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Abstract. Graph Neural Networks (GNNs) have become an impor-
tant graph feature learning paradigm that is extensively applied to
graph inference tasks. However, GNNs still have limitations in some
aspects such as representation capability, interpretability, etc. To this
end, this paper introduces a novel hybrid Fuzzy-Logic Graph Neu-
ral Network (FL-GNN) that synergistically combines Fuzzy Neural
Network (FNN) and GNN to effectively capture and aggregate local
information flows within the graph. FL-GNN exhibits three distinc-
tive features. First, we incorporate a specialized structure fuzzy rule
to enhance FL-GNN’s graph inference capability, surpassing repre-
sentative GNN models. Second, we augment the interpretability of
FL-GNN by integrating analytical exploration methods from two
perspectives: Fuzzy Inference System and Message Passing Algo-
rithm (MPA). Lastly, we refine the structure of FL-GNN based on
MPA to optimize its calculation complexity and consequently im-
prove learning efficiency. Experimental results show that FL-GNN
outperforms existing representative graph neural networks for graph
inference tasks.

1 Introduction

Graph is a powerful mathematical tool to model complex relation-
ships between entities or concepts across various domains, such as
social networks of people, biological protein structures, and the se-
mantic connections in knowledge graphs. However, graph data of-
ten imply hidden, unknown, or missing information regarding edges
(connections), vertex/edge attributes, and so forth. The process of in-
ferring such missing information is known as graph inference, which
encompasses a variety of tasks, including node classification, link
prediction, graph generation, and so on. Graph inference has many
applications in various domains, such as traffic-flow prediction, com-
puter vision, and bioinformatics.

Graph Neural Networks (GNNs) [26, 20, 4, 22, 16, 12] are popu-
lar algorithms and tools for graph inference. GNNs learn the structure
and feature information among the vertices and edges in the graph by
iteratively updating their features based on their low-order or high-
order neighborhood or even higher-order topology structure. This en-
ables GNNs to extract deep semantics and rich structural information
hidden in graph data and apply them to various graph inference tasks.

Fuzzy logic is a type of multi-valued logic that allows for de-
grees of truth instead of only crisp values. Built on fuzzy logic, a
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fuzzy inference system [8] consists of a well-designed fuzzy rule
base and a fuzzy inference engine and is popularly used to simu-
late human reasoning and decision-making processes. The fuzzy rule
base comprises a set of IF-THEN fuzzy rules, such as “IF tempera-
ture is cold, THEN fan speed is slow”. The effectiveness of a fuzzy
inference system depends on the design of the fuzzy rules, as well
as the type and parameters of the membership function, which are
typically determined by experts. However, this can be a challenging
and tedious task when dealing with complex systems. Several exist-
ing efforts have proposed solutions to address this challenge, Buck-
ley and Hayashi [5] propose a fuzzy neural network (FNN), which
draws lessons from Artificial Neural Network (ANN) to learn the
fuzzy system parameters. FNN has been successfully applied in vari-
ous fields such as medical image processing [15], time series analysis
[18]. reinforcement learning [9], and multimodal sentiment analysis
[6]. The state of the art in FNN development can be found in recent
review articles [31, 23].

Integrating FNN with GNN has the potential to address three in-
herent limitations of GNN approaches:

• Representation capability. The concept of fuzzification has
been extensively studied to improve data representation capabilities.
Real-world data often contains uncertainty and fuzziness beyond the
scope of traditional crisp values [13, 17]. To address this issue, mech-
anisms for fuzzification have been developed to capture such fuzzi-
ness and uncertainty. To effectively use the fuzzification data, we
need to extract features on the fuzzy dimension. However, traditional
GNN frameworks cannot do this since they only focus on the original
feature dimension and ignore the fuzzy dimension. To overcome this
limitation, we develop FL-GNN, which harnesses the advantages of
fuzzy features for a more comprehensive data representation solu-
tion and utilizes fuzzy rules to extract and highlight fuzzy dimension
features.

• Interpretability. In conventional GNNs, the correlations be-
tween the network’s parameter weights and inference process are
implicit. In our FL-GNN, the differences in topological structure be-
tween communities are explicitly presented in the firing strength dis-
tribution. By studying the firing strength distribution, we can identify
which rules are valid and which are redundant. This makes inter-
pretability a crucial aspect of FL-GNN as it not only provides a vi-
sual perspective for us to observe the local topology information and
feature distribution differences of vertices but also provides reliable
evidence for us to improve the model structure.
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• Flexibility. Several frameworks have been developed in graph
inference, such as Message Passing Algorithm (MPA) [11], which
are compatible with most graph inference models. In contrast, fuzzy
inference systems offer a more flexible way to establish inference
models. Fuzzy rules are not limited to graph-structured data and can
be extended to other data structures. For example, Hu et al. [13] di-
rectly design fuzzy rules for specialized graph-level task inference
and temporal data processing [18].

We conjecture that the proposed FL-GNN will offer some ground-
work for developing fuzzy graph neural networks to serve future
domain-specific graph applications where more effective fuzzy rules
are needed for their graph inference tasks. Designing more sophis-
ticated fuzzy rules enables FL-GNN to handle complex topology
structures such as "Hyperedge" and "Simplicial Complex", which
will help the model break through the 1-dim WL-test.

