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Abstract. The goal of positive-unlabeled (PU) learning is to train a
binary classifier on the basis of training data containing positive and
unlabeled instances, where unlabeled observations can belong either
to the positive class or to the negative class. Modeling PU data re-
quires certain assumptions on the labeling mechanism that describes
which positive observations are assigned a label. The simplest as-
sumption, considered in early works, is SCAR (Selected Completely
at Random Assumption), according to which the propensity score
function, defined as the probability of assigning a label to a positive
observation, is constant. Alternatively, a much more realistic assump-
tion is SAR (Selected at Random), which states that the propensity
function solely depends on the observed feature vector. SCAR-based
algorithms are much simpler and computationally much faster com-
pared to SAR-based algorithms, which usually require challenging
estimation of the propensity score. In this work, we propose a rel-
atively simple and computationally fast test that can be used to de-
termine whether the observed data meet the SCAR assumption. Our
test is based on generating artificial labels conforming to the SCAR
scenario, which in turn allows to mimic the distribution of the test
statistic under the null hypothesis of SCAR. We justify our method
theoretically. In experiments, we demonstrate that the test success-
fully detects various deviations from SCAR scenario and at the same
time it is possible to effectively control the type I error. The pro-
posed test can be recommended as a pre-processing step to decide
which final PU algorithm to choose in cases when nature of labeling
mechanism is not known.

1 Introduction

Learning from positive-unlabeled data (PU learning) is an active re-
search topic that has attracted great deal of interest in the machine
learning community in recent years [2, 12, 16]. The goal of PU learn-
ing is to train a binary classifier on the basis of training data con-
taining positive and unlabeled instances, where unlabeled observa-
tions can belong either to the positive or to the negative class. The
problem is motivated by many practical applications. A representa-
tive example is detection of illegal or harmful content in social net-
works. Some profiles are reported as containing such content (posi-
tive cases). However, profiles not reported as illegal may also contain
content that violates the law, but this has not been verified. Another
example is reporting side effects of taking medications. The lack of a
reported side effect does not mean that it did not occur. Therefore, it
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is reasonable to treat reported cases as positive and unreported cases
as unlabeled. PU data appear naturally in the classification of texts
and images [9], anomaly detection [23, 28], survey research [30] and
in many bioinformatics applications [22].

The simplest approach in PU learning (called naive or biased
method) is to treat all unlabeled observations as negative and use
standard binary classifiers. However, this method may lead to a sig-
nificantly biased posterior probability estimate for the true class vari-
able and consequently to poor classification accuracy, especially if
the unlabeled set contains relatively many positive cases. Therefore,
most authors approach modeling PU data by imposing certain as-
sumptions on the labeling mechanism that describes which positive
observations are labeled.

Figure 1. Visualization of SCAR and SAR settings. Under the SCAR, the
probability of labeling positive observations does not depend on the feature

vector while under SAR it depends on the features.

The simplest assumption is SCAR (Selected Completely at Ran-
dom Assumption), according to which the propensity score function,
i.e. the probability of a labeling a positive observation, is constant
[12, 2, 8, 35, 21]. Under the SCAR assumption, a possible approach
is to estimate label frequency [29, 17, 1, 20] and then use it to scale
the posterior probabilities obtained from the naive method or, alter-
natively, optimize weighted empirical risk function with weights de-
pending on the label frequency [2, 31]. Generally, SCAR based algo-
rithms are relatively simple and computationally fast. However, the
SCAR assumption is not met in many practical situations [16]. For
example, among people experiencing drug side effects, the likelihood
of reporting may depend on age or socioeconomic factors.

A much more realistic assumption is SAR (Selected at Random),
which states that the propensity score function depends solely on
the observed feature vector [3, 14, 15, 16, 13, 33]. Figure 1 shows
the difference between SCAR and SAR assumptions for artificially
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generated two-dimensional data. However SAR based algorithms are
usually computationally more expensive as they require challenging
estimation of the propensity score. An exception is the situation when
we consider assumptions that are special cases of SAR, such as Prob-
abilistic Gap Assumption [14], invariance of order assumption [18]
or impose some additional assumptions such as knowledge of prior
probability of positive class [25]. Most existing SAR algorithms are
based on the alternating fitting of two models: one is related to the
posterior probability of the true class variable, and the other is re-
lated to the propensity score [3, 15, 13]. For example, SAR-EM [3]
and LBE [15] are based on an EM-type algorithm, whereas TM [13]
relies on iterative approximation of a set of positive observations and
using this set to estimate the propensity score.

