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Abstract. Merging models becomes a fundamental procedure in
some applications that consider model efficiency and robustness. The
training randomness or Non-I.I.D. data poses a huge challenge for
averaging-based model fusion. Previous research efforts focus on
element-wise regularization or neural permutations to enhance model
averaging while overlooking weight scope variations among models,
which can significantly affect merging effectiveness. In this paper, we
reveal variations in weight scope under different training conditions,
shedding light on its influence on model merging. Fortunately, the
parameters in each layer basically follow the Gaussian distribution,
which inspires a novel and simple regularization approach named
Weight Scope Alignment (WSA). It contains two key components:
1) leveraging a target weight scope to guide the model training pro-
cess for ensuring weight scope matching in the subsequent model
merging. 2) fusing the weight scope of two or more models into a
unified one for multi-stage model fusion. We extend the WSA reg-
ularization to two different scenarios, including Mode Connectivity
and Federated Learning. Abundant experimental studies validate the
effectiveness of our approach.

1 Introduction

As a technique for combining multiple deep models into a single
model, model fusion [34, 24] [34] has gained widespread applica-
tions across various domains, including Mode Connectivity [4, 9, 10]
and Federated Learning [1, 38, 51]. First, the model interpolation
could shed light on the properties of the mode connectivity in neu-
ral networks [16, 11, 14]. Then, due to data privacy protection,
transmitting intermediate models across edge nodes and fusing them
on the server has been the common procedure in federated learn-
ing [46, 33, 37]. To be brief, model fusion matters a lot in these ap-
plications and has attracted a wide range of research interest. The
primary goal of model fusion is to retain the capabilities of the origi-
nal models while achieving improved generalization, efficiency, and
robustness.

The coordinate-based parameter averaging is the most common
approach for model fusion in deep neural networks [38, 34, 48]. The
research on mode connectivity involves a linear or piece-wise inter-
polation between models [16, 45], while federated learning takes the
averaging of local models from edge nodes for aggregation [38, 7].
Although parameter averaging exhibits favorable properties, it may
not perform optimally in more complex training scenarios, especially
when faced with various training conditions or Non-Independent
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Figure 1. Left: Similar optimizers yield similar weight distributions.
Conversely, different optimizers lead to distinct weight profiles. Right:

Models trained from different training conditions (e.g., the used optimizer)
tend to produce poorer model interpolations. Details are in Section 5.1.

and Identically Distributed (Non-I.I.D.) data. For example, the Non-
I.I.D. data in federated learning means that the data of local nodes
are naturally heterogeneous, making the model aggregation suffer
from diverged update directions [20, 22]. Additionally, the property
of permutation invariance that neural networks own exacerbates the
challenge of model fusion because of the neuron misalignment phe-
nomenon [10, 53, 5, 15]. Hence, solutions have been proposed from
the aspect of element-wise regularization [33, 1, 7] or mitigating the
permutation invariance [35, 3, 42, 40]. Few of these methods, how-
ever, have considered the impact of weight ranges across models on
model fusion.

In this paper, we investigate the influence of different training con-
ditions on model weight distributions (defined as Weight Scope) and
further study model merging under various weight scopes. We first
conduct several experiments under various training hyper-parameters
or data quality conditions and find that the weight scopes of the con-
verged models differ a lot, a phenomenon we define as “weight scope
mismatch”. Figure 1 illustrates the model weight distributions un-
der different training conditions, revealing noticeable differences de-
spite all distributions being approximated by Gaussian distributions.
Specifically, the top five sub-figures are parameters from models that
use the same optimizer, while the bottom ones take different optimiz-
ers. In the rightmost of Figure 1, the linear interpolation results that
reflect the mode connectivity property are also provided. Clearly, the
mismatched weight scope leads to a worse linear interpolation, high-
lighting the impact of weight range inconsistency on model fusion.
To intuitively explain, parameters with similar distributions can be
aggregated more easily, whereas those with dissimilar distributions
often present challenges in model merging.

Fortunately, the parameters in each layer follow a very simple dis-
tribution, i.e., Gaussian distribution. The simple distribution inspires
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Figure 2. The Framework of Weight Scope Alignment and Its Applications. Left: This method can be adapted to various applications of model merging, such
as Model Connectivity and Federated Learning. Mode Connectivity includes a single model fusion, while Federated Learning requires multi-stage fusion.

