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Abstract. The primacy bias in model-free reinforcement learn-
ing (MFRL), which refers to the agent’s tendency to overfit early
data and lose the ability to learn from new data, can significantly
decrease the performance of MFRL algorithms. Previous studies
have shown that employing simple techniques, such as resetting the
agent’s parameters, can substantially alleviate the primacy bias in
MFRL. However, the primacy bias in model-based reinforcement
learning (MBRL) remains unexplored. In this work, we focus on in-
vestigating the primacy bias in MBRL. We begin by observing that
resetting the agent’s parameters harms its performance in the context
of MBRL. We further find that the primacy bias in MBRL is more
closely related to the primacy bias of the world model instead of the
primacy bias of the agent. Based on this finding, we propose world
model resetting, a simple yet effective technique to alleviate the pri-
macy bias in MBRL. We apply our method to two different MBRL
algorithms, MBPO and DreamerV2. We validate the effectiveness
of our method on multiple continuous control tasks on MuJoCo and
DeepMind Control Suite, as well as discrete control tasks on Atari
100k benchmark. The experimental results show that world model
resetting can significantly alleviate the primacy bias in the model-
based setting and improve the algorithm’s performance. We also give
a guide on how to perform world model resetting effectively.

1 Introduction

Deep Reinforcement Learning (DRL) has shown great potential in
numerous fields such as robot control [3] and autonomous driving
[22]. However, training an agent with good performance in DRL
requires a large amount of data. Gathering samples from real envi-
ronment can be costly, making it crucial to improve the algorithm’s
sample efficiency and train a better-performing agent using limited
data. A direct approach to improving sample efficiency is to perform
multiple training updates per environment step [5, 16], which means
using a high UTD (Update-To-Data) ratio. This is analogous to up-
dating multiple epochs for a dataset in supervised learning. However,
unlike supervised learning, in DRL, the agent continuously interacts
with the environment and learns from the replay buffer, which con-
tains a dynamic and evolving data collection. As the policy is up-
dated, the data distribution in the replay buffer also changes. In that
case, using a high UTD ratio for updates can magnify the primacy
bias [31], which refers to the agent’s tendency to overfit early data
distribution and lose the ability to learn from new data distribution
effectively. Previous studies [5, 27, 31] have shown that such primacy
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Figure 1. The basic flowchart of MBRL algorithms. For each data sampled
from the environment, the world model is updated m times. The agent then
is trained on data generated by the world model n times. In practice, n is a
positive integer, and m is a fraction, which means that the world model is

updated every multiple environment steps.

bias due to a high UTD ratio can seriously damage the agent’s perfor-
mance in model-free setting. However, we notice that in model-based
reinforcement learning algorithms (MBRL), where a world model is
utilized, it is common to use a high UTD ratio for updates to improve
sample efficiency without causing significant harm to the agent’s per-
formance. For example, MBPO [17] employs a high UTD ratio of at
least 20 to update the agent, which is enough for MFRL algorithms
like SAC [14] and TD3 [10] to fail [27]. However, MBPO has demon-
strated superior performance on many continuous control tasks. This
phenomenon raises the following questions: Does the primacy bias
also exist in model-based setting? Does the primacy bias in MBRL
differ from its form in model-free scenario if it does exist?

In this paper, we focus on exploring the primacy bias in MBRL,
which has been neglected in prior studies. We start by assuming that
there are two forms of the primacy bias: the primacy bias of the agent
and the primacy bias of the world model. Next, we apply the pa-
rameter resetting technique, a simple yet effective approach to re-
ducing the primacy bias proposed by [31], in MBPO. Surprisingly,
instead of improving the agent’s performance, we observe a decline
in performance compared to the original algorithm. This suggests
that parameter resetting seems not to work in model-based setting.
To further investigate this phenomenon, we design and conduct ex-
tensive experiments. Our findings reveal that the primacy bias still
exists in model-based setting. However, it is more closely related to
the primacy bias of the world model, which differs from the situ-
ation in model-free setting. Building upon this finding, we propose
world model resetting, which is a modification to the parameter reset-
ting method. This slight modification works in model-based setting,
while original parameter resetting does not. To validate the effective-
ness of world model resetting, we apply it to two MBRL algorithms:

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240694

1824



Figure 2. Left: Learning curves for Hopper-v2 task of MuJoCo for SAC
and SAC with parameter resetting (abbreviated as SAC with reset). Right:

Learning curves for Hopper-v2 task of MuJoCo for MBPO and MBPO with
parameter resetting (abbreviated as MBPO with reset). The solid line

represents the average return, the shaded area represents the 95% confidence
interval. The results are evaluated by 5 runs.

MBPO and DreamerV2 [15]. We conduct extensive experiments on
multiple continuous control tasks on MuJoCo [40] and DeepMind
Control Suite (DMC) [38], as well as discrete control tasks on Atari
100k benchmark [20]. The results show that world model resetting
can reduce the primacy bias and improve the performance of MBRL
algorithms in both continuous and discrete domains. We also com-
pare world model resetting with AutoMBPO [25], a parameter tuning
method designed specifically for MBPO, to demonstrate the superi-
ority of our method under high UTD ratio conditions. In the final
part of our experiments, we examine the key factors that influence
the effectiveness of world model resetting. This provides a guideline
on effectively utilizing our method for better performance.

2 The Primacy Bias in MBRL

The main goal of our work is to explore the primacy bias in MBRL.
In model-free RL algorithms, the primacy bias typically refers to
the agent’s tendency to overfit early training data. However, in
model-based RL algorithms, we point out that there are two forms
of the primacy bias:

The Primacy Bias of the agent: The Q-network and the policy
network overfit the early data in the replay buffer and cannot
effectively use the data in the later stage of training, resulting in
learning a suboptimal policy.

The Primacy Bias of the world model: The world model overfits
the data distribution under the early policy and cannot effectively
represent the environment dynamics under the evolving policy,
failing the algorithm.

Unlike model-free RL algorithms, which only suffer from the first
form of the primacy bias, the above two forms of primacy bias can
appear in MBRL algorithms at the same time, and we assume that
either of them may cause the failure of the entire algorithm. In Fig-
ure 1, we present the sources of these two forms of primacy bias.
We refer to m as model UTD ratio and n as agent UTD ratio. A
high model UTD ratio may lead to overfitting of the world model,
which magnifies the primacy bias of the world model. Similarly, a
high agent UTD ratio can potentially lead to overfitting of the agent,
which stretches the primacy bias of the agent.

In the following part of this section, we first apply the parameter
resetting technique to MBRL but observe that it can’t improve the

Figure 3. Left: Learning curves for Hopper-v2 of MuJoCo for MBPO
with different model UTD ratio. Right: Learning curves for Hopper-v2 of

MuJoCo for MBPO with different agent UTD ratio. The solid line represents
the average return, the shaded area represents the 95% confidence interval.

The results are evaluated by 5 runs.

algorithm’s performance. Instead, it results in performance degrada-
tion. Based on this observation, we empirically investigate the impact
of the two forms of the primacy bias on the performance of MBRL
algorithms. As a conclusion, we identify the main form of the pri-
macy bias in model-based setting.

2.1 Parameter resetting doesn’t improve the
performance

Resetting the agent’s parameters periodically has been shown a sim-
ple yet powerful technique to eliminate the primacy bias in model-
free scenario, thus improving the algorithm’s performance, espe-
cially in high agent UTD ratio scenario. But in MBRL setting, can
parameter resetting still be effective?

