1848

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA240697

Interpretable Graph Neural Networks for Tabular Data

Amr Alkhatib 2, Sofiane Ennadir ?, Henrik Bostrom ? and Michalis Vazirgiannis

a,b

4KTH Royal Institute of Technology
Elgctrum 229, 164 40 Kista, Stockholm, Sweden
bDaSciM, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, France.

Abstract. Data in tabular format is frequently occurring in real-
world applications. Graph Neural Networks (GNNs) have recently
been extended to effectively handle such data, allowing feature in-
teractions to be captured through representation learning. However,
these approaches essentially produce black-box models, in the form
of deep neural networks, precluding users from following the logic
behind the model predictions. We propose an approach, called IGN-
Net (Interpretable Graph Neural Network for tabular data), which
constrains the learning algorithm to produce an interpretable model,
where the model shows how the predictions are exactly computed
from the original input features. A large-scale empirical investigation
is presented, showing that IGNNet is performing on par with state-of-
the-art machine-learning algorithms that target tabular data, includ-
ing XGBoost, Random Forests, and TabNet. At the same time, the
results show that the explanations obtained from IGNNet are aligned
with the true Shapley values of the features without incurring any
additional computational overhead.

1 Introduction

In some application domains, e.g., medicine and law, predictions
made by machine learning models need justification for legal and eth-
ical considerations [24, 17]. In addition, users may put trust in such
models only with a proper understanding of the reasoning behind the
predictions. A direct solution is to use learning algorithms that pro-
duce interpretable models, such as logistic regression [5], which pro-
vides both local (instance-specific) and global (model-level) expla-
nations for the predictions. However, such algorithms often result in
a substantial loss in predictive performance compared to algorithms
that generate black-box models, e.g., XGBoost [7], Random Forests
[6], and deep learning algorithms [29, 32]. Post-hoc explanation tech-
niques, e.g., SHAP [27], LIME [34], and Anchors [35], have been
put forward as tools to explain predictions of the black-box mod-
els. However, the explanations provided by such methods are often
computationally intensive [2, 22] and lack fidelity guarantees, i.e.,
there are no guarantees that the provided explanation accurately re-
flects the underlying model, as studied previously [8, 12, 41]. As ex-
tensively argued in [37], there are hence several reasons to consider
generating interpretable models in the first place, if trustworthiness
is a central concern.

Graph Neural Networks (GNNs) have emerged as a powerful
framework for representation learning of graph-structured data [39].
The application of GNNs has been extended to tabular data, where
a GNN can be used to learn an enhanced representation for the data
points (rows) or to model the interaction between different features

(columns). TabGNN [19] is an example of the first approach, where
each data point is represented as a node in a graph. In compari-
son, TabularNet [13] and Table2Graph [46] follow the second ap-
proach, where the first uses a Graph Convolutional Network to model
the relationships between features, and the second learns a proba-
bility adjacency matrix for a unified graph that models the interac-
tion between features of the data points. GNNs can also be com-
bined with other algorithms suited for tabular data, e.g., as in BGNN
[21], which combines gradient-boosted decision trees and a GNN in
one pipeline, where the GNN addresses the graph structure and the
gradient-boosted decision trees handle the heterogeneous features
of the tabular data. To the best of our knowledge, all previous ap-
proaches to using GNNs for tabular data result in black-box models
and they are hence associated with the issues discussed above when
applied in contexts with strong requirements on trustworthiness. In
this work, we propose a novel GNN approach for tabular data, with
the aim to eliminate the need to apply post-hoc explanation tech-
niques without sacrificing predictive performance.
The main contributions of this study are:

e anovel approach, called Interpretable Graph Neural Network for
tabular data (IGNNet), that exploits powerful graph neural net-
work models while still being able to show exactly how the pre-
diction is derived from the input features in a transparent way

e a large-scale empirical investigation evaluating the explanations
of IGNNet as well as comparing the predictive performance of
IGNNet to state-of-the-art approaches for tabular data; XGBoost,
Random Forests, and multi-layer perceptron (MLP), as well as to
an algorithm generating interpretable models; TabNet [4]

e an ablation study comparing the performance of the proposed ap-
proach to a black-box version, i.e., not constraining the learning
algorithm to produce transparent models for the predictions

In the next section, we briefly review related work. In Section 3,
we describe the proposed interpretable graph neural network. In Sec-
tion 4, results from a large-scale empirical investigation are presented
and discussed, in which the explanations of the proposed method are
evaluated and the performance is compared both to interpretable and
powerful black-box models. Section 5 discusses the limitations of
the proposed approach. Finally, in the concluding remarks section,
we summarize the main conclusions and point out directions for fu-
ture work.

2 Related Work

In this section, we provide pointers to self-explaining (regular and
graph) neural networks, and briefly discuss their relation to model-

A. Alkhatib et al. / Interpretable Graph Neural Networks for Tabular Data

agnostic explanation techniques and interpretable models. We also
provide pointers to work on interpretable deep learning approaches
for tabular data.