Right: The method comprises two components: weight scope regularization and weight scope fusion.

us a novel and easy way of aligning parameters. We leverage a target
weight scope to guide the model training process, ensuring weight
alignment and scope matching in subsequent model merging. For
more complex multi-stage fusion, we calculate the mean and vari-
ance of parameter weights in the to-be-merged models, then aggre-
gate these statistics into unified one as the target weight scope. The
proposed method is named Weight Scope Alignment (WSA), and
the above steps are named weight scope regularization and weight
scope fusion, respectively. The whole procedure is illustrated in Fig-
ure 2. We apply WSA to scenarios of mode connectivity and feder-
ated learning for exploring the advantages of WSA compared with
corresponding solutions in these areas. Our work aims to align the
weights as closely as possible with a given distribution during train-
ing, thereby enhancing the match in weight ranges and facilitating
model merging. Compared with other similar regularization meth-
ods, e.g., the weight decay and the proximal term, the proposed WSA
seeks to balance specificity and generality, addressing the shortcom-
ings of existing methods while optimizing for effective model fusion.
Our contributions are as follows: 1) as far as we know, our work is
the first to formally study the impact of weight scope on model fu-
sion; 2) the proposed WSA is simple yet effective, which is verified
on two applications via abundant experimental studies.

2 Related Works

Model fusion is a fundamental technique in several applications. The
related scenarios and solutions are introduced as follows.

Model Merging in Mode Connectivity. Visualizing loss land-
scape is an intuitive way to understand the mode connectivity [31,
17, 36], where the landscape is shown in a 2-dim or 3-dim space via
model interpolations. The model interpolations between the initial-
ization and the converged model could reflect the monotonic linear
interpolation phenomenon [16, 11, 47, 43]. [13] bridges the model
connectivity and lottery ticket hypothesis [12], proposing a method
for model pruning. Mode connectivity is also related to the model
optimization and generalization [27, 8].

The work [16] also points out that two independent minima suf-
fer a barrier in their linear interpolation, which attracts several solu-

tions to decrease the barrier. [9, 14] make a notable discovery that
the independent minima are possible to be connected via a simple
piece-wise or quadratic curve. [39, 48] find that the minima fine-
tuned from the same pre-trained model could mitigate the barrier in
linear interpolation. [10] guesses that the independent minima are
located in the same basin with the consideration of permutation in-
variance, conjecturing that the minima matched via the simulated
annealing algorithm encounter no barrier. [42] propose the weight-
based and activation-based matching method via the optimal trans-
port. [44] decreases the barrier via both the permutation alignment
and the quadratic curve. [3] employs three distinct neuron-matching
methods to corroborate the low-barrier hypothesis. Although the per-
mutation invariance is considered in these works, the mismatch of
weight scope in neural networks is also fundamental to model fu-
sion. Our proposed method could further decrease the barrier on the
basis of these works.

Model Merging in Federated Learning. Federated learning (FL)
aims to break the limitation of data privacy, utilizing a server that
collaborates with client devices to train a model [51]. As the most
standard algorithm in FL, FedAvg [38] takes a simple coordinate-
based parameter averaging on the server to accomplish the model
fusion process. A huge challenge that FL faces is the Non-I.I.D.
data [20, 26], where the inherent data heterogeneity leads to weight
divergence during local training [22]. Applying coordinate-wise reg-
ularization on local models is a popular solution to solve the Non-
I.I.D. challenge in FL. [32] claims that weight decay [30] can lead
to divergent optimization objectives among Non-I.I.D. clients in FL.
[54, 33] introduce a proximal term in local optimization. This term
helps align local optimization more closely with given model param-
eters, facilitating model aggregation. Additionally, [26] implements
constraints on the local gradient directions of each client, nudging
them closer to a global direction. However, the coordinate-wise regu-
larization tends to be overly specific, which may induce perturbations
to model training.

Additionally, the permutation invariance could also make the local
models misaligned in FL, which is harder for aggregation. [53, 46]
consider the permutation invariance of neural networks, rearranging
the order of neurons can result in multiple models with the same
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functionality as the original network. [52] introduces a group align-
ment method, while [35] designs the position-aware neurons to align
parameters. These works mainly focus on the permutation invariance
in FL, but they have not analyzed the influence of different model
weight ranges on model fusion.