One of the big challenges for the efficient fusion of FNN and GNN
is the discrepancy between fuzzy rules and graph inference patterns.
Fuzzy rules are usually designed to capture human intuition reason-
ing processes, while graph inference patterns are derived from high-
level abstractions of graph structures. As a result, it is challenging to
define effective fuzzy rules that work well with graph inference pat-
terns. To this end, we explore a new perspective, where the fuzzy rule
is viewed as a paradigm for capturing graph information. By defin-
ing a specific fuzzy rule, FNN can handle tasks with diverse data
structures, such as the temporal relationship in time series data, the
local relationship in image data, or even the topology relationship
in graph data. Therefore, we propose FL-GNN, which bridges the
gap between FNN and GNN by allowing both fuzzy rules and graph
inference patterns to be represented in a unified way.

FL-GNN follows the fuzzy inference process with a human-like
mindset and uses MPA to explain it in the GNN field. From the per-
spective of a fuzzy inference system, FL-GNN utilizes the IF-part of
the fuzzy rule to construct the fuzzy relation about the center ver-
tex with its neighborhood vertices, and then the THEN-part outputs
the defuzzification inference result as the high-order features for the
center vertex. We can directly obtain the structure and semantic in-
formation of each vertex in the graph through the firing strength dis-
tribution. From the perspective of MPA, the IF-part is designed to
capture and aggregate the neighborhood information by combining
the t-norm operator and s-norm operator, and the THEN-part is de-
signed to produce the representations by applying a linear transfor-
mation. The rule layer of FL-GNN can be treated as a set of aggrega-
tion functions to generate abundant aggregation results from different
views, i.e., different permutation and combination methods of fuzzy
subsets in the rule layer.

The main contributions of this paper are summarized below:
• This paper proposes a novel hybrid model named FL-GNN,

which effectively integrates the architecture of FNN and the con-
cept of MPA to handle various graph inference tasks. We provide
interpretability of FL-GNN from two perspectives: MPA and fuzzy
inference system.

• We further improve FL-GNN to be FL-GNN-A to significantly
reduce model complexity while maintaining model performance.

• Extensive experiments verify the inference capability, perfor-
mance, principle, and interpretability of FL-GNN and FL-GNN-A.

2 Related Work

Some studies have attempted to combine FNN with GNN. Wei et al.
[24] pointed out that "similarity" in Few-Shot learning is subjec-
tive and uncertain. To improve relationship representations for node
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Figure 1. TS-FNN architecture.

classification, they suggest using a membership function instead of
SoftMax attention coefficient in the GAT [22] model, although this
work introduced fuzzy sets into the GNN model, they did not use
fuzzy logic for graph inference. Krleza and Fertalj [17] proposed the
FGNN (fuzzy graph neural network) to extract graph information hi-
erarchically from a single graph element to the entire graph structure.
FGNN could solve graph-matching problems and exhibited superior
robustness to input noise compared to non-fuzzy supervised-learning
neural networks.

There are some recent works that focus on modern graph infer-
ence tasks. Zhang et al. [30] proposed using fuzzy features for graph
contrastive learning and demonstrated the advantages of data fuzzifi-
cation in representing graph information with abundant experiments.
However, this work does not incorporate the core of fuzzy infer-
ence systems, including the rule base and inference engine, into such
graph inference tasks. Hu et al. [13] presented a fuzzy logic sys-
tem to deal with graph-level inference tasks. It leverages the graph
cluster algorithm to find prototype graphs, and uses features of each
prototype graph to generate IF-part of the fuzzy rule. The prototype
graph is fed into a GNN-dominated network structure GCPU to gen-
erate the network parameters for the THEN-part of the fuzzy rule.
However, this model ignores the local topology information and uses
graph kernel function and traditional GNN to extract graph informa-
tion instead of fuzzy logic.

Current works focus on specific types of graph inference tasks
and depend on the graph inference paradigm of conventional GNNs,
without bringing up a generic graph inference model building on
fuzzy logic. FL-GNN as a generic graph inference model, can serve
as a tool for extracting graph information and is suitable for various
types of graph inference tasks. Meanwhile, the inference principle of
FL-GNN is based on fuzzy logic and MPA, enabling it to process
fuzzy dimensional features in graph-structured data.

3 Preliminaries

Takagi-Sugeno-FNN (TS-FNN) [19] is one of the most common
FNNs, whose architecture is shown in Figure 1, consisting of 5 lay-
ers: fuzzification layer, rule layer, normalization layer, defuzzifica-
tion layer, and output layer.

Given an input vector x = [x1, .., xD] ∈ R
D , the fuzzy subset

corresponding to the ith input variable xi in the kth rule is denoted
as Ai,k. Let μi,k be the corresponding membership function (MF) of
Ai,k. A Gaussian-type MF is defined as

μi,k(xi) = e

−(xi−ci,k)2

2σ2
i,k , (1)

where ci,k is the Gaussian function center, σi,k is the Gaussian
function width, and both can be tuned according to the distribu-
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tion of input data. When we use singleton fuzzification to fuzzify
each input component xi, the fuzzification result of xi is denoted by
o1
i = [μi,1(xi), ..., μi,K(xi)] ∈ R

K , and the output of the fuzzifica-
tion layer is given by

O1 = [o1
1,o

1
2, ...,o

1
D] ∈ R

D×K , (2)

where K is the number of rules. In TS-FNN, we define the kth rule
as follows:

IF x1 is A1,k AND x2 is A2,k ... AND xD is AD,k

THEN yk(x′) = qk0 + qk1x1 + ...+ qkDxD,
(3)

where qk = [qk0 , q
k
1 , ..., q

k
D]T (1 ≤ k ≤ K) is the trainable param-

eters of defuzzification layer for the kth rule. "AND" is the t-norm
operator in fuzzy logic, denoting the logic conjunction operation be-
tween fuzzy subsets. In addition, each t-norm in fuzzy logic has a
dual operator named s-norm, which can be written as "OR", denoting
disjunction operation between fuzzy subsets. In the following sec-
tions, we use s(·) and t(·) as the abbreviation for the s-norm and t-
norm functions. As Equation (3) shows, the fuzzy rule is often built
by IF-THEN structure. The IF-part of each rule generates a single
value in the rule layer named firing strength, reflecting the matching
degree of input with the rule, while the THEN-part is responsible for
defuzzification, which means converting the fuzzy value into a crisp
value. TS-FNN calculates THEN-part on the defuzzification layer.

For Equation (3), if we use "product" as the t-norm operator, then
the output of kth rule in the rule layer is rk =

∏D
i=1 μi,k(xi), (1 ≤

k ≤ K). We call rk as the firing strength value. The output of the
rule layer is a firing strength vector, i.e.,

o2 = [r1, r2, ..., rK ] ∈ R
K . (4)

The normalization layer is in charge of calculating the weight of
the firing strength value of each rule within the whole fuzzy rule base,
reflecting its importance of a reasoning process. Then, the kth rule is
normalized as follows:

Ok
3 =

rk∑K
k′=1 rk′

. (5)

The normalized result of the rule layer is given by

o3 = [O3
1, O

3
2, . . . , O

3
K ] ∈ R

K . (6)

The defuzzification layer calculates the THEN-part of the fuzzy rule
to output a crisp value directly. The defuzzification result of the kth
rule is given by

O4
k = O3

k(q
k
0 + qk1x1 + ...+ qkDxD) = O3

k(x
′qk), (7)

where x′ is the input vector in the defuzzification layer. In 1-order
TS-FNN, x′ is the ordinary input vector of the fuzzification layer
concatenating extra element 1, i.e., x′ = [1,x] = [1, x1, . . . , xD] ∈
R

D+1. Besides, if qk = [qk0 ], the TS-FNN will degenerate to 0-
order, and the input vector of the defuzzification layer becomes
x′ = [1] ∈ R

1. Note that the above description just depicts a Mul-
tiple Input Multiple Output (MIMO) system. Suppose we adjust the
trainable parameter vector to qk ∈ R

(D+1)×out_features. In that
case, the system will become Multiple Input Single Output (MISO),
and the out_features is the dimension of output result. The output
vector of the defuzzification layer is denoted by

o4 = [O4
1, O

4
2, ...O

4
K ] ∈ R

K . (8)

The output layer summarises the total output result of the defuzzifi-
cation layer, i.e.,

O5 =
K∑

k=1

O4
k. (9)
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Figure 2. The architecture of FL-GNN.

4 Methodology

We introduce a new concept of fuzzy representation graph (FRG)
to describe a graph with fuzzy and uncertain information. Then, we
propose FL-GNN to conduct graph inference based on FRG.

4.1 Fuzzy Representation Graph

The information in the real-world graph may be incomplete and
fuzzy. Fuzzifying the graph data can capture the fuzziness and pre-
vent information loss. To achieve this, we present FRG to realize the
node-level graph fuzzification.

FRG is denoted as G = (V,E, Fv, Fe, Av, Ae), where V is the
set of vertices, E is the set of edges, Fv is the vertex attribute set, Fe

is the edge attribute set, Av is the set of fuzzy subsets for the vertex
attribute, and Ae is the set of fuzzy subsets for the edge attribute. For
the ith attribute Fv,i ∈ Fv , we consider it as a universe of discourse,
which has kv,i fuzzy subsets, corresponding to a membership func-
tion set Av,i = {μn, ..., μn+kv,i−1} ⊂ Av . Similarly, for the jth
attribute Fe,j ∈ Fe, we also consider it as a universe of discourse,
which includes ke,j fuzzy subsets, corresponding to a membership
function set Ae,i = {μm, ..., μm+ke,j−1} ⊂ Ae. Let φ : V → 2Fv ,
ψ : E → 2Fe denote the mapping functions for vertex attributes
and edge attributes, where 2Fv and 2Fe are the power sets of Fv and
Fe, respectively, and then each vertex vi ∈ V and edge ei ∈ E can
be represented by a set of vertex attributes φ(vi) ⊂ Fv and a set of
edge attributes ψ(ei) ⊂ Fe. Meanwhile, we also define two fuzzy
subset mapping functions, ρ : 2Fv → 2Av , σ : 2Fe → 2Ae . Having
the above functions, we could fuzzify any vertex and edge by map-
ping them into a set of fuzzy subsets in FRG, e.g., ρ(φ(vi)) ⊂ Av ,
σ(ψ(ei)) ⊂ Ae.

4.2 FL-GNN

The architecture of FL-GNN typically follows that of TS-FNN. The
difference between MIMO FL-GNN and MISO FL-GNN depends
on the trainable parameters qk. Without loss of generality, we take
MISO FL-GNN as an example to illustrate. The architecture of FL-
GNN is shown in Figure 2. The upper box displays the main work-
flow of FL-GNN, while the lower box shows the working procedure
of the rule layer for one vertex.