2.1 Self-Explaining Neural Networks

Several approaches to generating so-called self-explaining neural
networks have been introduced in the literature; in addition to gen-
erating a prediction model, they all incorporate a component for ex-
plaining the predictions. They can be seen as model-specific expla-
nation techniques, in contrast to model-agnostic techniques, such as
LIME and SHAP, but sharing the same issues regarding fidelity and
lack of detail regarding the exact computation of the predictions.
Approaches in this category include the method in [25], which is
an early self-explaining neural network for text classification, the
Contextual Explanation Network (CEN) [1], which generates ex-
planations using intermediate graphical models, the Self-explaining
Neural Network (SENN) [3], which generalizes linear classifiers to
neural networks using a concept autoencoder, and the CBM-AUC
[38], which improves the efficiency of the former by replacing the de-
coder with a discriminator. Some approaches generate explanations
in the form of counterfactual examples, e.g., CounterNet [18], and
Variational Counter Net (VCNet) [20]. Again, such explanations do
not provide detailed information on how the original predictions are
computed and how exactly the input features affect the outcome.

2.2 Self-Explaining Graph Neural Networks

The Self-Explaining GNN (SE-GNN) [10] uses similarities between
nodes to make predictions on the nodes’ labels and provide explana-
tions using the most similar K nodes with labels. ProtGNN [45] also
computes similarities, but between the input graph and prototypical
graph patterns that are learned per class. Cui et al. [9] proposed a
framework to build interpretable GNNs for connectome-based brain
disorder analysis that resembles the signal correlation between dif-
ferent brain areas. Feng et al. [15] proposed the KerGNN (Kernel
Graph Neural Network), which improves model interpretability us-
ing graph filters. The graph filters learned in KerGNNs can uncover
local graph structures in a dataset. Xuanyuan et al. [40] proposed
scrutinizing individual neurons in a GNN to generate global expla-
nations using neuron-level concepts. CLARUS [28] enhances human
understanding of GNN predictions in medicine and facilitates the vi-
sualization of patient-specific information.

The self-explainable GNN methods mentioned above are not
suited for tabular data, as they are designed for input data that are
inherently graphical, such as social networks and molecular struc-
tures.

2.3 Interpretable Deep Learning for Tabular Data

In an endeavor to provide an interpretable regression model for tabu-
lar data while retaining the performance of deep learning models, and
inspired by generalized linear models (GLM), LocalGLMnet was
proposed to make the regression parameters of a GLM feature de-
pendent, allowing for quantifying variable importance and also con-
ducting variable selection [36]. TabNet [4] is another interpretable
method proposed for tabular data learning, which employs a sequen-
tial attention mechanism and learnable masks for selecting a subset
of meaningful features to reason from at each decision step. The fea-
ture selection is instance-based, i.e., it differs from one instance to
another. The feature selection masks can be visualized to highlight

1849

important features and show how they are combined. However, it is
not obvious how the features are actually used to form the predic-
tions.

3 The Proposed Approach: IGNNet

This section describes the proposed method to produce an inter-
pretable model using a graph neural network. We first outline the
details of a GNN for graph classification and then show how it can
be constrained to produce interpretable models. Afterward, we show
how it can be applied to tabular data. Finally, we show how the pro-
posed approach can maintain both interpretability and high perfor-
mance.

3.1 Interpretable Graph Neural Network

The input to a GNN learning algorithm is a set of graphs denoted
by G = (V,E,X,A), consisting of a set of nodes V, a set of
edges E, a set of node feature vectors X, and an adjacency ma-
trix A, where V. = {v1,...,on}, E C {(vi,vj)|vi,v; € V},
X = {x1,...,xn}, and the weight of edge (v;,v;) is represented
by a scalar value d; ; in the weighted adjacency matrix A, where
0;,; = A(4,7). A GNN algorithm learns a representation vector h;
for each node v;, which is initialized as hl(-o) = x;. The key steps in
a GNN for graph classification can be summarized by the following
two phases [39]:

(a) Message Passing: Each node passes a message to the neighboring
nodes, then aggregates the passed information from the neighbors.
Finally, the node representation is updated with the aggregated in-
formation. A neural network can also be used to learn some mes-
sage functions between nodes. The message passing phase can be
formulated as:

WY = [w® |60 + Y 6.h (1
weN (1)

Where hl(-l) is the hidden representation of the node v; in the I-th
layer, A (i) is the neighborhood of node v;, w() represents the
learnable parameters, and ¢ is a non-linearity function.

The adjacency matrix A of size |V| x |V| contains the edge
weights and can be normalized similar to a Graph Convolutional
Network (GCN) [23] as shown in (2).

A=D 3AD:)
Here D is the degree matrix D;; = Zj Ajj [23].
(b) Graph Pooling (Readout): A representation of the whole graph

G is learned using a simple or advanced function [39], e.g, sum,
mean, or MLP.

The whole graph representation obtained from the graph pooling
phase can be submitted to a classifier to predict the class of the graph,
which can be trained in an end-to-end architecture [44, 42].