3 Proposed Methods

3.1 Preliminaries

We introduce a collection of models, denoted as K, with the size of
the collection |K| ≥ 1. Each model within this collection is con-
structed based on the same underlying model architecture. The dis-
tinctiveness among the models in K arises from the variations in their
weight layers, which are derived from training under various hyper-
parameters or different data.

To encapsulate the statistical characteristics of the weight layers
across different models, we denote the weight matrix of the �th layer
in the kth model as w�

k. Our assumption is that the elements within
this matrix follow a Gaussian distribution which is characterized by
its mean μ�

k and standard deviation σ�
k. The assumption is rational

and we will empirically present the weight distributions of the con-
verged model in Section 5.1. Formally, the distribution of the weight
matrix w�

k is as follows:

p(w�
k) = N (μ�

k, (σ
�
k)

2), (1)

μ�
k =

1

|w�
k|

∑
w∈w�

k

w, σ�
k =

√√√√ 1

|w�
k|

∑
w∈w�

k

(w − μ�
k)

2. (2)

In Equation 2, we apply Maximum Likelihood Estimation to de-
rive the standard deviation σ�

k and mean μ�
k of the weight w�

k.

3.2 Weight Scope Alignment

Firstly, we introduce Weight Scope Regularization. Then, for more
complex multi-stage fusion, we propose Weight Scope Fusion for
better target alignment.

Weight Scope Regularization. Given a weight distribution
N (μ, σ2) and a target weight distribution N (μ̃, σ̃2), our method
endeavors to ensure consistency between them. This consistency is
crucial for guaranteeing scope-matched distribution among the new
models in the subsequent model fusion. To achieve this, we employ a
divergence measure known as the Kullback-Leibler (KL) divergence,
specifically focusing on calculating the divergence between the two
univariate Gaussian distributions, which is given by:

DKL = log

(
σ̃

σ

)
+

σ2 + (μ− μ̃)2

2σ̃2
− 1

2
, (3)

where μ̃, σ̃ are hyperparameters. By minimizing the KL diver-
gence between the training models’ weight distribution and their
goal, it ensures that the weight distributions are closely aligned, fa-
cilitating more effective and harmonious model fusion.

Weight Scope Fusion. In some complex scenarios with large
amounts of models and multiply stages of model merging, a given
pre-defined weight distribution is not adaptable. Therefore, we pro-
pose a method named Weight Scope Fusion to enhance the applica-
bility of Weight Scope Regularization. Focusing on the weights of
the �th layer, we assume that each weight w�

k, k ∈ K, follows its
own Gaussian distribution, and they are independent of each other.
We can get the fused Gaussian distribution N (μ̃�, (σ̃�)2) by:

μ̃� =
1

|K|
∑
k∈K

μ�
k, σ̃� =

1√|K|

√∑
k∈K

(σ�
k)

2. (4)

3.3 Analysis and Comparisons with Other Methods

We next provide some analysis of the proposed simple method, es-
pecially the comparisons with existing works.

Comparison with Weight Decay. Weight decay [30] stands as
a cornerstone in model regularization, advocating for weight con-
straints that push the weights towards zero and promote unifor-
mity. Considering a weight vector, denoted as w ∈ R

n, with ele-
ments [w1,w2, . . . ,wn]. For ease of analysis, we define the mean,
standard deviation, and L2 norm of this vector as follows: μ =
1
n

∑n
i=1 wi, σ =

√
1
n

∑n
i=1(wi − μ)2, ||w||2 =

√∑n
i=1 w

2
i .

The weight decay term is formulated as λ
2
||w||22. We can express

weight decay in terms of μ and σ as follows:

λ

2
||w||22 =

λn

2
(σ2 + μ2). (5)

The weight decay term brings the mean and variance of model
weights close to zero, and several research [1, 26] has designed FL
algorithms with adjustment of weight decay term in local training.
However, the impact of weight decay on models can not determine
the shape of weight distributions and could not align parameter dis-
tributions under different conditions. Hence, it does not necessarily
lead to a harmonization of the model scopes before fusion.