We apply parameter resetting to model-free RL algorithm SAC
and model-based RL algorithm MBPO to answer that question. We
experiment on Hopper-v2 task on MuJoCo. To make the effect of pa-
rameter resetting as significant as possible, we refer to the experiment
settings suggested in [31]. For SAC, we set the agent UTD ratio to 32,
set the reset interval to 1 × 105 environment steps, and reset the en-
tire Q-network (including target Q-network) and policy network. For
MBPO, the optimization algorithm used is also SAC; we set the reset
interval to 2× 104 environment steps, set the agent UTD ratio to 32
(the default agent UTD ratio is 20), and the other hyper-parameters
are consistently with the default setting. We train SAC for a total of
400k environment steps and MBPO for 130k environment steps. Fig-
ure 2 shows our experimental results. We can observe that SAC with
a high agent UTD ratio has poor performance, but the algorithm per-
formance significantly improves with parameter resetting, consistent
with previous studies. However, for MBPO, a high agent UTD ratio
does not lead to worse performance. Applying parameter resetting
actually harms the performance instead of improving it. To investi-
gate this phenomenon, we conduct further experiments as follows.

2.2 High model UTD ratio hurts the performance

The phenomenon observed in Figure 2 seems quite perplexing. Why
is parameter resetting effective in model-free scenarios but not in
model-based setting? Does this imply the absence of the primacy
bias in MBRL?

To answer these questions, we conduct further experiments. To in-
vestigate the existence of the two forms of primacy bias and their
impact on the performance of MBRL algorithms, we conduct exper-
iments still using MBPO algorithm on Hopper-v2 task of MuJoCo.
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Figure 4. Left: Performance comparison between MBPO and MBPO with a pre-initialized buffer on Hopper-v2 task. Middle: Model mean squared error
comparison between MBPO and MBPO with a pre-initialized buffer. Right: Value-aware model error comparison between MBPO and MBPO with a

pre-initialized buffer. All the results are evaluated by 5 runs.

First, to investigate the effect of the primacy bias of the world model
on algorithm’s performance, we keep the other hyperparameters at
their default settings and only modify the model UTD ratio; we ob-
serve how this change affects the algorithm’s performance. The de-
fault model UTD ratio in the original MBPO paper is 1

250
, which

means the world model is updated every 250 environment steps. We
denote the default model UTD ratio as dUTD for convenience. In ad-
dition to dUTD, we set the model UTD ratio to 2× dUTD, 5× dUTD,
and 10× dUTD for four experimental groups. We train MBPO and
plot the learning curves in Figure 3 Left. We can observe that when
the model UTD ratio doubles, algorithm’s performance barely dif-
fers. However, when model UTD ratio becomes 5 times and 10 times,
there is a significant decrease in the performance of MBPO. This in-
dicates the existence of the primacy bias of the world model, and
it does not require a high model UTD ratio (even at 10 times the
default model UTD ratio, which is only 1

25
) for the primacy bias

of the world model to affect algorithm’s performance significantly.
Similarly, to investigate whether the primacy bias of the agent affects
algorithm’s performance, we change the agent UTD ratio while keep-
ing other hyperparameters default and conduct sets of experiments.
We vary the agent UTD ratio to 1, 5, 10, 20, 40, 80, conducting a
total of six groups of experiments. We plot the learning curves in
Figure 3 Right. We observe that the performance of MBPO improves
with the increase of the agent UTD ratio, until the ratio reaches 80,
after which the performance begins to decline. Compared with SAC,
where the algorithm’s performance is impaired when the agent UTD
ratio is 20, and increasing the model UTD ratio by only 5 times af-
fects the performance of MBPO, this experimental result suggests
that in the setting of MBRL, the primacy bias of the agent is not as
significant as MFRL, while the primacy bias of the world model is
more pronounced.