Given an FRG G with N vertices, each vertex’s feature vector is
denoted by xn = [x1, . . . , xD] ∈ R

D (1 ≤ n ≤ N), and each
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attribute is assigned with M fuzzy subsets, i.e., |Av,d| = M (1 ≤
d ≤ D). Let Ami,j denote the jth fuzzy subset of the ith vertex
feature (1 ≤ i ≤ D, 1 ≤ j ≤ M ), and the membership function
of Ami,j is denoted by μmi,j (we use the abbreviations Am and
μm in the remaining part). The input of FL-GNN is the collection
of all vertices’ feature vectors, X ∈ R

N×D . These vectors are first
expanded to the fuzzy dimension through the fuzzification layer and
we obtain O1 ∈ R

N×D×M . Then, in FL-GNN we write the kth
(1 ≤ k ≤ MD) rule of each vertex v ∈ V as

IF AND
Am∈(Am1,a ,...,AmD,b

)
( OR

u∈N(v)
(v is Am AND u is Am))

THEN yk(x′) = (qk0 + qk1x1 + ...+ qkDxD),
(10)

where tuple (Am1,a , ..., AmD,b) is an element of S = Av,1×Av,2×
· · · ×Av,D , ’×’ denotes the Cartesian product, and indexes a, b rep-
resent a combination of index results generated by Cartesian product.
Hence, set S has a total of MD tuples, corresponding to MD rules
in the rule layer.

The rule design is based on the concept of MPA to achieve aggre-
gation and update. Specifically, the rule employs a compound logic
expression in the IF-part to achieve a Mixed Aggregation Function
[2], which can aggregate the local information in the fuzzy dimen-
sion. In the THEN-part, each vertex updates its self-state based on its
firing strength value (aggregation message). The IF-part of Equation
(10) corresponds to three steps inside the rule layer described in the
lower box of Figure 2: 1) the neighboring vertices of the center vertex
v calculate their similarities to v by applying the t(·) operator under
the fuzzy subset Am. Note that the expression t(v, ui) represents
the t-norm operation on the fuzzy values of vertex v and ui in the
fuzzy subset Am. 2) vertex v uses the s(·) operator to aggregate the
similarity messages from its neighboring vertices. 3) the aggregation
results from different fuzzy subsets (Am1,a , ..., AmD,b) are further
aggregated by t(·). Then, we obtain the ultimate aggregation out-
come corresponding to the firing strength value rk (1 ≤ k ≤ MD).
The firing strength vector corresponding to the input vertex vector
xn is denoted as rn = [r1, . . . , rMD ] (1 ≤ n ≤ N) and the output
of the rule layer is represented by O2 = [r1, . . . , rN ] ∈ R

N×MD

.
The working procedure of the rule layer is designed to implement
an attention mechanism in the fuzzy dimension. Specifically, differ-
ent combination results in S will generate diverse attention scores to
different fuzzy information. After normalization, the normalized fir-
ing strength values O3 ∈ R

N×MD

and all vertices’ feature vectors
X are fed into the defuzzification layer to obtain the defuzzification
result O4 ∈ R

N×MD

. Finally, the output layer performs the sum
operation on O4 and outputs the final result O5 ∈ R

N×1.
Here, we formally define the FL-GNN with a stacked structure as

follows: First, a single-layer MIMO FL-GNN is defined as O5 =
fθ(X,A), where X denotes the input node data, A denotes the ad-
jacency matrix, θ denotes the trainable parameters in FL-GNN, and
O5 denotes the output of the single layer of FL-GNN. In the follow-
ing description, we replace O5 with H to make the formulas more
concise. Then, for the FL-GNN with a stacked structure, we define
the output of the lth layer as Hl = fθl(H

l−1,A)+Hl−1, where we
add the residual connection Hl−1. Meanwhile, some studies have re-
ported that the FNN structure has the ability to fit nonlinear functions
[13]. To enhance the sparsity of the parameters and mitigate overfit-
ting, we incorporate an activation function σ(·) of the ReLU family
in each layer of FL-GNN. In addition, we also add a BatchNormal-
ization Layer BN(·) for the stability of the model. Finally, the output
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Figure 3. The architecture of FL-GNN-A.
of the lth layer is defined as Hl = BN(σ(fθl(H

l−1,A) +Hl−1)).

4.3 Improvement to FL-GNN

The aforementioned FL-GNN still has limitations. The structural de-
sign of the defuzzification and output layers remains complex for
graph inference tasks. The additional training parameters and com-
putational steps introduced by the defuzzification and output layers
do not bring a proportional performance improvement. To address
this, we propose two improvement solutions:

1) We first introduce a sliding window mechanism to achieve
dimension reduction. Specifically, we use a sliding window in
FL-GNN to split the high-dimensional input into multiple low-
dimensional segments, and each individual segment is assigned an
independent fuzzification layer and rule layer. This structural design
enables multiple FL-GNNs to share the complexity of the monolithic
FL-GNN, and reduces the number of rules from MD to BMW ,
where W is the sliding window size (W � D), and B is the number
of segments determined by the sliding window stride size and W . It
is important to note that the calculation procedure of firing strength
value for each input segment is entirely independent, allowing us to
design a parallel architecture that can process all segments simulta-
neously, thereby improving computation efficiency.