Comparison with Proximal Term. The proximal term is used to
keep the model weight w and another one w̃ ∈ R

n as close as pos-
sible during the update of w, which is represented as ||w − w̃||22. In
FedProx [33], the proximal term constrains the local models to stay
close to the global model, thereby ensuring stability during model
fusion. For clarity, we also define μ̃ and σ̃ as the mean and standard
deviation of vectors w̃. The proximal term can be decomposed as
follows:

||w − w̃||22 = nσ2 + nμ2 + nσ̃2 + nμ̃2 − 2
n∑

i=1

wiw̃i. (6)

Because the part of nσ̃2 +nμ̃2 can be seen as a constant term, the
proximal term differs from weight decay by only an additional term
of −2

∑n
i=1 wiw̃i, which encourage the weights in w to align with

the direction of w̃ as closely as possible. However, the restriction is
too strict because it requires the direction alignment for each specific
element. This may limit the normal training process and perturb the
effects of other loss functions.

In the context of model fusion, weight decay represents a more
flexible approach, while the proximal term seems to introduce di-
rectional constraints additionally. Both of them have overlooked the
influence of weight scope on model fusion and are unable to align
weight scopes, as demonstrated in Figure 11. Our proposed method
aims to achieve consistency in model weight ranges for improved
model fusion results.

Comparison with Network Invariance. Some studies have in-
vestigated the impact of permutation invariance on mode connec-
tivity [10, 42, 3, 44, 4, 15, 5] and model aggregation in federated
learning [53, 35, 46]. A more detailed introduction of these studies
has been presented in Section 2. However, the weight scope mis-
match could make the alignment algorithm inaccurate, especially the
weight-based ones [42]. Additionally, even if the neurons are aligned
in order, their weight scopes are still mismatched, which could also

Y. Xu et al. / Weight Scope Alignment: A Frustratingly Easy Method for Model Merging1722



lead to performance degradation. Several works also study the scale
invariance, e.g., [40] normalizes the model parameters layer-wisely
and then searches the proper neural permutations, and [25] studies
the relative scale of weight and bias in monotonic linear interpo-
lation. None of these works formally studies the impact of weight
scope on model fusion.

4 Applications of WSA

This section presents the applications of Weight Scope Alignment to
mode connectivity and federated learning. They can be seen as one-
stage and multi-stage model fusion scenarios, respectively. While the
specific processes or the model set to be fused may differ across
them, they all share the common thread of leveraging the proposed
WSA as a constraint during training.

4.1 Mode Connectivity
Given two well-trained models, w1 and w2, the loss barrier along
their linear interpolation path is:

max
α∈[0,1]

L ((1− α)w1 + αw2)− [(1− α)L (w1) + αL (w2)] ,

(7)
where α is the interpolation coefficient, and the loss barrier rep-

resents the point of maximum loss increase along the linear interpo-
lation path. A higher loss barrier suggests that the two models may
not be in the same basin within the loss landscape, while a lower loss
barrier indicates linear mode connectivity.

Both OTFusion [42] and Git Re-basin [3] have improved the way
they perform model interpolation by considering neuron matching.
They calculate matching relationships Π between the weights of each
layer in the two models, using a permutation matrix or optimal trans-
port matrix, leading to the fusion formula:

(1− α)w1 + αΠw2. (8)

Our approach can easily be integrated into the aforementioned
model interpolation methods to achieve improved mode connectivity.
For separately trained models, they are typically randomly initialized
from the same distribution, and their weight scopes are similar. The
mean μ̃ and standard deviation σ̃ of the target weight distribution are
the hyperparameters and keep invariant during each model’s train-
ing. We incorporate a Weight Scope Regularization term (i.e., Equa-
tion 3) to ensure that the weight range remains close to the target
weight scope. With our method, the weight scope of the converged
models are matched, which is beneficial for searching the matching
matrix.

4.2 Federated Learning

Model fusion is a fundamental procedure in Federated Learning
(FL), i.e., improving the performance of joint training by merging
models trained on different data sources. Its challenge lies in the fact
that real-world data distributions across different clients are hetero-
geneous, leading to a phenomenon known as “client drift” during
local client training, which impacts the overall performance of FL.
Some recent research has addressed this issue from a Non-I.I.D. per-
spective, proposing various improved methods.

