the proposed model, we choose seven mainstream text
steganography algorithms [9, 48, 51, 53, 50, 52, 45] to generate
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Methods

1
-shot

M-Mix N-Mix T-Mix AVG

5
-shot

M-Mix N-Mix T-Mix AVG
acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1

PROTO 50.7 48.7 56.3 55.7 50.5 52.7 52.5 52.4 63.6 60.9 66.9 69.2 57.2 60.1 62.6 63.4
MAML 48.0 46.3 50.6 51.3 49.7 52.7 49.1 50.1 58.5 61.5 59.8 60.0 58.3 57.8 58.9 59.8
Induct 61.2 62.1 58.6 57.4 68.3 62.4 62.7 60.6 66.7 65.1 61.2 71.4 71.1 69.9 66.3 68.8

DS-FSL 41.8 45.6 40.9 45.2 45.8 43.0 42.8 44.6 51.0 56.2 51.9 52.0 59.9 62.5 54.3 56.9
MLADA 63.0 59.8 55.1 51.3 66.7 65.3 61.6 58.8 70.0 72.2 70.7 68.1 78.4 71.1 73.0 70.5
FS-Stega 36.8 42.2 50.8 52.2 54.2 52.1 47.2 48.8 62.0 65.0 64.8 66.7 59.3 61.2 62.0 64.3
meta-sn 57.2 58.0 51.5 56.9 57.8 56.5 55.5 57.1 66.0 64.6 67.4 68.5 62.8 66.0 65.4 65.8
TART 61.9 60.4 64.3 56.0 60.5 62.9 62.2 59.7 72.7 65.3 72.2 72.2 74.6 68.3 73.2 68.6
OUR 66.9 67.7 73.4 74.2 72.0 72.9 70.8 71.6 74.4 75.6 80.5 80.6 77.9 78.3 77.6 78.2

Table I. The comparison of 3-class detection performance (%) on larger-variance datasets under 1-shot and 5-shot scenarios. The "AVG" column is the
average performance of each model across three datasets.

the cover text (embedding capacity c = 0) and stego text (c =
1, 2, · · · , 5). We use four widely-used English corpora to train these
steganography models: Twitter [14], COCO [24], Movie Review
[28], and News [19]. Consequently, We construct six cross-capacity
and cross-algorithm datasets, each of which has a total of 1120 sam-
ples and is divided into 11, 5, and 7 non-overlapping classes for
training, validation, and testing. Based on their cross-corpora prop-
erty, we named the six datasets M-Mix, N-Mix, T-Mix, M-M, M-N,
and M-T. As we analyzed in section 1, less inter-class variance in
the testing samples would reduce the model’s performance when the
target domain mismatches the source domain. Specifically, M-Mix,
N-Mix, and T-Mix, which comprise single-corpus texts in training
and mixed corpora in testing, can be considered larger-variance

datasets. While M-M, M-T, and M-N, which take Movie Review
as the training corpora and single corpus in testing, are regarded as
smaller-variance datasets. To evaluate the performance of ARTS,
we calculate acc and f1 [44].

Dataset Training corpora Testing corpora AVG
M-Mix Movie Review ALL 13.22
N-Mix News ALL 14.94
T-Mix Twitter ALL 9.42
M-M Movie Review Movie Review 14.06
M-T Movie Review Twitter 10.69
M-N Movie Review News 15.52

Table II. The detail of the datasets. The "AVG" column reveals the average
length of the sentences. "ALL" means containing all the four chosen corpora.

4.2 Baselines

We compare our ARTS with eight SOTA methods grouped into
three categories: (1) metric-based methods: Meta-SN [16] utilizes
siamese network and TART [23] introduces transfer module to im-
prove PROTO [36]. (2) Gradient-based methods: MAML [10] uses
prior over-model parameters to update through a few gradient steps.
(3) Model-based methods: Induction Networks [12] proposes a dy-
namic routing algorithm to simulate human-like induction. DS-FSL

[1] integrates the distribution features into the attention mechanism.
MLADA [15] utilizes domain adversarial networks to promote the
domain adaptation ability. FS-Stega [41], which is the representative
method for meta-learning text steganalysis, takes advantage of atten-
tional meta-learner to detect stego samples in few-shot scenarios.