2) To improve the model efficiency for graph inference tasks, we
make some changes to FL-GNN’s architecture. First, for the stacked
structure of FL-GNN, we only stack the fuzzification layer and rule
layer, and no longer stack the normalization layer, defuzzification
layer, and output layer, which could effectively reduce the computa-
tional complexity brought by the defuzzification layer. Second, we
add a feature refinement layer that utilizes the MaxPooling function
to compress the size of the firing strength vector to reduce infor-
mation redundancy. In Section 5.3, we conduct a fidelity study to
verify that the fuzzy rule with a low value of firing strength is re-
dundant for the inference procession of the model. Third, we add
a skip-connection [27] between every two consecutive stacked lay-
ers, allowing for merging outputs from previous layers, which can
alleviate the problem of excessive information smoothing in stacked
structures.

We incorporate two improvement solutions into FL-GNN and
elicit FL-GNN-A. For FL-GNN-A, we use a two-part architecture to
replace the original 5-layer architecture of FL-GNN to represent the
aggregation operation and update operation in turn. The schematic
diagram of FL-GNN-A is shown in Figure 3, where the sliding win-
dow size is 3, the stride size is 2, and the number of stacked lay-
ers is 3. To facilitate the description, we transpose the model in-
put X ∈ R

N×D to XT = [x1,x2, ...,xD] ∈ R
D×N , where the
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xd ∈ R
N (1 ≤ d ≤ D) denotes the vector consisting of the dth

feature of all vertices.
In the part-1 of FL-GNN-A, we first utilize the sliding window to

split the vertex feature along the feature dimension. These segments
are then independently processed in the fuzzification layer and rule
layer to generate the firing strength segment Rb = [rb1, . . . , r

b
N ] ∈

R
N×MW

, (1 ≤ b ≤ B), where rbn ∈ R
MW

, (1 ≤ n ≤ N) de-
notes the firing strength vector for the nth vertex in the bth seg-
ment. The output of part-1 is denoted by R′

l = [R1, . . . ,RB ] ∈
R

N×BMW

, (1 < l < L), where L is the number of stacked layers.
For the sake of the narrative, here we ignore the feature refinement
layer. R′

l is then fed into the skip connection layer, where the outputs
of all previous layers will be concatenated as X = [R′

1, . . . ,R
′
l] and

sent to the next part-1 layer. In part-2, the output of the last skip
connection layer passes through the normalization layer, defuzzifica-
tion layer, and fully connected layer sequentially to generate the fi-
nal outcome. Although FL-GNN-A does not follow the conventional
structure of FNN, it still maintains the fundamental structure of the
fuzzification layer and the rule layer. This implies that FL-GNN-A
can effectively mitigate noise and extract fuzzy information from a
graph. It is a trade-off between the model’s computational efficiency
and inference capability.

4.4 FL-GNN and MPA

Let us shift our focus to the Message Passing Neural Network
(MPNN), which is the generalized paradigm for most GNNs. MPA
is a crucial phase of MPNN. The major steps of MPA can be di-
vided into two steps: the message aggregation and the message up-
date. In the message aggregation step, each vertex combines the
messages from its neighbors using aggregation mechanisms such as
sum, concatenate, attention, etc. Then, in the message update
step, each vertex updates its own state using an update function.

On the whole, FL-GNN generates MD different aggregation func-
tions (fuzzy rules) in the IF-part, and the THEN-part in each fuzzy
rule acts as an update function.

The calculation process of the IF-part in each fuzzy rule as the
Mixed Aggregation Function denoted by f : [0, 1]n −→ [0, 1]. This
function takes real arguments from the closed interval I = [0, 1] and
produces a real value in the same interval. The components of f ,
t-norm and s-norm operators, are the conjunctive aggregation func-
tion and disjunctive aggregation function, respectively [2]. No matter
whether t-norm or s-norm, they both possess symmetric, namely,
permuation equivariant, satisfying the basic inductive bias of
GNN. As per the conclusion of Corso et al. [7]: "In order to dis-
criminate between multisets of size n whose underlying set is R, at
least n aggregators are needed." FL-GNN obtains rich aggregation
functions by combining different fuzzy subsets. Therefore, we be-
lieve that the rule layer provides sufficient inference capability for
FL-GNN.

The principle of update function of THEN-part is similar to the
attention mechanism, where the original feature of the vertex first
undergo a linear transform and then multiplied by the attention score
(firing strength value) to obtain the new vertex state.

4.5 Complexity Analysis

Here we conduct the complexity analysis with FL-GNN and FL-
GNN-A. The signal layer of FL-GNN comprises five calculation
steps.