We use the previously defined K to represent the set of clients, with
each client associated with the data distribution Dk. The objective of
FL is:

min
w∈Rd

f(w), f(w) � 1

|K|
∑
k∈K

L (w;Dk) , (9)

Algorithm 1 FedAvg with WSA
1: Input: model w, number of rounds T , local iteration steps τ ,

parameters η, ε,
2: for t = 0, . . . , T − 1 communication rounds do

3: Global server:
4: Send w, p̃ = {p̃� = (μ̃�, σ̃�)}�∈[L] to all clients
5: Client k ∈ K in parallel do:
6: Set wk ← w
7: for s = 0, . . . , τ − 1 local iterations do

8: Update wk ← wk − η∇L(wk;Dk, p̃) using loss in
Equation 10

9: Send wk, {μ�
k, σ

�
k}�∈[L] to the server

10: Global server:
11: Update global model w ← 1

|K|
∑

k∈K wk

12: Update μ̃�, σ̃� using Equation 4

where L(·) evaluates the loss for each data sample on model w.
Cross-entropy is commonly used as the loss function. To apply our
method in FL, we additionally upload the weight scope (i.e., Equa-
tion 2) to the server after each local training procedure. The server
then performs the fusion of these weight scopes (i.e., Equation 4) and
sends the merged weight scopes p̃ back to the clients. During local
client training, the optimization proceeds as follows:

Llocal (w;Dk, p̃) = L (w;Dk) + λ
L∑

�=1

DKL(p(w
�), p̃�), (10)

where λ is used to control the strength of weight scope alignment,
and p̃� is the fused weight scope of the �th layer. The full framework
of FedAvg [38] with WSA is outlined in Algorithm 1.

5 Experiments

In Section 5.1, we verify that different training conditions lead to
variations in weight scope, and the differences between weight scope
can affect the performance of model merging. In Section 5.2, we ex-
plore the effectiveness of the WSA method in the mode connectivity
scenario. In Section 5.3, we demonstrate the performance improve-
ments achieved by WSA in various federated learning scenarios and
analyze the impact of the method.

5.1 Basic Experiments

Observations. Our basic assumption is that the weight scope could
be formulated as the Gaussian distribution. Hence, we first study the
weight distributions of the models. The first observation is that the
converged weight scope is irrelevant to the way of weight initializa-
tion, e.g., the Kaiming uniform or the Kaiming normal initialization
method [18]. Figure 3 shows the weight distributions of several lay-
ers in VGG16 [41] with BatchNorm [21], where we train the net-
work on CIFAR-100 [29] for 200 epochs. In the supplementary ma-
terial [49], we present the weight scopes in different training settings,
which also follow the Gaussian distributions.

The Influence of Weight Scope on Model Fusion. We then in-
vestigate the difference of weight scope under different conditions,
which include: 1) hyperparameters, e.g., optimizer, batch-size, learn-
ing rate, and weight decay; 2) data quality, e.g., label imbalance, la-
bel noise, feature noise, and data size. For each condition, we select
two specific settings, and then train models under the same setting or
not. For example, the optimizer could be SGD or Adam [28], and we
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Figure 3. The Gaussian distribution of parameters in VGGBN16 trained
on CIFAR-100. Both uniform and normal initialization lead to Gaussian

parameter distributions.

Table 1. The impact of training conditions on LMC.

Factor KL D. (×10−4 ) Ba(=) (%) Ba(�=) (%) Diff (%)

Label Imb. 9.60 4.60 22.05 17.45
Optimizer 8.95 1.13 17.84 16.71
Batch Size 5.96 44.98 56.07 11.09
Label Noise 1.49 0.58 0.79 0.21
Learning Rate 0.67 0.38 6.77 6.39
Feature Noise 0.60 0.70 9.60 8.90
Data Size 0.37 0.00 0.75 0.75
Weight Decay 0.31 1.59 2.31 0.72

train three models with each using SGD, SGD, and Adam as the opti-
mizer, respectively. Then, we plot the weight scopes of these models
and investigate the linear interpolation accuracy. Figure 1 shows that
models trained using different optimizers own varying weight scopes
and the interpolation meets an obvious barrier. The details of training
conditions and the corresponding illustration results can be found in
the supplementary material [49].

