
TimeMachine: A Time Series is Worth 4 Mambas for
Long-Term Forecasting
Md Atik Ahameda,* and Qiang Chenga,b,**

Department of Computer Sciencea, Institute for Biomedical Informaticsb

University of Kentucky

Abstract. Long-term time-series forecasting remains challenging
due to the difficulty in capturing long-term dependencies, achieving
linear scalability, and maintaining computational efficiency. We in-
troduce TimeMachine, an innovative model that leverages Mamba,
a state-space model, to capture long-term dependencies in multivari-
ate time series data while maintaining linear scalability and small
memory footprints. TimeMachine exploits the unique properties of
time series data to produce salient contextual cues at multi-scales
and leverage an innovative integrated quadruple-Mamba architecture
to unify the handling of channel-mixing and channel-independence
situations, thus enabling effective selection of contents for predic-
tion against global and local contexts at different scales. Experimen-
tally, TimeMachine achieves superior performance in prediction ac-
curacy, scalability, and memory efficiency, as extensively validated
using benchmark datasets.
Code availability: https://github.com/Atik-Ahamed/TimeMachine

1 Introduction

Long-term time-series forecasting (LTSF) is essential in various
tasks across diverse fields, such as weather forecasting, anomaly de-
tection, and resource planning in energy, agriculture, industry, and
defense. Although numerous approaches have been developed for
LTSF, they typically can achieve only one or two desired properties
such as capturing long-term dependencies in multivariate time series
(MTS), linear scalability in the amount of model parameters with
respect to data, and computational efficiency or applicability in edge
computing. It is still challenging to achieve these desirable properties
simultaneously.

Capturing long-term dependencies, which are generally abundant
in MTS data, is pivotal to LTSF. While linear models such as DLin-
ear [35] and TiDE [7] achieve competitive performance with linear
complexity and scalability, with accuracy on par with Transformer-
based models, they usually rely on MLPs and linear projections that
may not well capture long-range correlations [5]. Transformer-based
models such as iTransformer [22], PatchTST [24], and Crossformer
[37] have a strong ability to capture long-range dependencies and
superior performance in LTSF accuracy, thanks to the self-attention
mechanisms in Transformers [29]. However, they typically suffer
from the quadratic complexity [7], limiting their scalability and ap-
plicability, e.g., in edge computing.
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Recently, state-space models (SSMs) [11, 12, 13, 14, 26] have
emerged as powerful engines for sequence-based inference and have
attracted growing research interest. These models are capable of
inferring over very long sequences and exhibit distinctive proper-
ties, including the ability to capture long-range correlations with lin-
ear complexity and context-aware selectivity with hidden attention
mechanisms [12, 3]. SSMs have demonstrated great potential in var-
ious domains, including genomics [12], tabular learning [1], graph
data [4], and images [23], yet they remain unexplored for LTSF.

The under-utilization of SSMs in LTSF can be attributed to two
main reasons. First, highly content- and context-selective SSMs have
only been recently developed [12]. Second, and more importantly, ef-
fectively representing the context in time series data remains a chal-
lenge. Many Transformer-based models, such as Autoformer [30]
and Informer [38], regard each observation as a token in a sequence,
while more recent models like PatchTST [24] and iTransformer [22]
leverage patches of the time series as tokens. However, our empirical
experiments on real-world MTS data suggest that directly utilizing
SSMs for LTSF by using either observations or patches as tokens
could hardly achieve performance comparable to Transformer-based
models. Considering the particular characteristics of MTS data, it is
essential to extract more salient contextual cues tailored to SSMs.

MTS data typically have many channels with each variate corre-
sponding to a channel. Many models, such as Informer [38], FED-
former [39], and Autoformer [30], handle MTS data to extract use-
ful representations in a channel-mixing way, where the MTS input
is treated as a two-dimensional matrix whose size is the number of
channels multiplied by the length of history. Nonetheless, recently a
few works such as PatchTST [24] and TiDE [7] have shown that a
channel-independence way for handling MTS may achieve state-of-
the-art (SOTA) accuracy, where each channel is input to the model as
a one-dimensional vector independent of the other channels. We be-
lieve that these two ways of handling LTSF need to be adopted as per
the characteristics of the MTS data, rather than using a one-size-fits-
all approach. When there are strong between-channel correlations,
channel mixing usually can help capture such dependencies; other-
wise, channel independence is a more sensible choice. Therefore, it is
necessary to design a unified architecture applicable to both channel-
mixing and channel-independence scenarios.