Step 1: The Fuzzification Layer will expand the vertices feature
X ∈ R

N×D to the fuzzy dimension and output O1 ∈ R
N×D×M .

the computational complexity of this operation is O(NMD).
Step 2: Then, in the Rule Layer for each fuzzy rule, the computa-

tional complexity of innermost operation (v is Am AND u is Am)
is O(1), the inner operation ORu∈N(v)(·) will aggregate the
fuzzy feature of all vertices, its computational complexity is
O(|E|MD). The computational complexity of outer operation
ANDAm∈(Am1,a ,...,AmD,b

)(·) is O(D). In the Rule Layer, each

vertex will generate MD fuzzy rules, and the complexity of calcu-
lating the firing strength of all fuzzy rules is O(NDMD). How-
ever, we have noticed that some elements in the result of Carte-
sian product S = Av,1 × Av,2 × · · · × Av,D have the identical
prefix. Therefore, we can store the calculation results of the com-
mon prefix via iterative fuzzy rule computation to avoid duplicate
calculations, then the computation complexity could be reduced to
O(NM2(1−MD−1)

1−M
). Finally, the computational complexity in the

Rule Layer is O(|E|MD +O(NM2(1−MD−1)
1−M

)).
Step 3: The Normalization Layer will carry on normalization op-

eration for all MD firing strength of the fuzzy rule, the complexity
is O(MD).

Step 4: In Defuzzification Layer, the complexity of x′qk is
O(DD′), where we use D′ denotes the output dimension. Thus, for
MD fuzzy rules the complexity is O(MDDD′), and the total com-
plexity is O(NMDDD′).

Step 5: In the Output Layer, we accumulate the fire strength of all
fuzzy rules, with a computational complexity of O(NMD).

Finally, we obtain the computational complexity of FL-GNN:
O(MD(N+|E|))+O(MD(N(DD′+1)+1)+ NM2(1−MD−1)

1−M
).

For the FL-GNN-A, the number of fuzzy rules will be re-
duced to BMW through sliding windows, so we can reduce the
computational complexity of the Rule Layer to be O(|E|MD +
NBM2(1−MW−1)

1−M
)). Meanwhile, when using FL-GNN-A in prac-

tice, we usually directly use a fully connected layer instead of the
Normalization Layer, Defuzzification Layer, and Output Layer, be-
cause the firing strength vector is sufficient to reflect the local struc-
ture information, so we can directly use it as the representation infor-
mation of the vertex in the graph. Thus, the computational complex-
ity of the last three layers is reduced to O(NBMWD′). Finally, the
computational complexity of FL-GNN-A is O(MD(N + |E|)) +
O(NB(MWD′ + M2(1−MW−1)

1−M
)).

5 Experiments

5.1 Datasets

We conduct experiments on multiple datasets to evaluate the per-
formance of the model for various graph inference tasks. For the
node-level task, we select three small node classification datasets, in-
cluding Cora, Citeseer, and a Pubmed [28], all of them use F1-micro
as the evaluation metric. A medium dataset ogbn-protines [14], uses
AUC-ROC as its evaluation metric. A large-scale node classification
dataset Reddit [12], uses F1-micro as its evaluation metric. For the
graph-level task, we select two small-scale graph-level node classi-
fication/regression datasets, including ogbg-molsol (regression), and
ogbg-molfreesolv (regression). A medium-scale dataset ogbg-molhiv
(classification), uses AUC-ROC as its evaluation metric. A large-
scale dataset ogbg-molpcba (classification) [14], uses AP (average
precision) as its evaluation metric. All the performance results are
presented in the form of mean value ± standard deviance.
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Table 1. Performance on node-level datasets.

Cora (F1-micro) CiteSeer (F1-micro) Pubmed (F1-micro) ogbn-proteins (AUC-ROC) Reddit (F1-micro)
FL-GNN-A 0.8252±0.0037 0.7254±0.0063 0.7860±0.0013 0.7897 ±0.0012 0.9521±0.0015
GraphSage-mean 0.8144±0.0091 0.6994±0.0083 0.7660±0.0059 0.7768 ±0.0020 0.9501±0.0023
GAT 0.8202±0.0056 0.7188±0.0067 0.7775±0.0066 0.7616 ± 0.0039 0.9429±0.0074
GCN 0.8220±0.0008 0.7034±0.0055 0.7762±0.0019 0.7251±0.0035 0.9311±0.0131
TransformerConv 0.8002±0.0039 0.6712±0.0063 0.7732±0.0012 0.7873 ± 0.0054 0.9550±0.0067
GATv2 0.8174±0.0036 0.7208±0.0093 0.7724±0.0055 0.7608 ± 0.0015 0.9220±0.0445
GIN 0.7408±0.0205 0.6260±0.0128 0.7376±0.0128 0.7569 ± 0.0054 0.9218±0.0173
GTCN 0.8297±0.0013 0.7201±0.0898 0.7831±0.0048 0.7673 ± 0.0014 0.9373±0.0014
GTAN 0.8038±0.0110 0.7127±0.0046 0.7246±0.0076 0.7601 ± 0.0135 0.9401±0.0135

Table 2. Performance on graph-level datasets.

ogbg-molfreesolv (RMSE) ogbg-molesol (RMSE) ogbg-molhiv (AUC-ROC) ogbg-molpcba (AP)
FL-GNN-A 1.7075±0.0052 0.8135±0.0416 0.7824±0.0157 0.2468±0.0032
GraphSage-mean 2.0390±0.0631 0.8437±0.0765 0.7568±0.2610 0.2333±0.0045
GAT 2.0978±0.1933 0.8413±0.0251 0.7754±0.0164 0.2370±0.0632
GCN 1.8471±0.0808 0.8188±0.0249 0.7673±0.2187 0.2287±0.0113
TransformerConv 1.9935±0.1166 0.8671±0.0672 0.7652±0.2231 0.2433±0.0124
GATv2 1.9905±0.1052 0.8313±0.0255 0.7571±0.0083 0.2455±0.0113
GIN 2.0219±0.0367 0.8364±0.0173 0.7798±0.0343 0.2423±0.0299
E-SPN 1.7903±0.0471 0.8693±0.0569 0.7710±0.0120 0.2348±0.0087
GSN 1.8096±0.0033 0.8239±0.0131 0.7703±0.0174 0.2508±0.0230