The pooling function can be designed to provide an interpretable
graph classification layer. Thus, the final hidden representation of
each node is mapped to a single value, for instance, through a neural
network layer or dot product (R(hglﬂ) € R") = h; € RY), and
concatenated to obtain the final representation g of the graph G where
a scalar value in g corresponds to a node in the graph. Consequently,
if a set of weights is applied to classify the graph, we can trace the

1850 A. Alkhatib et al. / Interpretable Graph Neural Networks for Tabular Data

contribution of each node to the predicted outcome, i.e., the user can
find out which nodes contributed to the predicted class. For example,
g can be used directly as follows:

§ = link <Z wigi> 3)

=1

where w; is the weight (in vector w) assigned to node v; represented
in g;. The link function is applied to accommodate a valid range of
outputs, e.g., the sigmoid function for binary and softmax for multi-
class classification. This is equivalent to:

§ = link (Z wiR(hZ(.”“)) 4)

i=1

In the case of binary classification, one vector of weights (w) is
applied, and for multiple classes, each class has a separate vector of
weights.

3.2 Representing Tabular Data Points as Graphs

The proposed readout function in the previous subsection allows for
determining the contribution of each node in a prediction, if a white-
box classification layer is used for the latter. Therefore, we propose
representing each data instance as a graph where the features are
the nodes of that graph and the linear correlation between features
are the edge weights, as we assume that not all features are com-
pletely independent. The initial representation of a node is a vector
of one dimension, and the value is just the feature value, which can
be embedded into a higher dimensionality. The idea is outlined in
Algorithm 1 and illustrated in Figure 1.

Algorithm 1: IGNNet
Data: a set of graphs G and labels Y
Result: Model parameters 6
Initialize 0

for number of training iterations do
L<+0

for each G; € G do
H;O) — gj
for each layer | € messagePassing layers do

‘ H;Hl) <—messagePassing(H§-l))

end
g <—readout(H§.l+1))

7 <predict(g,)
L+ L+1oss(g;,y; € Y)

end
Compute gradients VoL
Update 0 <~ 0 — VoL

end

In order to make a prediction for a test instance, the data point has
to be converted to a graph using the same procedure for building the
input graphs to IGNNet, and for which graph node representations
are obtained using a GNN with parameters 6. Finally, the output layer
is used to form the prediction.

3.3 How can IGNNet achieve high performance while
maintaining interpretability?

An expressive GNN can potentially capture complex patterns and
dependencies in the graph, allowing nodes to be mapped to distinct
representations based on their characteristics and relationships [26].
Moreover, a GNN with an injective aggregation scheme can not only
distinguish different structures but also map similar structures to sim-
ilar representations [39]. Therefore, if the tabular data are properly
presented as graphs, GNNs with the aforementioned expressive ca-
pacities can model relationships and interactions between features,
and consequently approximate complex non-linear mappings from
inputs to predictions. On top of that, it has been shown by [14] that
GCNs based on 1-Lipschitz continuous activation functions can be
improved in stability and robustness with Lipschitz normalization
and continuity analysis; similar findings have also been demonstrated
on graph attention networks (GAT) [11]. This property is of particu-
lar importance when the application domain endures adversarial at-
tacks or incomplete tabular data.

The proposed readout function in subsection 3.1 can produce an
interpretable output layer. However, it does not guarantee the inter-
pretability of the whole GNN without message-passing layers that
consistently maintain relevant representations of the input features.
Accordingly, we constrain the message-passing layer to produce in-
terpretable models using the following conditions:

1. Each feature is represented in a distinct node throughout the con-
secutive layers.

2. Each node has a highly weighted self-loop which conveys the

main message of the node.

3. Each node is bounded to interact with a particular neighborhood,

where it maintains correlations with the nodes within that neigh-
borhood.

The message-passing operation is based on the linear relationships
between nodes. The strength of a passed message is directly propor-
tional to the linear relationship between the two nodes, and the sign
of the correlation value determines the signs of the messages. In ad-
dition, the highly weighted self-loops maintain the main messages
carried by the nodes and prevent them from fading away through
multiple message-passing layers. As a result, the aggregated mes-
sages could potentially hold significance to the input feature values.
The proposed graph pooling function, combined with the constrained
message-passing layers that keep representative information about
the input features, allows tracking each feature’s contribution at the
output layer and also through the message-passing layers all the way
to the input features.

4 Empirical Investigation

This section evaluates both the explanations and predictive perfor-
mance of IGNNet. We begin by outlining the experimental setup,
then by evaluating the explanations produced by IGNNet, and lastly,
we benchmark the predictive performance.

4.1 Experimental Setup

A GNN consists of one or more message-passing layers, and each
layer can have a different design, e.g., different activation functions
and batch normalization, which is the intra-layer design level [43].

A. Alkhatib et al. / Interpretable Graph Neural Networks for Tabular Data 1851

Represent a data instance as graph

Message passing

I 1 Map each node

to a single value

through an injective Label prediction

readout function

(Multiple iterations)

Figure 1: An overview of our proposed approach. Each data instance is represented as a graph by embedding the feature values into a higher
dimensionality, and the edge between two features (nodes) is the correlation value. Multiple iterations of message passing are then applied.
Finally, the learned node representation is projected into a single value, and a whole graph representation is obtained by concatenating the

projected values.