Moreover, time series data exhibit a unique property – Tempo-
ral relations are largely preserved after downsampling into two sub-
sequences. Few methods such as Scinet [20] have explored this prop-
erty in designing their models; however, it is under-utilized in other
approaches. Due to the high redundancy of MTS values at consecu-
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tive time points, directly using time points as tokens may have redun-
dant values obscure context-based selection and, more importantly,
overlook long-range dependencies. Rather than relying on individual
time points, using patches may provide contextual clues within each
time window of a patch length. However, a pre-defined small patch
length only provides contexts at a fixed temporal or frequency reso-
lution, whereas long-range contexts may span different patches. To
best capture long-range dependencies, it is sensible to supply multi-
scale contexts and, at each scale, automatically produce global-level
tokens as contexts similar to iTransformer [22] that tokenizes the
whole look-back window. Further, while models like Transformer
and the selective SSMs [12] have the ability to select sub-token con-
tents, such ability is limited in the channel-independence case, for
which local contexts need to be enhanced when leveraging SSMs for
LTSF.

In this paper, we introduce a novel approach that effectively cap-
tures long-range dependencies in time series data by providing rich
multi-scale contexts and particularly enhancing local contexts in the
channel-independence situation. Our model, built upon a selective
scan SSM called Mamba [12], serves as a core inference engine with
a strong ability to capture long-range dependencies in MTS data
while maintaining linear scalability and small memory footprints.
The proposed model exploits the unique property of time series data
in a bottom-up manner by producing contextual cues at two scales
through consecutive resolution reduction or downsampling using lin-
ear mapping. The first level operates at a high resolution, while the
second level works at a low resolution. At each level, we employ two
Mamba modules to glean contextual cues from global perspectives
for the channel-mixing case and from both global and local perspec-
tives for the channel-independence case.

In summary, our major contributions are threefold:

• We develop an innovative model called TimeMachine that is the
first to leverage purely SSM modules to capture long-term depen-
dencies in multivariate time series data for context-aware predic-
tion, with linear scalability and small memory footprints superior
or comparable to linear models.

• Our model constitutes an innovative architecture that unifies the
handling of channel-mixing and channel-independence situations
with four SSM modules, exploiting potential between-channel
correlations. Moreover, our model can effectively select contents
for prediction against global and local contextual information, at
different scales in the MTS data.

• Experimentally, TimeMachine achieves superior performance in
prediction accuracy, scalability, and memory efficiency. We exten-
sively validate the model using standard benchmark datasets and
perform rigorous ablation studies to demonstrate its effectiveness.

2 Related Works

Numerous methods for LTSF have been proposed, which can be
grouped into three main categories: non-Transformer-based super-
vised approaches, Transformer-based supervised learning models,
and self-supervised representation learning models.

Non-Transformer-based Supervised Approaches include classical
methods like ARIMA, VARMAX, GARCH [6], and RNN [16], as
well as deep learning-based methods that achieve SOTA performance
using multi-layer perceptrons (MLPs) and convolutional neural net-
works (CNNs). MLP-based models, such as DLinear [35], TiDE
[7], and RLinear [19], leverage the simplicity of linear structures

to achieve complexity and scalability. CNN-based methods, such as
TimesNet [31] and Scinet [20], utilize convolutional filters to ex-
tract valuable temporal features and model complex temporal dy-
namics. These approaches exhibit highly competitive performance,
often comparable to or even occasionally outperforming more so-
phisticated Transformer-based models.
Transformer-based Supervised Learning Methods, such as
iTransformer [22], PatchTST [24], Crossformer [37], FEDformer
[39], stationary [21], Flowformer [32], and Autoformer [30], have
gained popularity for LTSF due to their superior accuracy. These
methods convert time series to token sequences and leverage the
self-attention mechanism to discover dependencies between arbitrary
time steps, making them particularly effective for modeling complex
temporal relationships. They may also exploit Transformers’ ability
to process data in parallel, enabling long-term dependency discovery
sometimes with even linear scalability. Despite their distinctive ad-
vantages, these methods typically have quadratic time and memory
complexity due to point-wise correlations in self-attention mecha-
nisms.
Self-Supervised Representation Learning Models: Self-
supervised learning has been leveraged to learn useful representa-
tions of MTS for downstream tasks, using non-Transformer-based
models for time series [33, 10, 27, 34], and Transformer-based mod-
els such as time series Transformer (TST) and TS-TCC [36, 8, 28].
Currently, Transformer-based self-supervised models have not yet
achieved performance on par with supervised learning approaches
[28]. This paper focuses on LTSF in a supervised learning setting.