5.2 Performance Comparison

Experiment Settings. For FL-GNN-A, we choose the "product" t-
norm operator and replace its dual operator (s-norm operator) with
the "mean" average operator by considering that the calculation of
s-norm cannot be performed in parallel. We choose several widely-
used GNNs as the baseline models, including Graph Isomorphism
Network (GIN) [26], TransformerConv [20], GATv2 [4], GAT [22],
Graph Convolutional Network (GCN) [16], and GraphSAGE [12].
For the models with the multi-heads mechanism, such as Trans-
formerConv and GAT, we set 4 heads for them. All the GNN models
mentioned above are implemented through the model interface pro-
vided in Fey and Lenssen [10]. Moreover, we also select some mod-
els specifically designed for a certain type of graph inference task,
including GSN[3] and E-SPN[1], which are used for graph-level in-
ference task. For the node-level inference task, we added two variants
of GTNet[25], namely GTCN and GTAN. On the dataset Reddit, all
models are trained in batches using the NeighborSampling scheme
[12], and the sample sizes are set to layer1 = 35 and layer2 = 20
for both the 1st-order and 2nd-order neighbors, and on the dataset
ogbn-proteins, the sample sizes of the 1st-4th order neighbors are set
to layer1 = 40, layer2 = 35, layer3 = 15, layer4 = 5. For the
graph-level datasets, we select "sum" as the readout function.

Experimental Results. The results for node-level and graph-level
graph inference tasks are reported in Tables 1 and 2, respectively.
We observe that FL-GNN-A substantially possesses sufficient graph
inference capability compared to popular GNN models. FL-GNN-A
can handle both node-level and graph-level inference tasks regard-
less of their scales, indicating that the model structure of FL-GNN-A
is suitable for common graph inference tasks. FL-GNN-A achieves
great performance on most graph-level datasets except GSN on the
ogbg-molpcba dataset. In this case, FL-GNN-A’s performance is sec-
ond only to GSN. Meanwhile, FL-GNN-A also achieves superior
performance for the node-level tasks and exceeds almost all mod-
els except TransformerConv on the Reddit dataset and GTCN on the
Cora dataset, where FL-GNN-A performs as the second-best with a
minimal gap compared to TransformerConv and GTAN. The results
show that few existing GNNs can always maintain good performance

for one task on multiple datasets, let alone for both graph-level and
node-level inference tasks. For example, TransformerConv performs
the second-worst for the node-level task on the datasets Cora and
CiteSeer. GCN achieves the second-best performance for the graph-
level task on small-scale datasets, but has the lowest performance
on the large-scale dataset. In addition, GNN models that focus on
specific types may not always achieve good model performance. For
example, GCTN performs poorly on large-scale node-level inference
tasks, while GSN performs poorly on small-scale graph-level infer-
ence tasks. We interpret that the outstanding performance of FL-
GNN-A is due to the finer-grained features provided by fuzzifica-
tion. This not only enhances the representation ability of the original
features but also offers a certain level of noise resistance.

5.3 Fidelity Study

The interpretability of FNN in the inference process is a significant
advantage over traditional deep learning models. The interpretabil-
ity of FL-GNN is reflected in the firing strength distribution that is
explicitly related to the graph inference process of FL-GNN. This
means that fuzzy rules with low firing strength values are redun-
dant for the FL-GNN inference process. To verify this viewpoint, we
conduct a fidelity experiment and introduce GNNExplainer [29] as a
control group. GnnExplainer is a model-free method that can provide
a reliable explanation for GNN that conforms to the message-passing
paradigm. GnnExplainer takes a trained GNN model and its predic-
tion results as input and outputs the subgraphs and feature sets that
truly affect the prediction results.

Experiment Settings. We set up two groups of experiments. In
the first group, we pre-train the FL-GNN-A on the Pumbed, Cora,
and CiteSeer datasets. Then, in the inference phase of the pre-trained
model, for each node class, we separately compute the average of
its firing strength values for the fuzzy rules in each stacked layer and
mark those with lower values according to a ratio (e.g., Pubmed-10%
indicates that we mask the fuzzy rule whose firing strength value
is in the bottom 10%). We then re-train the model while masking
the marked fuzzy rules. Finally, we calculate the model score using
test data as its fidelity. In the second group, we feed the FL-GNN-A
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Table 3. The fidelity experimental results.