From Figure 1, we can observe that the weight scopes under the
same training condition are near the same. In fact, we calculate their
KL divergence, and the results are near zero. Hence, we calculate the
average KL divergence of weight scopes under different conditions,
e.g., the average divergence of Gaussian distributions in the bottom
five sub-figures (the “KL D.” column in Table 1). Additionally, we
calculate the barriers of the two interpolated curves, and their differ-
ence, which are listed in columns of “Ba(=)”, “Ba( �=)”, and “Diff”
in Table 1. In the table, the “Ba(=)” column is commonly smaller
than “Ba(�=)”, which verifies that models under the same condition
are indeed similar in weight scopes. Empirically, for models under
different conditions, a larger KL divergence corresponds to a larger
barrier. This shows that the weight scope mismatch is strongly corre-
lated with the model fusion performance.

Model Fusion under Manual Scaling. The above experiments
could not support that the weight scope is the cause of the barrier in
model fusion. Thanks to the scale invariance of neural networks, we
could manually scale the networks and create the weight scope mis-
match phenomenon. Specifically, we train two networks under the
same condition with different random initialization. To avoid overuse
of symbols, we denote them as w1 and w2, respectively. To create the
scope mismatch, we select one layer in w2 and multiply its weight by
α, and divide its following layer’s weight by α. The obtained model

Figure 4. The linear interpolation curves between a model with another
model (Scale=1.0) and its scaled versions (Scale �= 1.0).

Figure 5. Model interpolation on SVHN and CIFAR-10. WSA enhances
OTFusion [42] performance.

is denoted as w2.α, which performs the same as w2. However, when
taking interpolations between w1 and w2.α, the interpolation curves
differ a lot. The results are shown in Figure 4, where the “Scale”
in the legend denotes α. Using α = 1.0 means no scaling. Clearly,
scaling the layers could make the barrier more obvious, especially in
VGG8. Experimental details and more analysis can be found in the
supplementary material [49].

5.2 Performance in Mode Connectivity

To investigate the effectiveness of our approach on mode connec-
tivity, we apply the proposed WSA to OTFusion [42] and Git Re-
Basin [3]. Specifically, we first initialize and train two models, and
plot the vanilla interpolation curve. Then, we use the activation-based
OTFusion method to search for an alignment and plot the interpo-
lated curve after matching. Finally, we replace the models with an-
other two models trained using the WSA as introduced in Section 4.1
and also use the OTFusion to search the alignment matrix. The results
are shown in Figure 5. OTFusion could decrease the barrier of vanilla
interpolation, and our proposed WSA could improve its performance
further.

Then, we combine our WSA with Git Re-Basin, which searches
the permutation matrix instead of an optimal transport matrix com-
pared with OTFusion. Similar to OTFusion, we also train models
with or without our proposed WSA. In Figure 6, we conduct exper-
iments on a ResNet-22x2 [19, 3] model on CIFAR-10 [29] to com-
pare the loss barrier at different epochs. The solid lines represent the
vanilla model interpolation, while the dashed lines represent the in-
terpolation after using Git Re-basin. On the one hand, applying Git
Re-Basin could indeed decrease the barrier of vanilla interpolation.
However, as the number of epochs increases, the results of w/o WSA
continue to grow, even when permutation is considered. In contrast,
the lines of w/ WSA can consistently maintain lower loss barriers. In
the middle and right figures, we compare loss barriers under different
model widths and depths. Specifically, we compare ResNet-22 mod-
els with a widening factor of 2, 4, and 6, and ResNet models with a
widening factor of 2 and depths of 16, 22, and 28. The results show
that our method consistently improves model fusion across models
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Figure 6. WSA facilitates Git Re-Basin [3] under different epochs, widths
and depths, ensuring a smaller loss barrier.

Figure 7. Loss landscape w/o WSA and w/ WSA.

with varying depths and widths. Furthermore, permutation interpola-
tion further improves the loss barrier, demonstrating that considering
both weight permutation and scope can effectively reduce the loss
barrier. This indicates that WSA helps align the weight ranges of
models, contributing to enhanced mode connectivity.