3 Proposed Method

In this section, we describe each component of our proposed
architecture and how we use our model to solve the LTSF problem.
Assume a collection of MTS samples is given, denoted by dataset
D, which comprises an input sequence x = [x1, . . . , xL], with each
xt ∈ RM representing a vector of M channels at time point t. For
matrices, we use bold font; for scalars and vectors, we use regular
(non-bold) letters. The sequence length L is also known as the
look-back window. The goal is to predict T future values, denoted
by [xL+1, . . . , xL+T ]. The architecture of our proposed model,
referred to as TimeMachine, is depicted in Figure 1. The pillars of
this architecture consist of four Mambas, which are employed in
an integrated way to tap contextual cues from MTS. This design
choice enables us to harness Mamba’s robust capabilities of inferring
sequential data for LTSF.

Normalization: Before feeding the data to our model, we normalize
the original MTS x into x0 = [x

(0)
1 , · · · ,x(0)

L ] ∈ RM×L, via
x(0) = Normalize(x). Here, Normalize(·) represents a nor-
malization operation with two different options. The first is to use
the reversible instance normalization (RevIN) [17], which is also
adopted in PatchTST [24]. The second option is to employ regular
Z-score normalization: x

(0)
i,j = (xi,j −mean(xi,j))/σj , where

σj is the standard deviation for channel j, with j = 1, · · · ,M .
Empirically we find that RevIN is often more helpful compared to
Z-score. Apart from normalizing the data in the forward pass of our
approach, in experiments, we also follow the standardization process
of the data when compared with baseline methods.

Channel Mixing vs. Channel Independence: Our model can handle
both channel independence and channel mixing cases. In channel in-
dependence, each channel is processed independently by our model,
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Figure 1: Schematic diagram of our proposed model, TimeMachine. Our method incorporates a configuration of four Mambas, with two
specialized Mambas capable of processing the transposed tensor data in each branch. On the left, an example of the MTS is depicted, while
the right side shows a detailed view of a Mamba’s structure. Mambas are capable of accepting an input of shape BMni while providing the
output of the same shape, where i ∈ {1, 2} in our method.

while in channel mixing, the MTS sequence is processed with multi-
ple channels combined throughout our architecture. Regardless of the
case, our model accepts input of the shape BML, where B is batch
size, and produces the desired output of the shape BMT , eliminating
the need for additional manual pre-processing.

Channel independence has been proven effective in reducing over-
fitting by PatchTST [24]. We found this strategy helpful for datasets
with a smaller number of channels. However, we observe for datasets
with a number of channels comparable to the look-back, channel
mixing is more effective in capturing the correlations among chan-
nels and reaching the desired minimum loss during training.

Our architecture is robust and versatile, capable of benefiting
from potentially strong inter-channel correlations in channel-mixing
case and exploiting independence in channel-independence case.
When dealing with channel independence, we reshape the input
from BML to (B × M)1L after the normalization step. The
reshaped input is then processed throughout the network and later
merged to provide an output shape of BMT . In contrast, for channel
mixing, no reshaping is necessary. The channels are kept together
and processed throughout the network.

Embedded Representations: Before processing the input sequence
with Mambas, we provide two-stage embedded representations of the
input sequence with length L by E1 and E2:

x(1) = E1(x
(0)), x(2) = E2(DO(x(1))), (1)

where DO stands for the dropout operation, and the embedding
operations E1 : RM×L → R

M×n1 and E2 : RM×n1 → R
M×n2

are achieved through MLPs. Thus, for the channel mixing case,
the batch-formed tensors will have the following changes in size:
BMn1 ← E1(BML), and BMn2 ← E2(BMn1). This enables
us to deal with the fixed-length tokens of n1 and n2 regardless of the
variable input sequence length L, and both n1 and n2 are configured
to take values from the set {512, 256, 128, 64, 32} satisfying
n1 > n2. Since MLPs are fully connected, we introduce dropouts to
reduce overfitting. Although we have the linear mappings (MLPs)
before Mambas, the performance of our model does not heavily

rely on them, as demonstrated with the ablation study (see Section 5).