4.3 Implementation Details

Our experiments are implemented by Pytorch with a Python inter-
face. To accelerate the training process, we use the GeForce GTX

2080Ti GPU and CUDA 10.0. We use bert-based-uncased [6] as
the word representation encoder and maintain the parameters of the
BERT layer during training. Besides, the dropout of the convolu-
tional layer is 0.5, the initial learning rate is 5e-5, and the small batch
gradient descent of the Adam [20] is applied for optimization. The
detection threshold is set to 0.5, the number of kernels with different
sizes is 100, and the dimension of the word vector is 768. In total,
the number of parameters is 219.79M. Our code and datasets 1 are
available.

4.4 Comparisons

We first use the larger-variance datasets (M-Mix, N-Mix, and T-Mix)
to evaluate the performance of ARTS in a 3-way few-shot text ste-
ganalysis task. The detection results are reported in Table I. Intu-
itively, our model surpasses SOTA methods across all datasets, ex-
cept for accuracy in T-Mix with 1-shot setting. In particular, the av-
erage accuracy shows that ARTS outperforms TART by 8.6% and
4.4% in 1-shot and 5-shot experiments, respectively. Compared with
FS-Stega, our method delivers a substantial improvement of about
23.6% and 15.6% in 1-shot and 5-shot scenarios, respectively. These
results demonstrate the superiority of ARTS over the mainstream text
steganalysis models on larger-variance dataset scenarios.

Moreover, we verify the proposed model on hard-to-detect scenar-
ios involving more confusable samples. Specifically, we fix the train-
ing corpora as Movie Review (M). The test corpora are: 1) the same
as training (M-M), 2) different from training but from a single distri-
bution (M-T, M-N). We compare the results with M-Mix since they
all share the same training corpora. We choose four best-performing
baseline models in Table I for comparison, and the results are given in
Table III. As expected, compared to the performance on M-Mix, most
models experience a performance decrease on these small-variance
datasets. We compute the average performance degradation AVGΔ
for each model and find that ARTS has the minimum decline among
all the models. One interesting finding is that the performance of
ARTS on the M-M dataset is better than that on M-Mix, which is
contrary to the other models. It’s interpretable because ARTS has
superior feature alignment ability thanks to the discriminator-guided
task-invariant extractor. When the training and test sets are consis-
tent, the alignment features learned from the training procedure can
be transferred to the testing stage.

4.5 Ablation Study

We apply two additional structures to subtitle our CNN-based task-
invariant generator, including a Bi-direction recurrent neural network

1 https://github.com/zz9wa/A-R-T-S.
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Methods

1
-shot

M-M M-T M-N M-Mix AVGΔ

5
-shot

M-M M-T M-N M-Mix AVGΔ
acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1 acc f1

MLADA 55.7 58.3 59.8 53.5 41.4 39.9 63.0 59.8 -10.7 -9.3 65.4 52.4 59.7 54.0 59.7 57.3 70.0 72.2 -10.2 -16.0
FS-Stega 33.1 30.7 30.7 35.7 29.2 31.9 36.8 42.2 -5.8 -9.4 51.8 49.3 51.4 50.2 53.3 49.8 62.0 65.0 -11.4 -15.1
meta-sn 54.2 51.2 47.9 50.2 53.0 49.4 57.2 58.0 -5.5 -7.8 59.8 55.3 58.9 56.0 60.8 59.2 66.0 64.6 -7.7 -7.0
TART 55.1 50.7 55.7 58.7 59.4 60.2 61.9 60.4 -5.2 -3.8 63.6 60.2 60.0 59.5 67.7 64.3 72.7 65.3 -10.2 -3.0
OUR 70.0 70.4 58.8 62.4 62.3 69.7 66.9 67.7 -3.2 -3.3 77.8 76.0 62.0 63.6 69.2 72.4 74.4 75.6 -3.2 -2.4

Table III. 3-way few-shot detection results in small-variance datasets. AVGΔ denotes the mean value of the model performance on M-M, M-T, and M-N
subtracts the performance score on M-Mix. It examines the performance degradation on datasets with smaller variances compared to those with larger

variances.

(a) AVG (b) MLADA (c) TART (d) ARTS

Figure 4. The t-SNE visualization of sentence embeddings in the testing episode (3-way 5-shot 25-query). All three classes are unseen in the training
procedure. Note that (a) shows the average of the word embeddings obtained by BERT without assigning weights.

with self-attention (LSTM-att) [25] and a Bi-direction recurrent neu-
ral network (bi-LSTM) [1]. We additionally evaluate the model per-
formance by deactivating a specific module and recording the cor-
responding average time consumption in seconds (Time). Experi-
ments are conducted in a 3-way 5-shot scenario on three datasets
and the f1-scores are shown in Table IV. Plainly, the solution of tak-
ing CNN as the task-invariant generator has the optimal performance
compared to the models equipped with bi-LSTM and LSTM-att, with
an improvement of about 5.4% and 5.7% in terms of f1, respectively.