The question is, why are the types of the primacy bias different in
model-based and model-free setting? We can explain it as follows:
Due to the agent in MBRL being trained with data generated by the
world model, a couple of factors are at play. Firstly, the number of
samples the model generates is typically much larger than the num-
ber of samples gathered from the real environment. This abundance
of data reduces the likelihood of overfitting. Secondly, the samples
generated by the model contain noise, which can be seen as a form
of data augmentation. This means that even if the agent UTD ratio is
high, it is unlikely to suffer from overfitting, as is often observed in
model-free setting. In fact, if the agent UTD ratio is not high enough,

underfitting can occur, leading to a decline in performance. On the
other hand, when the world model is trained with samples from the
real environment, overfitting becomes more likely.

In summary, we draw an important conclusion that: in the setting

of MBRL, the primacy bias is more towards the primacy bias of

the world model, rather than the primacy bias of the agent.

2.3 The data in the replay buffer is enough for
learning the world model

Once the world model overfits the early data, even if there is high-
quality data in the environment buffer (we call it Denv), the world
model cannot learn from that data efficiently. Actually, even though
the agent trained with a high UTD ratio updated model performs
poorly, the data in Denv is usable. Still, the model cannot effec-
tively learn from it. We design experiments to verify this. We save the
MBPO agent trained with model UTD ratio of 10. Due to the algo-
rithm’s poor performance, this agent’s policy is far from the optimal
policy. As a result, the collected data in Denv is also poor, but does
this poor data hinder the learning process of the world model? To an-
swer that question, we train another MBPO algorithm with the same
model UTD ratio of 10. The difference is that we use the saved policy
to initialize the replay buffer, rather than a random policy. We plot the
learning curves in Figure 4 Left. It shows that the learning speed of
the agent with the pre-initialized buffer is much faster, and the final
return is higher, which means the data in the pre-initialized buffer is
suitable for policy learning. To further show the quality of the world
model, we also record the change process of Model Mean Squared
Error (MMSE) and Value-aware Model Error (VME). MMSE mea-
sures the difference between model MDP and true MDP, and VME
measures the error between model Bellman operator and true Bell-
man operator given a Q function. The specific definition and calcu-
lation of MMSE and VME can be found in Appendix1 A. We plot
the two kinds of model error in Figure 4 Middle, Right. We can see
that both model errors are lower with the pre-initialized buffer, which
means the data in the pre-initialized buffer is enough for learning a
world model.

1 The full paper is available at https://arxiv.org/abs/2310.15017
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Algorithm 1 MBPO with model reset
1: Require: total environment steps N , agent UTD ratio Ua, model

UTD ratio Um, reset interval Ir , initial policy πθ , predictive
model pφ, environment dataset Denv , model dataset Dmodel

2: for step from 1 to N do

3: Take action in environment according to πθ; add to Denv

4: Sample st uniformly from Denv

5: Perform k-step model rollout starting from st using policy πθ;
add to Dmodel

6: for agent step in 1 to Ua do

7: Update policy πθ using data from Denv ∪ Dmodel: θ ←
θ − λπ∇θJπ(θ,Denv ∪ Dmodel)

8: end for

9: for model step in 1 to Um do

10: Train model pφ on Denv via maximum likelihood
11: end for

12: if step % Ir == 0 then

13: Reset the world model
14: end if

15: end for

3 Reset the world model instead of the agent

In the previous section, we verify the existence of the primacy bias in
MBRL and show that, the primacy bias of the world model is more
pronounced than the primacy bias of the agent.

Based on these conclusions, we can infer that the parameter reset-
ting technique is not ineffective but rather used in the wrong way. We
advocate that parameter resetting can still improve the performance
of MBRL algorithms; only a minor adjustment is needed: reset the
parameters of the world model, instead of the agent. We call this
method world model resetting, summarized as follows:

world model resetting

During the MBRL algorithm training process, periodically
resetting the parameters of the agent world model, and the
rest of the training process remains unchanged.

The complete pseudo-code of applying world model resetting to
MBPO is presented in Algorithm 1.