There is also the inter-layer design level, which involves, for in-
stance, how the message-passing layers are organized into a neu-
ral network and if skip connections are added between layers [43].
While the intra-layer and inter-layer designs can vary based on the
nature of the prediction task, we propose a general architecture for
our empirical investigation.! However, it is up to the user to modify
the architecture of the GNN. The number of message-passing layers,
number of units in linear transformations, and other hyperparame-
ters were found based on a quasi-random search and evaluation on
development sets of the following three datasets: Churn, Electricity,
and Higgs. We have six message-passing layers in the proposed ar-
chitecture, each with a Relu activation function. Multiple learnable
weights are also applied to the nodes’ representation, followed by
a Relu function. Besides three batch normalization layers, four skip
connections are added as illustrated in Figure 2. After all the GNN
layers, we use a feedforward neural network (FNN) to map the mul-
tidimensional representation of each node into a single value. In the
FNN, we do not include any activation functions in order to keep
the mapping linear, but a sigmoid function is applied after the final
layer to obtain a value between O and 1 for each node. The FNN
is composed of 8 layers with the following numbers of units (128,
64, 32, 16, 8, 4, 2, 1) and 3 batch normalization layers after the sec-
ond, fourth, and sixth hidden layers. After the FNN, the nodes’ final
values are concatenated to form a representation of the whole graph
(data instance). Finally, the weights that are output are used to make
predictions. The GNN is trained end-to-end, starting from the em-
beddings layer and ending with the class prediction.

We also provide an opaque variant of IGNNet (OGNNet, opaque
graph neural net for tabular data), where the FNN, along with the
output layer, is replaced by an MLP of one hidden layer with 1024
hidden units and a Relu activation function. All the learned node
representations just before the FNN are concatenated and passed to
the MLP for class prediction. The OGNNet is introduced to deter-
mine, by an ablation study, how much predictive performance we
may lose by squashing the learned multidimensional representation
of the nodes into scalar values and applying a white box classifier
instead of a black box.

In the experiments, 35 publicly available datasets are used.” Each
dataset is split into training, development, and test sets. The devel-
opment set is used for overfitting detection and early stopping of
the training process, the training set is used to train the model, and

1 The source code is available here: https:/github.com/amrmalkhatib/ignnet
2 All the datasets were obtained from https://openml.org

the test set is used to evaluate the model.* For a fair comparison,
all the compared learning algorithms are trained without hyperpa-
rameters tuning using the default settings on each dataset. In cases
where the learning algorithm does not employ the development set
to measure performance progress for early stopping, the development
and training subsets are combined into a joint training set. The adja-
cency matrix uses the correlation values computed on the training
data split. The weight on edge from the node to itself (self-loop) is a
user-adjustable hyperparameter, constitutes between 70% to 90% (on
average) of the weighted summation to keep a strong message per
node that does not fade out with multiple layers of message-passing.
Weak correlation values are excluded from the graph, so if the ab-
solute correlation value is below 0.2, the edge is removed unless no
correlation values are above 0.2; in case of the latter, the procedure is
repeated using a reduced threshold of 0.05.* The Pearson correlation
coefficient [31] is used to estimate the linear relationship between
features. In the data preprocessing step, the categorical features are
binarized using one-hot encoding, and all the feature values are nor-
malized using min-max normalization (the max and min values are
computed on the training split). The normalization keeps the feature
values between 0 and 1, which is essential for the IGNNet to have
one scale for all nodes.

The following algorithms are also evaluated in the experiments:
XGBoost, Random Forests, MLP and TabNet. XGBoost and Ran-
dom Forests are trained on the combined training and development
sets. The MLP has two layers of 1024 units with Relu activation func-
tion and is trained on the combined training and development sets
with early stopping and 0.1 validation fraction. TabNet is trained with
early stopping after 20 consecutive epochs without improvement on
the development set, and the best model is used in the evaluation.

For imbalanced binary classification datasets, we randomly over-
sample the minority class in the training set to align the size with
the majority class. All the compared algorithms are trained using the
oversampled training data. While for multi-class datasets, no over-
sampling is conducted.

The area under the ROC curve (AUC) is used to measure the pre-
dictive performance, as it is not affected by the decision threshold.
For the multi-class datasets, weighted AUC is calculated, i.e., the
AUC is computed for each class against the rest and weighted by the
support.

3 Detailed information about each dataset is provided in the appendix: https:
/farxiv.org/abs/2308.08945

4 The appendix includes an ablation study on how various hyperparameter
preferences affect predictive performance.

https://github.com/amrmalkhatib/ignnet
https://openml.org
https://arxiv.org/abs/2308.08945
https://arxiv.org/abs/2308.08945

1852 A. Alkhatib et al. / Interpretable Graph Neural Networks for Tabular Data

N
R e

Q

%{? & — Concat() —»{7 q —»H—» > Concar() —"K"Hi Concat) ——>
o/o \\‘6

l ‘
- J
¥
Feature Values Projection
into Higher Dimensionality

Message Passing

|:| Batch Normalization

Linear Transformation

Concat() Concatenate Tensors

64

Fully Connected Feedforward Network
to Project Node Vectors into Single Values

Figure 2: IGNNet default architecture. It starts with a layer to project the features into higher dimensionality, a linear transformation from one
dimension to 64 dimensions. A Relu activation function follows each message-passing layer and each green block as well. The feedforward
network at the end has no activation functions between layers to ensure a linear transformation into a single value. A sigmoid activation
function follows the feedforward network to obtain the final value for each feature between 0 and 1.