These approaches require many iterations, each of which includes
training the classifier. Moreover, importantly, applying one of these
methods, when in reality propensity score is constant, leads to a loss
of efficiency with respect to SCAR-designed approaches. Table 1
contains a comparison of representative methods based on SCAR
and SAR, in a situation where the true propensity score is constant
and equal to 0.5. As the SCAR method, we used the popular TiCE
estimator of labeling frequency c [1] and then scaled the posterior
probabilities obtained from the naive model by c−1. As the SAR
method, we used the LBE algorithm [15] mentioned above. The
SCAR-based method has higher classification accuracy for most con-
sidered datasets and, importantly, significantly shorter training time.
Therefore, verifying the SCAR assumption becomes an important
task that, to our knowledge, has not been discussed in the literature.

Table 1. Comparison of classification accuracy and training time for
typical SCAR [1] and SAR methods [15] under SCAR setting. For SCAR

method we use TICE algorithm [1] and scale the output of the naive
classifier, for SAR we used LBE method [15].

SCAR method SAR method
Dataset Accuracy Time [sec] Accuracy Time [sec]

Breast 0.969 ± 0.017 1.62 ± 0.02 0.954 ± 0.011 18.4 ± 0.80
Wdbc 0.930 ± 0.022 2.94 ± 0.04 0.930 ± 0.019 19.6 ± 0.80
Banknote 0.983 ± 0.004 1.49 ± 0.01 0.987 ± 0.012 20.8 ± 0.40
Segment 0.972 ± 0.004 8.69 ± 0.15 0.990 ± 0.006 24.8 ± 1.91
CIFAR10∗ 0.810 ± 0.009 5.36 ± 0.11 0.718 ± 0.031 25.8 ± 0.74
USPS∗ 0.726 ± 0.022 5.47 ± 0.21 0.712 ± 0.017 26.4 ± 0.80
Fashion∗ 0.824 ± 0.014 5.28 ± 0.15 0.816 ± 0.021 25.4 ± 0.49

∗ Randomly chosen subsamples of 5000 images were considered.

In this work, we propose a relatively simple and computationally
fast test that can be used to determine whether the observed data meet
the SCAR assumption. The proposed procedure consists of two steps.
In the first step, our goal is to determine the set of positive observa-
tions. In the second step, we generate artificial labels conforming to
the SCAR situation, which in turn allows us to mimic the distribu-
tion of the test statistic under the null hypothesis of SCAR. The idea
of the method is based on the property that the SCAR assumption is
equivalent to the equality of the distribution of the feature vector for
positive observations and the distribution for labeled observations.
This leads to the selection of 4 different test statistics that measure
the divergence between the above distributions. In experiments, we
demonstrate that the test successfully detects various SAR schemes
and at the same time it is possible to effectively control type I er-
ror (observed significance level) for most considered datasets. This
is supported by theoretical results which show that (i) the proposed
test is indeed consistent and that (ii) the essential part of the proposal,
namely selection of positive elements among unlabeled ones satisfies
probabilistic guarantees in an idealized scenario. The proposed test
can be recommended as a pre-processing step to decide which final
PU algorithm to choose.