4 Experiments

This section aims to validate the effectiveness of world model reset-
ting (abbreviated as model reset). To achieve this, we design and con-
duct numerous experiments on both continuous and discrete tasks.
We aim to answer the following questions: (1) Can model reset im-
prove the performance of MBRL algorithms? (2) Is the world model
with model reset more accurate? (3) Can model reset show superior-
ity over parameter tuning methods? (4) What are the key factors that
influence the success of model reset?

4.1 Overall performance of model reset

The first question is: can model reset improve the performance of
MBRL algorithms? To answer that question, we apply model reset
to two MBRL algorithms: MBPO and DreamerV2. We choose them
because they utilize different types of world model: probabilistic edy-
namics model and recurrent state-space model (RSSM), respectively.
For MBPO, we conduct experiments on four continuous control tasks

Figure 5. Learning curves for MBPO and MBPO with model reset on four
tasks of MuJoCo. Model UTD ratio is 10. The results are evaluated by 5

runs.

Table 1. Point estimates and 95% confidence interval for the performance
of DreamerV2 and DreamerV2 with model reset on 20 tasks on DMC. The

results are evaluated over 5 seeds.

Method IQM Median Mean

DreamerV2 762(716,796) 772(732,814) 765(722,801)

DreamerV2 +
reset

783(732,805) 797(740,819) 786(734,810)

on MuJoCo. For DreamerV2, we conduct experiments on multiple
continuous control tasks on DMC and discrete control tasks on Atari
100k benchmark to verify the effectiveness of model reset across dif-
ferent domains.

For the world model setting of MBPO and DreamerV2, we use
the networks and default hyperparameters as specified in the origi-
nal paper. For MBPO, the world model is an ensemble probabilistic
model consisting of 7 models, each with 4 hidden layers. We reset
all ensemble models and only reset the last 2 hidden layers every
2 × 104 environment steps. For DreamerV2, the world model con-
sists of an image encoder and a RSSM, and the RSSM consists of
a recurrent model, a representation model, and a transition predictor.
Among these components, the transition predictor is directly used for
behavior learning. Therefore, we only focus on resetting the transi-
tion predictor. Due to the complexity of RSSM, we opt for a more
conservative Exponential Moving Average (EMA) approach to reset
the parameters, which means φt+1 = (1 − α)φt + αφrandom. φ
represents the parameters of the transition predictor, and we set α
to 0.8. The transition predictor consists of one hidden layer, and we
reset this hidden layer every 2× 105 environment steps.

4.2 Model reset enhances model accuracy

We plot our results for MBPO with model UTD ratio of 10 on Mu-
JoCo tasks in Figure 5. Except for HalfCheetah-v2 task, which ap-
pears to be unaffected by the primacy bias, the other three tasks sig-
nificantly improve algorithm’s performance with model reset. As for
DreamerV2, we show the aggregated results on Atari 100k bench-
mark and DMC in Figure 6 and Table 1. We report the best results
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DreamerV2+reset
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IQM
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Mean

0.48 0.51 0.54 0.57

Optimality Gap

Human Normalized Score

Figure 6. Point estimates and 95% confidence interval for the performance of DreamerV2 and DreamerV2 with model reset on Atari 100k. The metric is
suggested by [1]. The results are evaluated over 5 seeds.

Figure 7. Model mean squared error and Value-aware model error comparison between MBPO and MBPO with model reset. The experiments are conducted
on four tasks on MuJoCo. The results are evaluated by 5 runs.

over different model UTD ratios for methods with and without
model reset. The results indicate that the algorithm’s performance
has improved in continuous and discrete control tasks with model
reset.2 We include more detailed experimental results in Appendix
C.1.

The next question is: is the world model with model reset more
accurate at collected data points? This question is crucial because it
determines whether model reset improves algorithm’s performance
by enhancing the model’s accuracy, rather than other potential fac-
tors. To answer that question, we conduct experiments to evaluate
the world model in MBPO during the training process. We do not
choose DreamerV2 because its world model component is too com-
plex and relies on temporal states, making it difficult to evaluate the
model.