GNNExplainer-Pubmed Pubmed-10% Pubmed-15% Pubmed-20% Pubmed-30% Pubmed-40%
0.9397 ± 0.0004 0.7833 ± 0.0013 0.7972 ± 0.0073 0.8272 ± 0.0161 0.9660 ± 0.0018 0.9962 ± 0.0057
GNNExplainer-Cora Cora-30% Cora-40% Cora-60% Cora-70% Cora-80%
0.9608 ± 0.0025 0.8058 ± 0.0097 0.8299 ± 0.0052 0.8756 ± 0.0010 0.98639 ± 0.0060 0.9862 ± 0.0039
GNNExplainer-CiteSeer CiteSeer-5% CiteSeer-7% CiteSeer-9% CiteSeer-10% CiteSeer-15%
0.9410 ± 0.0013 0.7203 ± 0.0038 0.7329 ± 0.0015 0.8003 ± 0.0026 0.9370 ± 0.0058 0.9989 ± 0.0064

model pre-trained on the Pubmed, Cora, and CiteSeer datasets into
the GNNExplainer to extract the subgraphs as well as the feature sets
that are more useful for the inference task. We then use the extracted
information for inference on the test dataset to calculate the model
score as its fidelity of GNNExplainer. For GNNExplainer, the regu-
larization hyperparameters for subgraph size, laplacian, and feature
explanation in GNNExplainer are 0.005, 0.5, and 0.1, respectively.

Experimental Results. The experimental results are presented in
Table 3. We observe that increasing the mask ratio of the fuzzy rule
has a positive impact on the model’s performance, indicating a strong
correlation between the firing strength distribution and the graphical
inference process of FL-GNN-A. Thus, the masking of fuzzy rules
with low firing strength values does not negatively impact the infer-
ence process of our model. We argue that masking invalid fuzzy rules
can be used as a training trick for FL-GNN. Although this method
may introduce labeling information, similar to the multi-stage train-
ing methods [21] that add high-confidence training set data and val-
idation set data to the next training set, FL-GNNs also provide guid-
ance on the next inference based on its own inference results. There-
fore, we believe that exploring the interpretability of FL-GNN will
help to unlock its full potential. Besides, we can see that the informa-
tion extracted by GNNExplainer improves the model significantly.

5.4 Ablation Study

Table 4. The performance comparison in ablation study.
model feature refine hidden ogbg-molhiv

5 0.7091±0.0171
FL-GNN None 7 0.7121±0.0165

9 0.7607±0.0165
None 0.7402±0.0269
MaxPooling-1D-70% 32 0.7555±0.0023
MaxPooling-1D-30% 0.7487±0.0043
None 0.7604±0.0080

FL-GNN-A MaxPooling-1D-70% 64 0.7648±0.0107
MaxPooling-1D-30% 0.7596±0.0109
None 0.7781±0.0043
MaxPooling-1D-70% 128 0.7636±0.0185
MaxPooling-1D-30% 0.7577±0.0251

32 0.6442±0.0106
FL-GNN-* None 64 0.6244±0.0201

128 0.6443±0.0198
model feature refine hidden Cora

5 0.3871±0.1181
FL-GNN None 7 0.5204±0.1048

9 0.6102±0.0581
None 0.8230±0.0016
MaxPooling-1D-70% 32 0.8200±0.0048
MaxPooling-1D-30% 0.8238±0.0044
None 0.8240±0.0023

FL-GNN-A MaxPooling-1D-70% 64 0.8252±0.0037
MaxPooling-1D-30% 0.8242±0.0061
None 0.8202±0.0021
MaxPooling-1D-70% 128 0.8224±0.0049
MaxPooling-1D-30% 0.8130±0.0050

32 0.3691±0.0349
FL-GNN-* None 64 0.4864±0.0182

128 0.4437±0.0261

To verify whether FL-GNN and FL-GNN-A have a positive impact
on graph inference, we conduct the ablation experiment.

Specifically, we compare performance among FL-GNN, FL-
GNN-A, and FL-GNN-* on the ogbg-molhiv and Cora datasets,
where FL-GNN-* is a variant of FL-GNN-A that removes the fuzzy
inference module and retains only the necessary fully connected
layer. We use the feature-refinement module to extract 70% and 30%
of the firing strength values, i.e., 70% and 30% of the length of the
original firing strength vector will be retained. For FL-GNN, when
we set the number of membership functions for each feature greater
than or equal to 3 and the number of hidden dimensions exceeds 10,
the dimension explosion will occur. Thus, in this experiment, we set
the number of hidden units for FL-GNN to be much smaller than FL-
GNN-A and FL-GNN-*. As Table 4 shows, compared to FL-GNN-
*, FL-GNN achieves a significant performance improvement on the
Cora and ogbg-molhiv datasets. This improvement is attributed to the
fuzzy inference structure, which provides FL-GNN with powerful
graph inference ability. Compared to FL-GNN, FL-GNN-A achieves
further improvement. We conclude that FL-GNN-A strikes a signif-
icant balance between model performance and computational over-
head. For FL-GNN, by contrast, the improvement in model perfor-
mance is disproportionate to the increase in computational overhead
of the model. In addition, when observing the effect on the Max-
Pooling1D function, we find that the MaxPooling1D function has
only a minor impact on the final model performance. However, it
helps to accelerate the inference and training process by 1.2 ∼ 1.3
times while also significantly reducing the trainable parameters of
the model.

6 Conclusion

In this paper, we investigated the efficient fusion of FNN and GNN
and proposed a novel hybrid model, named FL-GNN, to use fuzzy
logic for graph inference tasks, which provides a novel insight into
graph inference using fuzzy logic. Furthermore, we improved FL-
GNN from two perspectives of dimension reduction and model archi-
tecture and obtained FL-GNN-A. The experimental results showed
that our proposed model can achieve better inference performance
on multi-scale datasets and provide good interpretability at the same
time. In the future, we intend to introduce fuzzy integrals to deal with
more complex and multi-modal graph data.
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