2 Background

2.1 Positive-unlabeled learning

In PU learning, each observation can be described by the triple
(X,S, Y ), where X ∈ Rd is feature vector, Y ∈ {0, 1} is true
class variable (Y = 1 denotes positive class), which is not ob-
served directly and S ∈ {0, 1} is class label indicator, describing
whether the instance is labeled and thus positive (S = 1) or unla-
beled (S = 0). The unlabeled instance can be either positive or neg-
ative. In PU learning it is assumed that negative examples cannot be
labeled, i.e., P (S = 1|Y = 0) = 0. The fraction of positive observa-
tions that are assigned a label is determined by the labeling frequency
c = P (S = 1|Y = 1). In this work, we adopt a single-training-
sample scenario [2] assuming that iid random vectors (Xi, Yi, Si) for
i = 1, . . . , n are generated from some unknown distribution PX,Y,S .
The PU training data is D = {(Xi, Si) : i = 1 . . . , n} as we do not
observe Yi. The goal is to train a classifier that predicts Y for some
new instance X using the incompletely labeled training set D only.
Note that training the naive classifier which treats S as the class vari-
able, we can estimate s(x) = P (S = 1|X = x), whereas our goal
is to estimate y(x) = P (Y = 1|X = x). Table 2 contains the most
important notations used in the paper.

Table 2. Summary of notation.
Notation Meaning
n number of instances
d number of features
X ∈ Rd feature vector
Y ∈ {0, 1} unobserved true class variable
S ∈ {0, 1} label indicator
D = {(Xi, Si) : i = 1 . . . , n} PU training data
π = P (Y = 1) class prior
c = P (S = 1|Y = 1) labeling frequency
P = {i : Yi = 1} positive set (unobserved)
L = {i : Si = 1} labeled set (observed)
U = {i : Si = 0} unlabeled set (observed)
y(x) = P (Y = 1|X = x) posterior probability of Y = 1
s(x) = P (S = 1|X = x) posterior probability of S = 1
e(x) = P (S = 1|X = x, Y = 1) propensity score function
c = P (S = 1|Y = 1) labeling frequency

2.2 SCAR and SAR assumptions

Learning from PU data is challenging task and certain assumptions
are required to make inference from PU data possible. The assump-
tions concern the labeling mechanism describing which positive ob-
servations are assigned a label. Specifically, the labeling mechanism
assigns a probability e(x) = P (S = 1|X = x, Y = 1), called
propensity score, of being labeled to each positive example. A high
value of propensity score indicates that a positive observation de-
scribed by vector x will be assigned a label with a high probability.
The two assumptions which we want to check can be expressed in
terms of the propensity score function.

Assumption 1 (Selected Completely at Random). Propensity score
is constant: e(x) = c.

Clearly, SCAR is unlikely to hold in many situations. Therefore,
many works consider a more general and less restrictive assumption
called SAR.

Assumption 2 (Selected at Random). Propensity score is non-
constant function e(x) = P (S = 1|X = x, Y = 1) depending
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solely on the observed features x. 1

Importantly, various different labeling mechanisms fall in SAR
category, including cases where the labeling mechanism depends on
a single feature or on many of them simultaneously. More generally,
the labeling mechanism depends on variables that are not observed
in our data and then SAR is not met. However, in such a situation,
modeling of PU data becomes impossible unless all relevant features
become available. Therefore, SAR can be treated as the most general
assumption made in PU learning.

The SCAR assumption can be characterized by the following
property [2, 12]; for completeness, we provide proof in the supple-
ment [32]. It states that SCAR is equivalent to

P (X = x|S = 1) = P (X = x|Y = 1), (1)

which means that the feature distribution for labeled observations
matches the feature distribution in the positive class. Property (1)
will be used to construct a proposed testing procedure.

3 Verifying the SCAR assumption in PU learning

3.1 Null and alternative hypotheses

Our goal is to verify the SCAR assumption based on PU data and de-
termine which mechanism corresponds to how our PU data was gen-
erated: SCAR or SAR. We use a statistical hypothesis testing frame-
work. In view of property (1), the null and alternative hypotheses can
be written as

H0 : PX|S=1 = PX|Y =1 (SCAR)

H1 : PX|S=1 �= PX|Y =1 (SAR).

The test statistic T (P̂X|S=1, P̂X|Y =1) should measure how close
the empirical distributions P̂X|S=1 and P̂X|Y =1 corresponding to
the true distributions PX|S=1 and PX|Y =1 distributions are. A small
value of the test statistic should indicate H0, while large values of
the statistic should lead to its rejection. In Section 3.3, we present
possible test statistics that can be used to measure the divergence
between these two distributions. However, even with a defined test
statistic, we face two challenges. First, distribution PX|Y =1 cannot
be directly estimated because we do not observe Y . Second, we need
to know the distribution of T under H0 to determine which values of
T are typical under H0 and consequently be able to control for the
type I error. The above two issues are addressed in Section 3.2.