We first observe the changes in model error (including model mean
square error and value-aware model error) during the training process
of MBPO and MBPO with reset. The results are presented in Figure

2 One might argue that the results in Table 1 show similar performance with
and without reset. We point out that the results here are the best results over
different model UTD ratios, and the effect of model reset is more obvious
for a fixed high model UTD ratio, which we show in Appendix C.1.

7. The results indicate that in the later stage of training, the model
with model reset can better fit the data in the current buffer. Periodic
reset allows the model to learn from new data distribution effectively.
In addition to the ability to fit the current data, we also want to know
the model’s ability to predict the environment dynamics under the
near-optimal policy. This can reflect whether the policy has the po-
tential to reach the optimal policy. Therefore, we additionally train a
SAC agent on four tasks of MuJoCo for 1 million steps. We keep the
replay buffer at the end of the training. When training MBPO, we use
the reserved replay buffer to calculate model mean square error. We
present the curves in Figure 8. The results show that the model’s abil-
ity to predict the dynamics under near-optimal policy has improved
with model reset. This suggests that the algorithm has greater poten-
tial to reach the optimal policy. In fact, a good model does not need
to be accurate on every data point but rather should be accurate on
the data points that the policy frequently visits. Model reset can be
seen as a forgetting mechanism that allows the model to focus more
on the data distribution under the current policy, thereby obtaining a
better model.
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Figure 8. Model mean squared error over the data in reserved SAC replay
buffer. The experiments are conducted on four tasks of MuJoCo. The results

are evaluated by 5 runs.

4.3 Comparison with hyperparameter tuning methods

In the previous sections, we empirically show that model reset can
mitigate the primacy bias for MBRL algorithms and improve the al-
gorithms’ performance. In this part, we aim to answer the question:
under high model UTD ratio conditions where the primacy bias

is pronounced, whether model reset can show superiority over hy-
perparameter tuning methods, i.e., tuning real data ratio or rollout
length?

As we discuss in Section 2.2, the primacy bias of the world model
can be pronounced under a high model UTD ratio, thus harming the
performance of MBRL algorithms. A natural idea is to automatically
tune model UTD ratio to mitigate the primacy bias. Previous studies
follow this idea and propose hyperparameter tuning methods, i.e., [7]
utilizes validation sets for dynamically adjusting the model UTD ra-
tio, [18] introduces an event-triggered mechanism to determine when
to update the model. Although adjusting model UTD ratio is an effec-
tive way to mitigate the primacy bias, it comes at a risk of sacrificing
sample efficiency. Therefore, we set model UTD ratio to a large fixed
value, intending to compare the effects of model reset and tuning hy-
perparameters other than model UTD ratio on the performance of
MBRL algorithms.

We then introduce our experimental setup. We choose MBPO
as our base MBRL algorithm and set the model UTD ratio to
10×dUTD, which is high enough to show primacy bias. As for the
hyperparameter tuning method, we choose AutoMBPO [25], a hy-
perparameter adjusting method which introduces a parametric hyper-
controller to sequentially select the value of hyperparameters to max-
imize the performance of MBPO. The hyper-controller dynamically
adjusts hyperparameters including real data ratio, model UTD ratio,
agent UTD ratio and rollout length during the training process of
MBPO. Since we fix the model UTD ratio, we only adjust real data
ratio, agent UTD ratio and rollout length. For model reset, we follow
the setup in Section 4.1, resetting all ensemble models and resetting
only the last 2 hidden layers every 2× 104 steps.

We conduct experiments on four tasks of MuJoCo, comparing the
performance of AutoMBPO and MBPO with model reset. The ex-
perimental results are shown in Figure 9. We can observe that model

Figure 9. Learning curves for AutoMBPO and MBPO with model reset on
four tasks of MuJoCo. Model UTD ratio is 10. The results are evaluated by 5

runs.

reset can incur higher overall performance improvement than Au-
toMBPO under the model UTD ratio of 10. Moreover, the imple-
mentation of AutoMBPO is complex since it contains an additional
hyper-controller while model reset only needs a few lines of code to
change. These demonstrate the advantage of model reset under high
model UTD ratio conditions.