In Figure 7, we illustrate the loss landscape of model w1,w2 and
Πw2, where the permutation matrix Π is computed by Git Re-basin.
We train the two models with and without our proposed WSA, sep-
arately. First, there is an obvious peak between w1 and w2 on the
left; meanwhile, on the right, the loss between w1 and w2 is allevi-
ated with WSA. Secondly, through Git Re-basin, the valley between
Πw2 and w1 is a larger flat area which leads to better model merg-
ing.

Pretrained Model. We conduct experiments using the Vision
Transformer (ViT) pre-trained on ImageNet-21k on mode connec-
tivity. Figure 8 presents the results of finetuning the pre-trained ViT
on ImageNet-100. Specifically, We finetune the ViT using two dis-
tinct random seeds and then conduct model interpolation between
the resultant models. “baseline” refers to training without interva-
tion, while “w/ WSA” indicates training with Weight Scope Align-
ment. Because of permutation-based weight averaging methods are
not designed for transfomers, we employ the naive model interpo-
lation (1 − α)w1 + αw2. The results demonstrate that WSA can
improve the perfromance of interpolated models.

Figure 8. Mode Connectivity of
ViTs finetuned on ImageNet-100.

Figure 9. Test accuracy curve of
VGG8 trained on CIFAR-10 in FL.

Figure 10. The Impact of using WSA in different rounds in FL.

Figure 11. The standard deviation of conv2 weights for each client in FL
training with 10 clients, varying across rounds.

5.3 Performance in Federated Learning

To simulate real-world federated learning (FL) scenarios, we initially
consider image classification tasks across three datasets: CIFAR-
10 [29], CIFAR-100 [29], and CINIC-10 [6]. We explore two dif-
ferent client scenarios: “cross-device” with 100 small-data clients
where only 10 clients participate in each training round, and “cross-
silo” with 10 clients, each having larger datasets and engaging each
training round. We use the same CNN architecture used in [26, 23].

To ensure Non-I.I.D. data distribution in data partitioning, we
employ the Dirichlet distribution for creating heterogeneous data
on each client [52, 35]. We compare with several state-of-the-art
(SOTA) methods, including FedAvg [38], FedProx [33], SCAF-
FOLD [26], and FedExp [23]. Throughout all experiments, unless
otherwise specified, we use a default batch size of 50, 20 local up-
date steps, and 1500 communication rounds. Additional details and
results are provided in the supplementary material [49].

Table 2 presents the performance comparison of CNN model
trained in various FL settings with 10 clients where FedAvg+WSA
outperforms FedAvg in performance. Moreover, as a plug-in, we can
easily adapt it to existing FL methods, and the experiments indicate
that incorporating WSA leads to significant improvements in each
method. This underscores the effectiveness of our approach in model
fusion of FL. Table 3 shows that similar results are observed with 100
clients. Furthermore, Figure 9 illustrates the adaptability of WSA to
deeper models on CIFAR-10.

To further understand the impact of WSA on model merging, we
conduct experiments on the CIFAR-10 dataset over various dura-
tions. We consider three different intervention times during train-
ing: from the start of training until iteration [0, t1], from iteration
[t1, T ] until convergence, and during the iterations within the inter-
val [t1, t2]. Figure 10 displays the convergence curves for these three
scenarios. In the first scenario, we observe that the longer the inter-
vention time, the better our method enhances the convergence perfor-
mance. In the second one, we find that employing our method earlier
results in greater performance improvements and faster convergence.
Lastly, even if our method only intervenes during the initial [0, 125]
rounds, it still significantly boosts performance. Drawing inspiration
from the concept of a “critical learning period” [50, 2], we conclude
that assisting weight alignment in the early stages of learning pro-
vides more substantial benefits for the model fusion scenario.
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Table 2. Comparison of Test Accuracy (%) across various FL settings on three datasets, involving 10 clients: “Baseline” represents the original method, while
“+WSA” indicates the incorporation of WSA into “Baseline”. Alpha ↓ denotes client heterogeneity ↑. Bold fonts highlight the optimal results between

“Baseline” and “+WSA”. The results demonstrate that +WSA enhances performance in all FL settings.