Finally, it is worth noting that two errors can be committed: type I
error (reject H0 when it is true) and type II error (not reject H0 when
H1 is true). The above errors are not symmetric. Rejection of H0

suggests applying SAR-based algorithms, which are usually more
demanding computationally but which are also valid in SCAR situ-
ations. On the other hand, SCAR algorithms are unable to estimate
non-constant propensity functions and thus may fail in some situa-
tions related to SAR. Therefore, a type II error can potentially have
more serious negative consequences.

3.2 Testing procedure

The testing procedure consists of two steps. In step (1) our goal is
to approximate the positive set P = {i : Yi = 1}, and in step

1 Typically, SAR refers to the situation where e(x) can be any function with
values in [0, 1], which also includes the case of a constant function (SCAR).
In this work, it is more convenient to assume that SAR refers to non-
constant propensity score.

(2) it is to generate the distribution of the test statistic under H0

(null distribution). In the following, we assume that the class prior
π = P (Y = 1) is known, although in practice it is usually replaced
by an estimated value. The assumption is commonly adopted in PU
inference [34, 11, 19]. We note in passing that for estimation of π
under SAR, estimation of posterior probability seems unavoidable,
this however requires assumptions in its turn to ensure identifiability.

Step (1) involves training a naive model in which S is treated as a
class variable. This allows us to estimate ŝ(Xi), i ∈ U and then sort
the unlabeled observations in descending order: ŝ(Xi1) ≥ . . . ≥
ŝ(Xim), where U = {i1, . . . , im}. The positive set P is estimated
as the sum of the labeled set L = {i : Si = 1} and the set of
unlabeled observations with the highest estimated posterior proba-
bilities ŝ(x), i.e., P̂ = L ∪ {i1, . . . , ik}, where k = nπ(1 − ĉ)

and ĉ = P̂ (S = 1)/π. Estimator P̂ (S = 1) is simply a fraction of
labeled exampels in training data. The rationale for this method of es-
timating P is justified in Lemma 1 in Section 4. Note that P̂ contains
approximately nπ observations, which corresponds to the expected
number of observations in P . We also define variable Ỹi = 1 iff
i ∈ P̂ , which approximates the true class indicator Y .

In step (2), we generate the artificial label indicator S̃ which mim-
ics a true label indicator S, but corresponds to a SCAR situation.
Specifically, for each i ∈ P̂ we generate S̃i ∈ {0, 1} from Bernoulli
distribution with success probability P (S̃i = 1) = ĉ and we set
S̃i = 0, for i /∈ P̂ . The above step is repeated for b = 1, . . . , B
and in each loop we compute Tb := T (P̂X|˜S=1, P̂X|˜Y =1). Finally,
based on the values T1, . . . , TB , we can estimate the distribution of
the T statistic under H0. Figure 2 visualizes steps (1) and (2) for
SAR dataset. The higher the value of parameter B, the better the ap-
proximation of the distribution under H0, but at the same time the
greater the computational cost.

Figure 2. The visualization shows how in Algorithm 1 artificial labels ˜S
matching the SCAR assumption are generated.

The last step is to calculate the p-value p̂ = #{b : Tb ≥ T0}/B,
where T0 := T (P̂X|S=1, P̂X|˜Y =1) is the value of test statistic for the
observed label indicator S. A small p-value indicates that T0 takes
unusually large values compared to the values corresponding to H0,
which should lead to the rejection of H0. Formally, we reject H0,
when p̂ < α, where α ∈ (0, 1) is user-specified significance level.
The whole procedure is described by Algorithm 1.
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Algorithm 1: Verifying SCAR assumption
1: Input: PU training data D = {(Xi, Si) : i = 1 . . . , n}, test

statistic T , number of repetitions B, significance level α, class
prior π
/* Approximate positive set: */

2: Train the naive classifier using D and estimate ŝ(Xi), i ∈ U .
3: Sort ŝ(Xi1) ≥ . . . ≥ ŝ(Xim), where U = {i1, . . . , im}.
4: Let P̂ = L ∪ {i1, . . . , ik}, where k = nπ(1− ĉ).
5: Define Ỹi = 1 if i ∈ P̂ and Ỹi = 0 otherwise.