4.4 The key factors influencing model reset

In this section, we aim to investigate the key factors that influence
the effectiveness of model reset and maximize the use of model reset
to improve the performance of MBRL algorithms. Due to space
limit, we only present our main points and conclusions here. The
detailed results can be found in Appendix C.

Model UTD ratio Model UTD ratio determines the extent to
which the model utilizes collected data. A high model UTD ratio
implies that the model is prone to fit the current data, potentially
increasing the risk of overfitting. In our experiments, we observe the
model UTD ratio significantly impacts the effect of model reset. We
vary the model UTD ratio of MBPO and DreamerV2 and observe
how model reset affects the degree of performance improvement.
For MBPO, we conduct experiments on four tasks on MuJoCo. We
vary the model UTD ratio to be 2× dUTD, 5× dUTD, and 10×
dUTD. For DreamerV2, we conduct experiments on 20 tasks on
DMC and 26 tasks on Atari 100k. For DMC, We change the default
model UTD ratio ( 1

5
) to 5 times and 10 times. For Atari 100k, We

change the default model UTD ratio ( 1
16

) to 4 times and 8 times.
Experimental results indicate that, as the model UTD ratio increases,
the level of overfitting of the model also increases. Therefore, the
degree of performance improvement from model reset is also higher.

Model ensemble size In MBRL algorithms, such as MBPO,
the world model can be an ensemble model. The ensemble model
utilizes ensemble learning to reduce the variance of prediction and
thus mitigate the risk of overfitting to some extent. Therefore, model
ensemble size is also one of the potential influencing factors. We
conduct experiments using MBPO. We vary the ensemble size to 1,
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3, 5, and 7 and apply model reset. The results indicate that as model
ensemble size increases, the effectiveness of model reset diminishes.

When and how to reset the model The last factor we examine is
how to conduct model reset, such as how often to perform a reset and
which part of the network to reset. These factors may have a signifi-
cant impact on the effectiveness of model reset. Through this inves-
tigation, we hope to provide insights and a guideline on performing
model reset effectively.

In our experiments, if the model has multiple hidden layers, reset-
ting only the last few layers yields the best results compared to reset-
ting the first few hidden layers or randomly resetting hidden layers.
We conjecture that the first few layers can extract the general features
of the task [33], allowing the world model to adapt to the new data
distribution after a reset quickly. Therefore, retaining the first few
hidden layers when performing reset is preferable. We also find that,
for ensemble model, resetting the majority or all ensemble members
has a better effect than resetting only one or few of them. Regarding
when to perform reset, we find that it depends on the specific task
and model UTD ratio. Generally, if the model UTD ratio is higher,
the reset frequency should also be higher.

5 Related Work

The primacy bias in reinforcement learning The primacy bias is
originally a concept in cognitive science [29], which means first im-
pressions influence human consciousness and people tend to pay less
attention to subsequent impressions. [31] first propose that in deep
reinforcement learning, the primacy bias also exists, and is related
to the agent’s overfitting of early data. In fact, the phenomenon of
overfitting [45, 44] in deep reinforcement learning has been studied a
lot. [37] point out that when using the Q function for generalization,
there might be overfitting; [28] show the approximator will lose
the ability to generalize during training in off-policy RL; [4] show
the "self-overfitting" issue exists in image-based RL with an image
decoder. It is worth mentioning that overfitting and primacy bias in
RL cannot be equated. For example, overfitting can also occur in
offline setting [11, 23], but since the dataset is static, it cannot be
called the primacy bias. The primacy bias often occurs in high UTD
ratio scheme [41, 9], causing the failure of the algorithm. Previous
works attempt to handle this in various ways, such as randomized
ensemble [5], network normalization [16, 35], replay ratio scaling
[8], and so on. [31] propose a simple method called parameter
resetting. By periodically resetting the parameters of the agent, it
can effectively deal with the scheme with a high UTD ratio. These
methods are mainly about model-free setting, while we further focus
on model-based setting.