055 Bank32nh First Order Theorem Proving 08 PC2
07
0.90 r
07
085 0.6
06
o 080 05
=
275 04 05
c
E 0.70
03
= 04
0.65 02
03
060 —— Cosine Similarity 0.1
055 —— Spearman Correlation 02
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
#Evals #Evals #Evals

Figure 3: Comparison of KernelSHAP’s approximations and the importance scores obtained from IGNNet. We measure the similarity
of KernelSHAP’s approximations to the scores of IGNNet at each iteration of data sampling and evaluation of KernelSHAP. KernelSHAP

exhibits improvement in approximating the scores derived from IGNNet with more data sampling.

4.2 Evaluation of Explanations

The feature scores produced by IGNNet should ideally reflect the
contribution of each feature toward the predicted outcome and, there-
fore, they should be equivalent to the true Shapley values. As it has
been shown that KernelSHAP converges to the true Shapley values
when provided with an infinite number of samples [8, 22], it is antic-
ipated that the explanations generated by KerneISHAP will progres-
sively converge to more similar values to the scores of IGNNet as
the sampling process continues. This convergence arises from Ker-
nelSHAP moving towards the true values, while the scores of IGN-
Net are expected to align with these true values. To examine this
conjecture, we explain IGNNet using KernelSHAP and measure the
similarity between KernelSHAP’s explanations and IGNNet’s scores
following each iteration of data sampling and KernelSHAP evalu-
ation. For the feasibility of the experiment, 500 examples are ran-
domly selected from the test set of each dataset to be explained. The
cosine similarity and Spearman rank-order correlation are used to
quantify the similarity between explanations. The cosine similarity
measures the similarity in the orientation, while the Spearman rank-
order measures the similarity in ranking the importance scores [33].

The results demonstrate a general trend wherein KernelSHAP’s
explanations converge to more similar values to IGNNet’s scores
across various data instances and the 35 datasets, as depicted in Fig-
ure 3. The consistent convergence to more similar values clearly in-
dicates that IGNNet provides transparent models with feature scores

aligned with the true Shapley values.’

4.3 llustration of Explanations

In this section, we show, using a toy example, how the computed
feature scores by IGNNet can be used to understand the feature con-
tributions toward a specific prediction. Note that this is done in ex-
actly the same way as how one would interpret the predictions of a
logistic regression model or the feature importance scores generated
by the SHAP [27] or LIME [34] explainer. As the computed feature
scores reveal exactly how IGNNet formed the prediction, the user
can directly see which features have the greatest impact on the final
prediction, and possibly also how they may be modified to affect the
outcome. To demonstrate this, we present the feature scores for pre-
dictions made by IGNNet using an example from the Adult dataset.®
In the following illustration, we display the feature scores centered
around the bias value, which, when summed with the bias, will pro-
duce the exact outcome of IGNNet if the sigmoid function is applied.
The scores are sorted according to their absolute values, and only the
top 10 features are plotted for ease of presentation. A displayed score
T; of feature z; represents all the weights and the computations ap-
plied to the input value, as shown in equation 5.

5 The complete results of the 35 datasets are provided in the appendix.
6 We provide another example from the Churn dataset in the appendix.

A. Alkhatib et al. / Interpretable Graph Neural Networks for Tabular Data 1853

relationship_Own-child = 0.0

occupation_Farming-fishing = 0.0 -2
marital-status_Married-civ-spouse = 1.0 -D
marital-status_Divorced = 0.0 -!
occupation_Tech-support = 0.0 -5
occupation_Machine-op-inspct = 0.0 -5
education_5th-6th = 0.0 .1
relationship_Unmarried = 0.0 .g
education-num = 9.0 .B
-3 -2 -1] 1
Importance

(a) The original data point.

capital-gain = 6000.0
relationship_Own-child = 0.0 _
occupation_Farming-fishing = 0.0 _
marital-status_Married-civ-spouse = 1.0
marital-status_Divorced = 0.0 _
occupation_Tech-support = 0.0
occupation_Machine-op-inspct = 0.0 _
education_5th-6th = 0.0 -
relationship_Unmarried = 0.0 -

education-num = 9.0

-0.6 -0.4 -0.2 0.0 0.2 04 0.6 0.8 10
Importance

(b) The data point with a modified capital gain value.

Figure 4: Explanation to a single prediction on Adult dataset.

weN (i)
+6i,i50(w<l71>(Z 6i,uh$j71>)
weN (i)
+ 05,5 (oW (DT SiuXu +0iix:)..))))))
wEN (i)

IGNNet predicted the negative class (< 50K) with a narrow mar-
gin (0.495). The explanation shows that a single feature (capital-
gain=2885) has the highest contribution compared to any other fea-
ture value. In the training data, the capital-gain has a maximum value
of 99999.0, a minimum value of 0, a mean value of 1068.36, and a
7423.08 standard deviation. Therefore, the capital-gain is relatively
low for the selected data instance. To test if the explanation reflects
the actual reasoning of IGNNet, we raise the capital-gain value by
a smaller value than the standard deviation to be 6000 while leaving
the remaining feature values constant, and it turns out to be enough to
alter the prediction to a positive (> 50K) with 0.944 as the predicted
value. We can also see that the negative score of the capital-gain fea-
ture went from -3.67 in the original instance (4a) to -0.82 in the mod-
ified instance, as shown in Figure 4b. So the user can adjust the value
of an important feature as much as needed to alter the prediction.