Integrated Quadruple Mambas: With the two processed embedded
representations from E1, E2, we can now learn more comprehensive
representations by leveraging Mamba, a type of SSM with selective
scan ability. At each embedding level, we employ a pair of Mam-
bas to capture long-term dependencies within the look-back samples
and provide sufficient local contexts. Denote the input to one of the
four Mamba blocks by u, which is either DO(x(1)) obtained after
E1 and the subsequent dropout layer for the two outer Mambas, or
DO(x(2)) obtained after E2 and the subsequent dropout layer for
the two inner Mambas (Figure 1). The input tensors may be reshaped
per channel mixing or channel independence cases as described.

Inside a Mamba block, two fully-connected layers in two branches
calculate linear projections. The output of the linear mapping in the
first branch passes through a 1D causal convolution and SiLU acti-
vation S(·) [9], then a structured SSM. The continuous-time SSM
maps an input function or sequence u(t) to output v(t) through a
latent state h(t):

dh(t)/dt = A h(t) +B u(t), v(t) = C h(t), (2)

where h(t) is N -dimensional, with N also known as a state expan-
sion factor, u(t) is D-dimensional, with D being the dimension fac-
tor for an input token, v(t) is an output of dimension D, and A, B,
and C are coefficient matrices of proper sizes. This dynamic system
induces a discrete SSM governing state evolution and outputs given
the input token sequence through time sampling at {kΔ}. Here, Δ
is a time interval for discretizing the dynamic system. In particular,
Mamba makes Δ a function of the input, and hence so do the model
coefficients (A, B, C) and hidden state, thereby adapting the model
dynamics to input and enhancing context selectivity. Consequently,
this discrete SSM is

hk = Ā hk−1 + B̄ uk, vk = C hk, (3)

where hk, uk, and vk are respectively samples of h(t), u(t), and v(t)
at time kΔ,

Ā = exp(ΔA), B̄ = (ΔA)−1(exp(ΔA)− I)ΔB. (4)
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For SSMs, diagonal A is often used. Mamba makes B, C, and Δ lin-
ear time-varying functions dependent on the input. In particular, for a
token u, B,C ← LinearN (u), and Δ← softplus(parameter +
LinearD(Linear1(u))), where Linearp(u) is a linear projection
to a p-dimensional space, and softplus activation function. Further-
more, Mamba also has an option to expand the model dimension
factor D by a controllable dimension expansion factor E. Such co-
efficient matrices enable context and input selectivity properties [12]
to selectively propagate or forget information along the input token
sequence based on the current token. Subsequently, the SSM output
is multiplicatively modulated with the output from the second branch
before another fully connected projection. The second branch simply
consists of a linear mapping followed by a SiLU.

Processed embedded representation with tensor size BMn1 is
transformed by outer Mambas, while that with BMn2 is trans-
formed by inner Mambas, as depicted in Figure 1. For the channel-
mixing case, the whole univariate sequence of each channel is
used as a token with dimension factor n2 for the inner Mam-
bas. The outputs from the left-side and right-side inner Mambas,
vL,k, vR,k ∈ Rn2 , are element-wise added with x

(2)
k to obtain x

(3)
k

for the k-th token, k = 1, · · · ,M . That is, by denoting vL =
[vL,1, · · · , vL,M ]T ∈ RM×n2 and similarly vR ∈ RM×n2 , we
have x(3) = vL

⊕
vR

⊕
x(2), with

⊕
being element-wise ad-

dition. Then, x(3) is linearly mapped to x(4) with P1 : x(3) →
x(4) ∈ RM×n1 . Similarly, the outputs from the outer Mambas,
v∗L,k, v

∗
R,k ∈ Rn1 are element-wise added to obtain x(5) ∈ RM×n1 .

For the channel independence case, the input is reshaped,
BML �→ (B ×M)1L, and the embedded representations become
(B×M)1n1 and (B×M)1n2. Here, the batch size becomes B×M ,
and we regard each sequence of length L independent from each
other. One Mamba in each pair of outer Mambas or inner Mambas
considers the input dimension as 1 and the token length as n1 or n2,
while the other Mamba learns with input dimension n2 or n1 and
token length 1. This design enables learning both global context and
local context simultaneously. The outer and inner pairs of Mambas
will extract salient features and context cues at fine and coarse scales
with high- and low-resolution, respectively.