Overfitting in model-based RL In model-based setting, most
previous work focuses on handling the issue that the agent overfits
an inaccurate world model [19, 2]. Commonly used methods are
uncertainty estimation [6], and policy regularization [46]. We need
to mention that the overfitting here is different from the primacy
bias we discuss above, because it is caused by an inaccurate model,
and we focus on the overfitting caused by a high UTD ratio. There
are also studies focusing on the overfitting of the world model itself.
Standard solutions include using different model structures, such as
Bayesian neural networks [32], and supervised learning methods,
such as spectral regularization [12] and dropout [36]. Some recent
studies aim to mitigate model overfitting by adjusting model UTD
ratio, i.e., [7] proposes to dynamically adjust the model UTD ratio by

utilizing validation sets. However, different network structures may
bring computational burdens, and adjusting UTD ratio may sacrifice
sample efficiency. World model resetting proposed by us neither
changes the network structure nor adjusts UTD ratio, but can be
seen as a way to make the world model pay more attention to current
transitions, thereby alleviating overfitting. However, previous works
do not explore the primary and secondary relationship between agent
overfitting and model overfitting, which is the focus of our work.

Model adaptation Our work is also related to model adaptation.
In model-based RL, the purpose of model adaptation is to enable
the world model to adapt when encountering new data or new tasks
quickly. Meta learning [39, 34] is often used for model adaptation
[26, 13]. These methods use a prior model to help the agent quickly
adapt to new tasks. Other methods include system identification [24],
curious replay [21], drifting Gaussian process [30]. Our work differs
from these methods because we focus on model learning in a fixed
environment, while they are mainly about a changing environment.
PDML [43] learns a model which can adapt to the evolving policy
in the same environment. However, PDML guides the model to pay
more attention to the current transitions mainly by re-weighting the
transition distribution in the replay buffer, while we consider it from
the perspective of the primacy bias, allowing the world model to
quickly adapt to the current policy by world model resetting, which
is simpler to apply.

6 Limitations

Our work has several limitations. One is that model reset is only
effective when the primacy bias is significant (such as, in high
model UTD ratio scenario). Another limitation is that applying reset-
ting technique to complex network structures (such as Transformers
[42].) is challenging. However, addressing these issues is beyond the
scope of this work. For future work, we can focus on exploring other
more effective methods to reduce the primacy bias, which we believe
is an interesting topic.

7 Conclusion

In this paper, we focus on the primacy bias in MBRL. We first assume
that the primacy bias is composed of the primacy bias of the agent
and the primacy bias of the world model. However, our experiments
find parameter resetting is ineffective for MBRL algorithms. In fur-
ther investigations, we discover that a high agent UTD ratio benefits
the algorithm, while a high model UTD ratio hurts the performance.
Therefore, we conclude that the primacy bias in MBRL is primarily
composed of the primacy bias of the world model. Additionally, we
propose world model resetting, which works in MBRL setting.

In the validation experiments of our method, we demonstrate that
world model resetting can improve the performance of the MBRL al-
gorithms across multiple domains, and the world model with model
reset is more accurate. We also compare world model resetting with
AutoMBPO to illustrate the advantage of our method under high
model UTD ratio conditions. Finally, we investigate the key factors
that influence the effectiveness of model reset. Our intention is not
to propose a totally new and state-of-the-art method for improving
MBRL algorithms’ performance. Instead, world model resetting is
simple yet effective, and we hope our work can shed light on address-
ing the issues of model overfitting and the primacy bias in MBRL.
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