/* Generate distribution of T under H0: */

6: for b ← 1 to B do

7: for i ∈ P̂ do

8: Draw S̃i ∈ {0, 1}, such that P (S̃i = 1) = ĉ
9: end for

10: Set S̃i = 0, for i /∈ P̂
11: Calculate Tb := T (P̂X|˜S=1, P̂X|˜Y =1)
12: end for

/* Compute p-value: */

13: Let T0 := T (P̂X|S=1, P̂X|˜Y =1)

14: Compute p-value p̂ = #{b : Tb ≥ T0}/B.
15: Output: Reject H0 iff p-value < α.

3.3 Test statistics

Algorithm 1 is generic and allows any statistic to be used. However,
for the algorithm to work effectively, the statistic should meet two
requirements. Firstly, it should describe the deviation from H0, in the
sense that its theoretical value should be 0 for H0 and take positive
values for H1. Second, it should be computationally fast because we
have to compute it B times. In this chapter, we present 4 possible
statistics that meet the above conditions.

Let us denote by P1 and P2 the probability distributions corre-
sponding to PX|˜S=1 and PX|˜Y =1 in Algorithm 1. A natural way
to measure how different the two distributions are is to use the
Kullback-Leibner (KL) divergence [10, 4]. Despite the desirable
properties, calculating KL is computationally demanding for multidi-
mensional distributions. However, under certain assumptions, com-
putations can be simplified. For example, assuming a Gaussian dis-
tribution of features, we obtain (see e.g. [26]):

T (P1, P2) = 0.5

[
rTΣ−1

1 r + tr(Σ−1
2 Σ1)− log(

|Σ1|
|Σ2| )− d

]
(2)

where r := μ2 − μ1 is a difference between the means μ1 and μ2

for the P1 and P2 distributions, respectively, whereas Σ1 and Σ2

are the corresponding covariance matrices. In the experiments, we
consider two variants of (2): the first one is based on the assumption
of independence of variables (we simply denote it as KL) and the
second one in which we estimate the covariance matrices (denoted
as KLCOV).

In addition, we consider Kolmogorov-Smirnov (KS) statistic de-
fined as

T (P1, P2) =
d∑

j=1

KS(P1,j , P2,j), (3)

where P1,j and P2,j are marginal distributions corresponding to the
multivariate distributions P1 and P2 and KS(P1,j , P2,j) is standard
Kolmogorov-Smirnov statistic for one-dimensional probability dis-
tributions.

Finally, we also consider a classifier-based statistic. Since we want
to decide how much the distributions P̂X|˜S=1 and P̂X|˜Y =1 differ

from each other, we define an auxiliary class variable Zi ∈ {1,−1}
such that Zi = 1 if S̃i = 1 and Zi = −1 if Ỹi = 1. Then we train
simple Naive Bayes classifier using training data Dz = {(Xi, Zi)}.
Other classifiers can also be used as long as their training time is ac-
ceptable. We measure the quality of the classifier using ROC AUC
and define test statistic as T (P̂X|˜S=1, P̂X|˜Y =1) = AUC − 0.5. If
the distributions coincide, then AUC = 0.5 and the value of the
statistic will be around 0. On the other hand, if the distributions are
well separated, then AUC ≈ 1 and the value of the statistic will be
around 0.5. In experiments, we refer to this method as NB AUC.

4 Theoretical justifications

We first show that Algorithm 1 allows to control the type I error
(the probability of rejecting H0 when SCAR is met) in an idealized
situation when the set P̂ coincides with the positive set P . Then we
provide some justification for the choice of P̂ . In order to address the
first problem note that probability of rejecting H0 can be written in
terms of p-value p̂ as P (p̂ < α). The following Theorem indicates
that the probability does not exceed α, provided that H0 is true.