Channel mixing is performed when the datasets contain a signifi-
cantly large number of channels, in particular, when the look-back L
is comparable to the channel number M , taking the whole sequence
as a token to better provide context cues. All four Mambas are used
to capture the global context of the sequences at different scales
and learn from the channel correlations. This helps stabilize the
training and reduce overfitting with large M . To switch between
the channel-independence and channel-mixing cases, the input
sequence is simply transposed, with one Mamba in the outer Mamba
pair and one in the inner pair processing the transposed input, as
demonstrated in Figure 1. These integrated Mamba blocks empower
our model for content-dependent feature extraction and reasoning
with long-range dependencies and feature interactions.

Output Projection: After receiving the output tokens from the
Mambas, our goal is to project these tokens to generate predictions
with the desired sequence length. To accomplish this task, we utilize
two MLPs, P1 and P2, which output n1 and T time points, respec-
tively, with each point having M channels. Specifically, projector
P1 performs a mapping RM×n2 → RM×n1 , as discussed above
for obtaining x(4). Subsequently, projector P2 performs a mapping
R

M×2n1 → R
M×T , transforming the concatenated output from the

Mambas into the final predictions. The use of a two-stage output pro-
jection via P1 and P2 symmetrically aligns with the two-stage em-

Table 1: Overview of the characteristics of used benchmarking
datasets. Time points illustrate the total length of each dataset.

Dataset (D) Channels (M) Time Points Frequency

Weather 21 52696 10 Minutes
Traffic 862 17544 Hourly
Electricity 321 26304 Hourly
ETTh1 7 17420 Hourly
ETTh2 7 17420 Hourly
ETTm1 7 69680 15 Minutes
ETTm2 7 69680 15 Minutes

bedded representation obtained through E1 and E2.
In addition to the token transformation, we also employ resid-

ual connections. One residual connection is added before P1, and
another is added after P1. The effectiveness of these residual con-
nections is verified by experimental results (see Supplementary Ta-
ble 1 in [2]). Residual connections are demonstrated by arrows and
element-wise addition in our method (Figure 1).

To retain the information of both outer and inner pairs of Mam-
bas we concatenate their representations before processing via P2.
In summary, we concatenate the outputs of the four Mambas with
a skip connection to have x(6) = x(5)‖(x(4) ⊕x(1)), where ‖ de-
notes concatenation. Finally, the output y is obtained by applying P2

to x(6), i.e., y = P2(x
(6)).

4 Result Analysis

In this segment, we present the main results of our experiments on
widely recognized benchmark datasets for long-term MTS forecast-
ing. We also conduct extensive ablation studies to demonstrate the
effectiveness of each component of our method.

4.1 Datasets

We evaluate our model on seven benchmark datasets extensively
used for LTSF: Weather, Traffic, Electricity, and four ETT datasets
(ETTh1, ETTh2, ETTm1, ETTm2). Table 1 illustrates the relevant
statistics of these datasets, highlighting that the Traffic and Electric-
ity datasets notably large, with 862 and 321 channels, respectively,
and tens of thousands of temporal points in each sequence. More de-
tails on these datasets can be found in Wu et al. [30], Zhou et al.
[38]. Focusing on long-term forecasting, we exclude the ILI dataset,
which has a shorter temporal horizon, similar to Das et al. [7]. We
demonstrate the superiority of our model in two parts: quantitative
(main results) and qualitative results. For a fair comparison, we used
the code from PatchTST [24] 1 and iTransformer [22] 2 including
normalization and evaluation protocol used by them, and we took
the results for the baseline methods from iTransformer [22].

4.2 Experimental Environment

All experiments were conducted using the PyTorch framework [25]
with NVIDIA 4XV100 GPUs (32GB each). The model was opti-
mized using the ADAM algorithm [18] with L2 loss. The batch size
varied depending on the dataset, but the training was consistently set
to 100 epochs. We measure the prediction errors using mean square
error (MSE) and mean absolute error (MAE) metrics, where smaller
values indicate better prediction accuracy.