M-M M-T M-N Avg Time
bi-LSTM 69.8 55.7 68.3 64.6 5423
LSTM-att 72.7 55.1 65.2 64.3 5903
−LD 73.5 59.4 64.6 65.8 4986

−LRPI 71.5 56.7 69.6 65.9 5313
−PM 64.8 60.5 62.8 64.0 5128
ARTS 76.0 63.6 72.4 70.6 5577

Table IV. Comparison of different model structures. −LD , −LRPI , and
−PM represents deactivating discriminator, task-invariant training, and the

Projecting Module.

From Table IV, we can see that by removing the Discriminator LD

and the refined penalty item LRPI , the average f1-score on the three
datasets declines by 4.2% and 4.1%, respectively. Moreover, By sub-
stituting the Projecting Module with PROTO, ARTS has decreased
by 5.4%. In terms of efficiency, ARTS achieves a proficient balance
between model performance and runtime.

4.6 Visualization

To intuitively inspect the ARTS’s ability to distinguish samples from
different classes based on the combination of the task-invariant ex-
tractor and task-relevant projector, we utilize t-SNE [37] to visual-

ize refined sentence embeddings of the query set which input to the
classifier. The detail is shown in Figure 4. Compared with the initial
feature space acquired by BERT shown in Figure 4(a), MLADA does
not significantly make improvements to feature spaces, only bringing
a few cover samples closer (Figure 4(b)). In contrast, from Figure
4(c) we can see that TART has done a great job pushing the cover
class apart from the stego classes. However, TART does not distin-
guish between the two types of stego samples (samples denoted by
dots and crosses) because their differences were relatively small. In
comparison, ARTS can construct a separate feature space for each
class (Figure 4(d)). It not only perfectly pushes away three classes
but also pulls samples of the same class more tightly. This verifies
the effectiveness of the proposed "attract and repel" strategy, which
enables ARTS to perform better in fine-grained multi-task steganal-
ysis and classify stego samples from different distributions.

����������	�
�
��������	�

(a) −LD

����������	�
�
��������	�

(b) ARTS

Figure 5. Visualization of feature alignment from the reference samples to
the target samples.

In addition, we visually test the task-invariant extractor in aligning
the features of the target sets to the features learned from the refer-
ence set. From Figure 5(a), we can see that without the supervision of
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the discriminator, the features of different domains are hardly over-
lapped. In contrast, the feature representations of the two domains
obtained by ARTS are well aligned (Figure 5(b)), which confirms
that extracting task-invariant features by adversarial training can ef-
fectively improve the model’s feature transfer ability and strengthen
its adaptability in detecting novel tasks.

4.7 Hyper-parameter Sensitivity Analysis

We end the experiments section with a sensitivity analysis of the
hyper-parameters. Specifically, we conduct on two main hyper-
parameters: the weight σ and λ controlling LD and LRPI , respec-
tively. We depict hotmaps of accuracy and f1 score in Figure 6.

(a) acc (b) f1

Figure 6. Hotmaps of acc and f1 when changing σ and λ in 3-way 5-shot
25-query scenario.

We discover that σ = 1 and λ = 0.5 yield the optimum perfor-
mance, and both two evaluation metrics have roughly the same per-
formance trends. Besides, the color is more saturated when σ > 0.5
and λ > 0.3, signifying improved performance. It is presumably be-
cause LD tights the divergence of the intra-class while LRPI pushes
different prototypes away. However, more concerns on LRPI means
paying more attention to task-relevant features that are not transfer-
able. By the way, changes in hyperparameters within the selected
range have little impact on performance, indicating ARTS is not very
sensitive to hyperparameter changes.

5 Conclusion

In this paper, we propose a few-shot text steganalysis model con-
sisting of two components: a task-invariant extractor and a task-
relevant projector, to achieve fine-grained stego text detection. First,
we utilize adversarial training to obtain task-agnostic features. The
intra-class gap is diminished, dubbed the "attract" stage. Next, we
map initialized prototypes to a new space and introduce a refined
penalty item to urge the prototypes further away. This is the "repel"
stage. The proposed model is evaluated on both larger-variance and
smaller-variance datasets, and our ARTS outperforms previous work
by a large margin in few-shot scenarios. Future work includes apply-
ing ARTS to other fields, e.g., cross-lingual scenarios, and exploring
other effective meta-learning methods in text steganalysis.
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