Dataset CIFAR-10 CIFAR-100 CINIC-10

Alpha 0.5 1 0.5 1 0.5 1

Algorithm Baseline +WSA Baseline +WSA Baseline +WSA Baseline +WSA Baseline +WSA Baseline +WSA

FedAvg [38] 68.42 72.39 69.06 73.09 30.66 35.23 30.86 36.16 53.05 57.88 53.94 58.53

FedProx [33] 68.40 72.49 69.11 73.18 30.47 35.39 31.20 36.24 52.57 57.54 53.34 58.26

SCAFFOLD [26] 66.69 71.61 68.14 72.65 29.58 34.38 31.12 36.76 50.88 55.87 52.13 57.52

FedExP [23] 73.24 75.55 72.73 76.10 38.93 41.71 40.48 43.16 56.62 60.77 56.30 59.93

Table 3. Comparison of Test Accuracy (%) across various FL settings on three datasets, involving 100 clients where 10% participate in each round:
“Baseline” represents the original method, while “+WSA” indicates the incorporation of WSA into “Baseline”. Alpha ↓ denotes client heterogeneity ↑. Bold

fonts highlight the optimal results between “Baseline” and “+WSA”. The results demonstrate that +WSA enhances performance in all FL settings.

Dataset CIFAR-10 CIFAR-100 CINIC-10

Alpha 0.5 1 0.5 1 0.5 1

Algorithm Baseline +WSA Baseline +WSA Baseline +WSA Baseline +WSA Baseline +WSA Baseline +WSA

FedAvg 66.77 71.11 69.06 72.80 29.57 34.47 30.45 35.31 50.85 56.68 52.64 57.82

FedProx 66.82 71.14 69.06 72.73 29.72 34.41 30.35 35.17 50.14 56.31 52.13 57.55

SCAFFOLD 65.74 70.36 69.47 73.25 29.37 34.85 31.81 37.31 48.39 54.49 52.84 57.07

FedExP 71.79 74.33 71.82 74.80 37.98 41.34 38.46 41.58 50.22 56.99 55.84 60.55

Analysis of weight distribution. In Figure 11, we illustrate the
alignment effect introduced by WSA on parameter ranges during the
training process of FedAvg. The figure displays how the weight dis-
tributions of 10 clients evolve during training. To enhance clarity, we
represent the distributions separately using mean and variance, show-
ing the results for the original FedAvg, FedProx, and FedAvg+WSA.
Different colors represent different clients, and aggregation occurs
when the server averages the model parameters across all clients after
each communication round, making the model distributions identical
at that point. In the variance plots, we observe aggregation and diver-
gence in FedAvg even with a weight decay of 0.0001, particularly in
the early stages, indicating that the mismatch of weight ranges may
contribute to slow convergence in the early phases of FL. In contrast,
our constraint promotes a more cohesive model variance.

Comparison with pre-defined distributions. To demonstrate the
effectiveness of weight scope fusion, we try to design some pre-
defined distributions to replace it. Given that Gaussian distributions
match the frequently noted attributes of model weights, we devise
various pre-defined Gaussian distributions N(μ, σ2), by altering the
mean μ and standard deviation σ. Each of these distributions is uti-
lized to substitute the fusion distributions in WSA, and are set across
all layers. As shown in Figure 12, our method “w/ WSA” outper-
forms all other comparative approaches. The pre-defined distribution
w/ N(0, 0.12) is the second-best result, while other pre-defined ones
led to a degradation in performance. We believe that a well-designed
fix distribution can be beneficial during the initial training stage. Yet,
weight distribution variation significantly shifts throughout the train-
ing, as seen in Figure 11, necessitating a dynamic and adaptable fu-
sion distribution. Hence, our suggested weight scope fusion becomes
crucial for broad model fusion applications.

6 Conclusion

In this study, we investigate the impact of different weight ranges
of model parameters on model merging. We observe that mod-
els trained under various conditions exhibit inconsistencies in their

Figure 12. Comparison with pre-defined distributions in FL.

weight ranges, leading to a decrease in fusion performance. To ad-
dress this issue, we propose Weight Scope Alignment method, which
utilize Weight Scope Regularization to constrain the alignment of
weight scopes during training, ensuring that the model’s weights
closely match the specified scope. Moverover, for multi-stage fusion
scenarios, we design Weight Scope Fusion to fuse the weight scopes
of multiple models and regards the fused one as the target weight
scope for Weight Scope Regularization. This alignment enhances
performance during model merging. We validate the effectiveness of
our approach in mode connectivity and federated learning.
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