4.4 Evaluation of Predictive Performance

Detailed results for IGNNet and the five competing algorithms on the
35 datasets are shown in Table 1. The ranking of the six algorithms
across 35 datasets, based on their AUC values, reveals OGNNet to
exhibit superior performance, claiming the top position, closely fol-
lowed by IGNNet and XGBoost. In order to investigate whether the
observed differences are statistically significant, the Friedman test
[16] was employed, which indeed allowed to reject the null hypothe-
sis, i.e., reject that there is no difference in predictive performance, as
measured by the AUC, at the 0.05 level. The result of subsequently
applying the post-hoc Nemenyi test [30] to determine what pairwise
differences are significant, again at the 0.05 level, is summarized in
Figure 5. However, the result shows no specific significant pairwise
differences between any of the compared algorithms. Furthermore,
the results show that using IGNNet instead of the black-box variant,
OGNNet, does not significantly reduce the predictive performance
while maintaining performance at the level of other powerful algo-
rithms for tabular data, e.g., XGBoost and Random Forests.

4.5 Computational Cost

The computational cost varies based on the architecture of the graph
neural network, which can be altered and determined based on the
predictive task and the dataset. The cost relative to the conventional
graph neural networks remains the same, i.e., the cost does not in-
crease with the proposed approach. The computational cost also de-
pends on the number of features in the dataset. Therefore, the user
can decide on the suitable architecture and the acceptable computa-
tional cost.

5 Limitations

The proposed approach targets tabular data primarily consisting of
numerical features. However, datasets with substantial categorical
features impose two challenges. Firstly, Pearson correlation is inade-
quate in handling correlation between categorical and numerical fea-
tures or between two categorical features. Secondly, we use one-hot
encoding for categorical features, which can result in an exponential
growth in dimensionality when dealing with nominal features with
numerous categories. Another limitation arises when input features
lack correlation, resulting in a null graph (a completely disconnected
graph).

6 Concluding Remarks

We have proposed IGNNet, an algorithm for tabular data classifi-
cation, which exploits graph neural networks to produce transparent
models. In contrast to post-hoc explanation techniques, IGNNet does
not approximate or require costly computations, but provides the ex-
planation while computing the prediction, and where the explanation
prescribes exactly how the prediction is computed.

We have presented results from a large-scale empirical investiga-
tion, in which IGNNet was evaluated with respect to explainability
and predictive performance. IGNNet was shown to generate expla-
nations with feature scores aligned with the Shapley values without
further computational cost. IGNNet was also shown to achieve a sim-
ilar predictive performance as XGBoost, Random Forests, TabNet,
and MLP, which are all well-known for their ability to generate high-
performing models.

One direction for future research is to explore approaches to model
feature interactions in the adjacency matrix that go beyond linear cor-
relations. Understanding how such non-linear interactions between

1854

cD

A. Alkhatib et al. / Interpretable Graph Neural Networks for Tabular Data

OGNNet |
IGNNet
XGBoost

l TabNet
MLP
Random Forests

Figure 5: The average rank of the compared classifiers on the 35 datasets with respect to the AUC (a lower rank is better), where the
critical difference (CD) represents the largest difference that is not statistically significant.

Table 1: The AUC of IGNNet, OGNNet, MLP, Random Forests, and XGBoost. The best-performing model is | colored in blue , and the second

best-performing is colored in light blue .

Dataset IGNNet OGNNet TabNet MLP Random Forests ~ XGBoost
Abalone 0.881 0.883 0.857 0.877 0.876 0.869
Ada Prior 0.905 0.888 0.848 0.877 0.885 0.894
Adult 0.917 0.915 0.919 0.881 0.907 0.931
Bank 32 nh 0.887 0.887 0.881 0.859 0.876 0.874
Covertype 0.984 0.988 0.969 0.861 0.995 0.967
Credit Card Fraud 0.987 0.966 0.969 0.913 0.914 0.975
Delta Ailerons 0.977 0.977 0.974 0.977 0.978 0.977
Electricity 0.901 0.929 0.894 0.928 0.97 0.973
Elevators 0.951 0.948 0.95 0.95 0.913 0.943
HPC Job Scheduling 0.908 0.921 0.775 0.908 0.952 0.955
Fars 0.956 0.958 0.954 0.955 0.949 0.962
1st Order Theorem Proving 0.776 0.808 0.495 0.805 0.854 0.858
Helena 0.875 0.889 0.884 0.897 0.855 0.875
Heloc 0.783 0.787 0.772 0.783 0.778 0.775
Higgs 0.762 0.785 0.804 0.774 0.793 0.797
Indian Pines 0.984 0.992 0.99 0.973 0.979 0.987
Jannis 0.856 0.857 0.867 0.861 0.861 0.872
M1 0.739 0.725 0.711 0.728 0.747 0.733
LHC Identify Jets 0.941 0.941 0.944 0.861 0.935 0.941
Madelon 0.906 0.718 0.501 0.668 0.79 0.891
Magic Telescope 0.907 0.921 0.927 0.929 0.934 0.928
MC1 0.957 0.904 0.89 0.853 0.844 0.943
Mozilla4 0.954 0.961 0.971 0.963 0.988 0.99
Microaggregation2 0.778 0.792 0.752 0.782 0.768 0.781
Numerai28.6 0.526 0.534 0.52 0.518 0.519 0.514
Otto Group Product 0.96 0.971 0.968 0.972 0.973 0.974
PC2 0.881 0.815 0.844 0.571 0.55 0.739
Phonemes 0.922 0.96 0.898 0.93 0.964 0.953
Pollen 0.492 0.508 0.509 0.496 0.489 0.467
Satellite 0.998 0.993 0911 0.992 0.998 0.992
Scene 0.994 0.989 0.986 0.992 0.983 0.982
Speed Dating 0.853 0.835 0.797 0.822 0.845 0.86
Telco Customer Churn 0.858 0.845 0.841 0.783 0.84 0.843
Vehicle sensIT 0.918 0.918 0.917 0914 0.912 0.916
Waveform-5000 0.965 0.962 0.933 0.965 0.959 0.957