1 https://github.com/yuqinie98/PatchTST
2 https://github.com/thuml/iTransformer
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Baseline Models: We compared our model, TimeMachine, with
11 SOTA models, including iTransformer [22], PatchTST [24],
DLinear [35], RLinear [19], Autoformer [30], Crossformer [37],
TiDE [7], Scinet [20], TimesNet [31], FEDformer [39], and Sta-
tionary [21]. Although another variant of SSMs, namely S4 [13],
exists, we did not include it in our comparison because TiDE [7]
has already demonstrated superior performance over S4. Similarly,
as Flowformer [32] is not as competitive as iTransformer and other
Transformer-based models, following [22], we did not include it.

4.3 Quantitative Results

We demonstrate TimeMachine’s performance in supervised long-
term forecasting tasks in Table 2. Following the protocol used in
iTransformer [22], we set all baselines fixed with L = 96 and
T = {96, 192, 336, 720}, including our method. For all results
achieved by our model, we utilized the training-related values men-
tioned in Subsection 4.2. In addition to the training hyperparameters,
we set default values for all Mambas: Dimension factor D = 256,
local convolutional width = 2, and state expand factor N = 1. We
provide an experimental justification for these parameters in Sec-
tion 5. Table 2 clearly shows that our method demonstrates supe-
rior performance compared to all the strong baselines in almost all
datasets. Moreover, iTransformer [22] has significantly better perfor-
mance than other baselines on the Traffic and Electricity datasets,
which contain a large number of channels. Our method also demon-
strates comparable or superior performance on these two datasets,
outperforming the existing strong baselines by a large margin. This
demonstrates the effectiveness of our method in handling LTSF tasks
with varying number of channels and datasets.

In addition to Table 2, we conducted experiments with TimeMa-
chine using different look-back windows L = {192, 336, 720}.
Table 3 and Supplementary Table 2 in [2], demonstrate TimeMa-
chine’s performance under these settings. An examination of these ta-
bles reveals that the implementation of extended look-back windows
markedly enhances the performance of our method across the major-
ity of the datasets examined. This also demonstrates TimeMachine’s
capability for handling longer look-back windows while maintaining
consistent performance.

Figure 2: Average MSE comparison of TimeMachine and SOTA
baselines with L = 96. The circle center represents the maximum
possible error. Closer to the boundary indicates better performance.

Following iTransformer [22], Figure 2 demonstrates the normal-
ized percentage gain of TimeMachine with respect to three other
SOTA methods, indicating a clear improvement over the strong base-
lines. In addition to the general performance comparison using MSE

(a) Electricity (b) Traffic
Figure 3: Qualitative comparison between TimeMachine and the
second-best method (Table 2) on a test set example with L=96,
T=720, and a randomly selected channel (best viewed zoomed-in).

and MAE metrics, we also compare the memory footprints and scal-
ability of our method against other baselines in Figure 4. We mea-
sured the GPU memory utilization of our method and compared
it against other baselines, with their results taken from the iTrans-
former [22] paper. To ensure a fair comparison, we also included
Flowformer [32] and vanilla Transformer [29], and set the experi-
mental settings for our method similar to those of iTransformer.

The results clearly show very small memory footprints compared
to SOTA baselines. Specifically for Traffic, our method consumes a
very similar amount of memory to the DLinear [35] method. More-
over, our method is capable of handling longer look-back windows
with a relatively linear increase in the number of learnable param-
eters, as demonstrated in Supplementary Figure 4 in [2] for two
datasets. This is due to the robustness of our method, where E1 is
only dependent on the input sequence length L, and the rest of the
networks are relatively independent of L, leading to a highly scalable
model.

(a) Traffic

(b) Weather
Figure 4: Memory footprint (in GB) for Traffic (with 862 channels)
and Weather (with 21 channels) following iTransformer [22].

4.4 Qualitative Results

Figure 3 and supplementary Figure 2 in [2] demonstrate TimeMa-
chine’s effectiveness in visual comparison. It is evident that TimeMa-
chine can follow the actual trend in the predicted future time hori-
zon for the test set. In the case of the Electricity dataset, there is
a clear difference between the performance of TimeMachine and
iTransformer. For the Traffic dataset, although both iTransformer and
Timemachine’s performance align with the ground truth, in the range
approximately between 75-90, TimeMachine’s performance is more
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Table 2: Results in MSE and MAE (the lower the better) for the long-term forecasting task. We compare extensively with baselines under
different prediction lengths, T = {96, 192, 336, 720} following the setting of iTransformer [22]. The length of the input sequence (L) is set
to 96 for all baselines. The best results are in bold and the second best are underlined.