Theorem 1. Assume that SCAR assumption is met and the algorithm
is based on P in place of P̂ . Then distribution of p̂ is super-uniform
i.e.

P (p̂ < t) ≤ t, t ∈ (0, 1).

Proof. Let us denote by DL = {Xi : i ∈ L}, DP = {Xi : i ∈ P}
and D

˜L = {Xi : i ∈ L̃}, where L̃ = {i : S̃i = 1} samples cor-
responding to distributions PX|S=1, PX|Y =1 and PX|˜S=1, respec-
tively. Test statistics, considered in Algorithm 1 can be written as
functions of the samples, i.e.,

Tb = T (D
˜L, DP), T0 = T (DL, DP).

Under SCAR, D
˜L contains conditionally independent observations

given DL, generated from PX|˜S=1 = PX|Y =1, whence they are
distributionally equal to observations from PX|Y =1. The B + 1
random variables T0, T1, . . . , TB are exchangeable, i.e. their joint
distribution does not change when their positions are randomly or-
dered. Exchangeability implies that p-value is uniformly distributed
on {0, 1/B, . . . , B/(B + 1)} which implies that P (p̂ ≤ t) =
[t(B + 1)]/(B + 1) ≤ t, where [s] is integer part of s.

In order to check the soundness of the choice of sample P̂ as a
substitute of all positive observations, we consider the idealized sce-
nario in which s(x) is known and (X1, Y1), . . . , (Xm, Ym) is an iid
sequence from PX,Y |S=0. Thus, with a slight abuse of previous no-
tion, X1, . . . , Xm correspond to observed unlabeled observations,
whereas corresponding Yi are not observed and m is deterministic
sequence corresponding to expected number of unlabeled observa-
tions m = n(1 − cπ). We consider s(X1), . . . , s(Xm) and denote
by s(X)(i) ith order statistic in this sequence starting from the largest
one, i.e.

s(X)(1) ≥ s(X)(2) . . . ≥ s(X)(m)

We will consider top k values s(X)(1), . . . s(X)(k). We disregard
ties assuming in the following that s(X) is continuous random vari-
able. This corresponds in the algorithm to considering top k =
n(π − πc) values of ŝ(Xi) and adding them to labeled observa-
tions. The above approach is justified by the following Lemma which
shows that ordering observations with respect to s(x) is equivalent
to ordering with respect to conditional probability

ỹ(x) = P (Y = 1|S = 0, X = x).
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Lemma 1. Assume SCAR assumption is valid. Then for any obser-
vations Xi and Xj

s(Xi) ≥ s(Xj) ⇐⇒ ỹ(Xi) ≥ ỹ(Xj)

Proof. Under SCAR, we have s(x) = cy(x) and thus ordering wrt
to s(x) can be replaced by ordering wrt y(x). From Bayes Theorem,

ỹ(x) =
P (S = 0|Y = 1, X = x)y(x)

P (S = 0|X = x)
=

(1− c)y(x)

1− cy(x)

is increasing function of y(x), which proves the assertion.

We will establish a bound on the probability that for the lowest
chosen observation ỹ(X)(k) the corresponding value of Y = 1. To
this end define Y[k] as the concomitant value of ỹ(X)(k) i.e.

Y[k] = Yi if ỹ(X)(k) = ỹ(Xi).

We define the following function

h(z) = PX,Y (Y = 1|ỹ(X) = z, S = 0).

Discussion of the properties of h(z) and further proofs can be found
in the Supplement [32]. The crucial observation is that the following
equality holds

P (Y[i] = 1|ỹ(X)(i) = z) = h(z)

and thus
P (Y[i] = 1) = Eh(ỹ(X)(i)). (4)

Let F denote cdf of h(ỹ(X)), where X is distributed according to
PX|S=0 i.e. F (t) = PX(h(ỹ(X)) ≤ t|S = 0). We have the follow-
ing result.

Theorem 2. Assume that h(z) is strictly increasing function.