features may impact the model’s interpretability could be an intrigu-
ing area of exploration. A second direction is to investigate alterna-
tive encoders for categorical features rather than relying on one-hot
encoding. It would also be interesting to extend IGNNet to handle
non-tabular datasets, including images and text, which would require
entirely different approaches to representing each data point as a
graph. Another important direction for future work is to use IGNNet
for studying possible adversarial attacks on a predictive model. Fi-
nally, an important direction would be to complement the empirical
evaluation with user-grounded evaluations, e.g., measuring to what

extent certain tasks could be more effectively and efficiently solved
when the users are provided with a transparent model that shows how
the prediction has been computed from the input.

Acknowledgements

This work was partially supported by the Wallenberg Al, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

A. Alkhatib et al. / Interpretable Graph Neural Networks for Tabular Data

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

M. Al-Shedivat, A. Dubey, and E. Xing. Contextual explanation net-
works. J. Mach. Learn. Res., 21(1), 2022.

A. Alkhatib, H. Bostrom, S. Ennadir, and U. Johansson. Approximat-
ing score-based explanation techniques using conformal regression. In
Proceedings of the 12th Symposium on Conformal and Probabilistic
Prediction with Applications, volume 204, pages 450-469, 2023.

D. Alvarez Melis and T. Jaakkola. Towards robust interpretability with
self-explaining neural networks. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

S. O. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learn-
ing. Proceedings of the AAAI Conference on Artificial Intelligence, 35
(8):6679-6687, 2021.

J. Berkson. Application of the logistic function to bio-assay. Journal of
the American Statistical Association, 39(227):357-365, 1944.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, Oct 2001.
T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, page 785-794, New
York, NY, USA, 2016. Association for Computing Machinery.

I. Covert and S.-1. Lee. Improving kernelshap: Practical shapley value
estimation using linear regression. In Proceedings of The 24th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 130,
pages 3457-3465. PMLR, 13-15 Apr 2021.

H. Cui, W. Dai, Y. Zhu, X. Li, L. He, and C. Yang. Interpretable graph
neural networks for connectome-based brain disorder analysis. In Med-
ical Image Computing and Computer Assisted Intervention — MICCAI
2022: 25th International Conference, page 375-385, 2022.

E. Dai and S. Wang. Towards self-explainable graph neural network. In
Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, CIKM °21, page 302-311, New York, NY,
USA, 2021. Association for Computing Machinery.

G. Dasoulas, K. Scaman, and A. Virmaux. Lipschitz normalization
for self-attention layers with application to graph neural networks. In
Proceedings of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning Research, pages
2456-2466. PMLR, 18-24 Jul 2021.

J. Delaunay, L. Galarraga, and C. Largouét. Improving Anchor-based
Explanations. In CIKM 2020 - 29th ACM International Conference on
Information and Knowledge Management, pages 3269-3272, Galway /
Virtual, Ireland, Oct. 2020. ACM.

L. Du, F. Gao, X. Chen, R. Jia, J. Wang, J. Zhang, S. Han, and D. Zhang.
Tabularnet: A neural network architecture for understanding semantic
structures of tabular data. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (KDD’21), 2021.
S. Ennadir, Y. Abbahaddou, J. F. Lutzeyer, M. Vazirgiannis, and
H. Bostrém. A simple and yet fairly effective defense for graph neu-
ral networks. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 38(19):21063-21071, Mar. 2024.

A. Feng, C. You, S. Wang, and L. Tassiulas. Kergnns: Interpretable
graph neural networks with graph kernels. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(6):6614—6622, Jun. 2022.

M. Friedman. A correction: The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. Journal of the American
Statistical Association, 34(205):109-109, 1939.

B. Goodman and S. Flaxman. European union regulations on algorith-
mic decision-making and a “right to explanation”. Al Magazine, 38(3):
50-57, 2017.

H. Guo, T. Nguyen, and A. Yadav. Counternet: End-to-end training of
counterfactual aware predictions. In ICML 2021 Workshop on Algorith-
mic Recourse, 2021.