Methods→ TimeMachine iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer

D T MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.164 0.208 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336

192 0.211 0.250 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.256 0.290 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.342 0.343 0.358 0.349 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Tr
af

fic

96 0.397 0.268 0.395 0.268 0.649 0.389 0.544 0.359 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.417 0.274 0.417 0.276 0.601 0.366 0.540 0.354 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.433 0.281 0.433 0.283 0.609 0.369 0.551 0.358 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.467 0.300 0.467 0.302 0.647 0.387 0.586 0.375 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

E
le

ct
ri

ci
ty 96 0.142 0.236 0.148 0.240 0.201 0.281 0.195 0.285 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317

192 0.158 0.250 0.162 0.253 0.201 0.283 0.199 0.289 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.172 0.268 0.178 0.269 0.215 0.298 0.215 0.305 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.207 0.298 0.225 0.317 0.257 0.331 0.256 0.337 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

E
T

T
h1

96 0.364 0.387 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.415 0.416 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.429 0.421 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.458 0.453 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

E
T

T
h2

96 0.275 0.334 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.349 0.381 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.340 0.381 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.411 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

E
T

T
m

1 96 0.317 0.355 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.357 0.378 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.379 0.399 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.445 0.436 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

E
T

T
m

2 96 0.175 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.239 0.299 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.287 0.332 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.371 0.385 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Table 3: Results for the long-term forecasting task with varying L =
{192, 336, 720} and T = {96, 192, 336, 720}

Prediction (T )→ 96 192 336 720

D L MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic 192 0.362 0.252 0.386 0.262 0.402 0.270 0.431 0.288
336 0.355 0.249 0.378 0.259 0.391 0.266 0.418 0.283
720 0.348 0.249 0.364 0.255 0.376 0.263 0.410 0.281

E
le

c. 192 0.135 0.230 0.167 0.258 0.176 0.269 0.213 0.302
336 0.133 0.225 0.160 0.255 0.172 0.268 0.211 0.303
720 0.133 0.225 0.160 0.257 0.167 0.269 0.204 0.300

E
T

T
m

2 192 0.170 0.252 0.230 0.294 0.273 0.325 0.351 0.376
336 0.165 0.254 0.223 0.291 0.264 0.323 0.345 0.375
720 0.163 0.253 0.222 0.295 0.265 0.325 0.336 0.376

closely aligned with the ground truth compared to iTransformer. For
better visualization, we demonstrated a window of 100 predicted
time points.

5 Hyperparameter Sensitivity Analysis and
Ablation Study

In this section, we conducted experiments on various hyper-
parameters, including training and method-specific parameters. For
each parameter, we provided experimental justification based on the
achieved results. While conducting an ablation experiment on a pa-
rameter, other parameters were kept fixed at their default values, en-
suring a clear justification for that specific parameter.

5.1 Effect of MLPs’ Parameters (n1, n2)

As demonstrated in Figure 1, we have two stages of compres-
sion with two MLPs E1, E2 of output dimensions n1 and n2, re-
spectively, and P1 performing an expansion by converting n2 →
n1. Since several strong baseline methods, e.g., DLinear, lever-
age mainly MLPs, we aim at understanding the effect of MLPs
on performance. To this end, we explored 10 different combina-
tions from {512, 256, 128, 64, 32} and demonstrated the perfor-
mance with MSE for two datasets (ETTh1, ETTh2) in Figure 5.
These figures show that our method is not heavily dependent on the
MLPs. Rather, we can see more improvement with very small MLPs
for T = 720 with the ETTh1 dataset and mostly stable performance
on the ETTh2 dataset.

5.2 Sensitivity of Dropouts

In our model (Figure 1), we include two dropouts after processing the
signals from E1 and E2. These dropouts are necessary, especially for
datasets with a small number of channels, e.g., ETTs. Supplemen-
tary Figure 1 in [2] shows the effect of dropouts on both ETTh1 and
ETTh2 datasets. As expected, too low or too high dropout rates are
not helpful. To maintain balance, we set the dropout rates to 0.7 for
both datasets while tuning other variations for the rest.