X. Guo, Y. Quan, H. Zhao, Q. Yao, Y. Li, and W. Tu.
Multiplex graph neural network for tabular data prediction.
abs/2108.09127, 2021.

V. Guyomard, F. Fessant, T. Guyet, T. Bouadi, and A. Termier. Vcnet:
A self-explaining model for realistic counterfactual generation. In Ma-
chine Learning and Knowledge Discovery in Databases, ECML PKDD,
2022.

S. Ivanov and L. Prokhorenkova. Boost then convolve: Gradient boost-
ing meets graph neural networks. In International Conference on Learn-
ing Representations (ICLR), 2021.

N. Jethani, M. Sudarshan, I. C. Covert, S.-I. Lee, and R. Ranganath.
FastSHAP: Real-time shapley value estimation. In International Con-

Tabgnn:
CoRR,

ference on Learning Representations, 2022.

T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Rep-
resentations, 2017.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

1855
H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec. Inter-
pretable & explorable approximations of black box models. CoRR,

abs/1707.01154, 2017.

T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions.
In Proceedings of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107-117, Austin, Texas, Nov. 2016.
Association for Computational Linguistics.

P. Li and J. Leskovec. The expressive power of graph neural networks.
In Graph Neural Networks: Foundations, Frontiers, and Applications,
pages 63-98. Springer Singapore, Singapore, 2022.

S. M. Lundberg and S.-1. Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

J. M. Metsch, A. Saranti, A. Angerschmid, B. Pfeifer, V. Klemt,
A. Holzinger, and A.-C. Hauschild. Clarus: An interactive explainable
ai platform for manual counterfactuals in graph neural networks. Jour-
nal of Biomedical Informatics, 150:104600, 2024.

T. Mori and N. Uchihira. Balancing the trade-off between accuracy
and interpretability in software defect prediction. Empirical Software
Engineering, 24(2):779-825, 2019.

P. B. Nemenyi. Distribution-free multiple comparisons. PhD thesis,
Princeton University, 1963.

K. Pearson. Note on Regression and Inheritance in the Case of Two
Parents. Proceedings of the Royal Society of London Series I, 58:240—
242, Jan. 1895.

E. Pintelas, I. E. Livieris, and P. Pintelas. A grey-box ensemble model
exploiting black-box accuracy and white-box intrinsic interpretability.
Algorithms, 13(1), 2020.

A. H. A. Rahnama, J. Biitepage, P. Geurts, and H. Bostrom. Evalua-
tion of local model-agnostic explanations using ground truth. CoRR,
abs/2106.02488, 2021.

M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?":
Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, San Francisco, CA, USA, August 13-17, 2016,
pages 1135-1144, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision
model-agnostic explanations. In The 32nd Conference on Artificial In-
telligence (AAAI), 2018.

R. Richman and M. V. Wiithrich. Localglmnet: interpretable deep learn-
ing for tabular data. Scandinavian Actuarial Journal, 0(0):1-25, 2022.

C. Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine
Intelligence, 1(5):206-215, 2019.

Y. Sawada and K. Nakamura. Concept bottleneck model with additional
unsupervised concepts. IEEE Access, 10:41758-41765, 2022.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph
neural networks? In International Conference on Learning Representa-
tions, 2019.

H. Xuanyuan, P. Barbiero, D. Georgiev, L. C. Magister, and P. Lio.
Global concept-based interpretability for graph neural networks via
neuron analysis. Proceedings of AAAI Conference on Artificial Intel-
ligence, 37(9):10675-10683, Jun. 2023.

C.-K. Yeh, C.-Y. Hsieh, A. Suggala, D. 1. Inouye, and P. K. Raviku-
mar. On the (in)fidelity and sensitivity of explanations. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec.
Hierarchical graph representation learning with differentiable pooling.
In Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, NIPS’18, page 4805-4815, Red Hook, NY,
USA, 2018. Curran Associates Inc.

J. You, R. Ying, and J. Leskovec. Design space for graph neural net-
works. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020.
Curran Associates Inc.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep
learning architecture for graph classification. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence and 13th Innovative Appli-
cations of Artificial Intelligence Conference and 8th AAAI Symposium
on Educational Advances in Artificial Intelligence, 2018.

Z. Zhang, Q. Liu, H. Wang, C. Lu, and C.-K. Lee. Protgnn: Towards
self-explaining graph neural networks. In AAAZ, 2022.

K. Zhou, Z. Liu, R. Chen, L. Li, S.-H. Choi, and X. Hu. Table2graph:
Transforming tabular data to unified weighted graph. In Proceedings of
the 31st International Joint Conference on Artificial Intelligence, pages
2420-2426, 7 2022.

	Introduction
	Related Work
	Self-Explaining Neural Networks
	Self-Explaining Graph Neural Networks
	Interpretable Deep Learning for Tabular Data

	The Proposed Approach: IGNNet
	Interpretable Graph Neural Network
	Representing Tabular Data Points as Graphs
	How can IGNNet achieve high performance while maintaining interpretability?

	Empirical Investigation
	Experimental Setup
	Evaluation of Explanations
	Illustration of Explanations
	Evaluation of Predictive Performance
	Computational Cost

	Limitations
	Concluding Remarks