5.3 Ablation of Residual Connections

Studies have shown the effectiveness of residual connection, includ-
ing models using SSMs [1] and CNNs [15]. In this section, we jus-
tify the two residual connections in our architecture: one from E2

to the output of the two inner Mambas, and the other from E1 to
the output of P1. Both of them use element-wise additions and help
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(a) ETTh1

(b) ETTh2
Figure 5: MSE comparison with combinations of n1 and n2 for input
sequence length L = 96 for the ETTh1 and ETTh2 datasets.
Table 4: Ablation results on the local convolution width with L = 96.

Prediction (T )→ 96 192 336 720

D d_conv MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 4 0.365 0.389 0.419 0.418 0.439 0.424 0.465 0.457
2 0.364 0.387 0.415 0.416 0.429 0.421 0.458 0.453

ETTh2 4 0.275 0.333 0.347 0.383 0.350 0.382 0.411 0.433
2 0.275 0.334 0.349 0.381 0.340 0.381 0.411 0.433

stabilize training and reduce overfitting, especially for the smaller
datasets with channel independence. Supplementary Table 1 in [2]
provides experimental justification, where the Res. column indicates
the presence (�) or absence (�) of residual connections. We observe
clear improvement on both datasets when residual connections are
used. This motivated us to include residual connections in our archi-
tecture, and all results presented in Tables 2 and 3 incorporate these
connections.

5.4 Effects of Mambas’ Local Convolutional Width

In addition to experimenting with the different components of our
architecture (Figure 1), we also investigated the effectiveness of
Mamba parameters. For example, we tested two variations of local
convolutional kernel widths (2 and 4) for the Mambas and found that
a kernel width of 2 yields more promising results compared to 4.
Therefore, we set the default kernel width to 2 for all datasets and
Mambas.

5.5 Ablation on State Expansion Factor of Mambas

The SSM state expansion factor (N ) is another crucial parameter of
Mamba. We ablate this parameter from a very small value of 8 up to
the highest possible value of 256. Figure 6 demonstrates the effec-
tiveness of this expansion factor while keeping all other parameters
fixed. With a higher state expansion factor, there is a certain chance
of performance improvement for varying prediction lengths. There-
fore, we set N = 256 as the default value for all datasets, and the
results in Tables 2 and 3 contain the TimeMachine’s performance
with this default value.

(a) ETTh1

(b) ETTh2
Figure 6: MSE versus the state expansion factor (N ) with the input
sequence length L = 96.

5.6 Ablation on Mamba Dimension Expansion Factor

We also experimented with the dimension expansion factor (E) of the
Mambas, which is used to expand the input dimension, with results
shown in Supplementary Figure 3 in [2]. Increasing the block expan-
sion factor does not lead to consistent improvements in performance.
Instead, higher expansion factors come with a heavy cost in memory
and training time. Therefore, we set this value to 1 by default in all
Mambas and report the results in Tables 2 and 3.

In addition to these sensitivity analyses, we also demonstrated per-
formance comparison between 1 and 2 levels in Supplementary Table
3 in [2]. Considering a balance between performance and memory
footprint, we used two levels.

6 Strengths and Limitations

TimeMachine outperforms numerous baselines, including
transformer-based methods, across benchmark datasets and ad-
ditionally demonstrates memory efficiency and stable performance
across varying look-back and prediction lengths. Unlike transformer-
based methods that have quadratic complexity, our method has linear
complexity. While TimeMachine achieves top-ranked performance
in most cases, it ranks second on the Weather dataset with small T ,
highlighting an area for future improvement. Moreover, as shown
in Figure 3, there is potential for enhancing alignment with ground
truth.

7 Conclusion

This paper introduces TimeMachine, a novel model that captures
long-term dependencies in multivariate time series data while main-
taining linear scalability and small memory footprints. By lever-
aging an integrated quadruple-Mamba architecture to predict with
rich global and local contextual cues at multiple scales, TimeMa-
chine unifies channel-mixing and channel-independence situations,
enabling accurate long-term forecasting. Extensive experiments
demonstrate the model’s superior performance in accuracy, scal-
ability, and memory efficiency compared to state-of-the-art meth-
ods. Future work will explore TimeMachine’s application in a self-
supervised learning setting.
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