(i) Let k = k(m) be a sequence such that k/m → α, where 0 <
α < 1. Moreover, F has continuous density f . Then we have for
m → ∞

P (Y[k] = 1) = F−1(1− α) +O
( 1

m1/2

)
(5)

(ii) For l ≤ k we have

P (Y[l] = 1) ≥ P (Y[k] = 1).

(iii) for any k, l ≤ m we have

P (Y[k] = 1, Y[l] = 1) ≥ P (Y[k] = 1)P (Y[l] = 1)

Proof. Part (i) follows from Theorem 2.2 (b) in [5]) for k =
2 there (k denotes the order of the moment in the cited paper)
and application of Schwarz inequality after noting that h(ỹ(X)(k))
can be represented as kth order statistic from the sequence
F−1(U1), . . . , F

−1(Um), where (Ui) is iid sample from the uni-
form distribution. Note that h(ỹ(X)(i)) = (h(ỹ(X))(i) is valid in
view of monotonicity of h. Proofs of (ii) and (iii) are given in the
Supplement [32].

Note that the magnitude of F−1(1− α) appearing in (5) is inher-
ently related to separability of PX|Y =0 and PX|Y =1. In order to see
that recall again that in view of conditional independence of X and
S given Y under SCAR we have that PX|S=0,Y =1 = PX|Y =1 and

PX|S=0,Y =0 = PX|Y =0. Thus if PX|Y =0 and PX|Y =1 are well sep-
arated h(ỹ(X)) is close to 1 for all positive unlabeled observations,
which constitute fraction γ = (π − πc)/(1 − πc) of all unlabeled
ones. Thus for α ≤ γ we have that F−1(1 − α) ≈ 1. Moreover, it
follows from part (i) that, provided the following condition holds

F−1(z) ≥ z ≡ z ≥ F (z), (6)

i.e. h(ỹ(X)) stochasticaly dominates [0, 1]-uniformly distributed
random variable [6], that we have that

P (Y[k] = 1) ≥ 1− α+O(
1

m
),

and analogous result, with 1 − α replaced by (1 − α)2, holds for
probability P (Y[k] = 1, Y[k−1] = 1) of two adjacent concomitants.
Interestingly, we can also have more general and simpler result pro-
vided (6) is valid. Note that now the result concerns k concomitants
corresponding to to k top order statistics.

Theorem 3. Assume that condition (6) holds for F . Then we have

P (Y[1] = 1, Y[2] = 1, . . . , Y[k] = 1) ≥
k∏

i=1

(1− i

m+ 1
) (7)

The proof of this result is given in the supplemental material [32].
Note that, e.g. for π = 0.2, c = 0.8 and n = 100, we need to choose
additional k = n(π − cπ) = 100 × 0.04 = 4 observations from
m = 100 × (1 − 0.16) = 84 unlabeled observations. In this case
the probability bound in (7) is 0.887. However, for large π and small
c, the bound may become weak. In order to obtain better guarantees,
one may choose smaller number of top order statistics than n(π −
cπ), focusing on most likely positive observations among unlabeled
ones in the modified algorithm.

5 Experiments

We analyze the effectiveness of the proposed testing procedure and
compare the performance of 4 statistics: KL, KLCOV, KS and NB
AUC 2. As evaluation measures, we consider: type I error (proba-
bility of rejecting H0 when H0 is true), which should not exceed
assumed significance level α and power of the test (probability of
rejecting H0 when H1 is true). In particular, we aim to answer the
following research questions. (1) Do the tests control a type I error?
(2) Which of the proposed statistics has the greatest power ? (3) How
does the power depend on various factors such as: the sample size,
dependence between features or the discrepancy between data dis-
tribution and H0 distribution? (4) How does the method work with
the estimated class prior? (5) What are the computation times? In the
experiments we set B = 300, α = 0.05. Moreover, Random Forest
classifier [7] was used as a base learner to estimate s(x). To estimate
the probability of rejecting H0, we repeated experiments 500 times.

5.1 Datasets

In experiments we used 4 popular tabular datasets (Breast Can-
cer, Wdbc, Banknote and Segment) [24] and 3 image datasets (CI-
FAR 10, USPS and Fashion) [27]. Details about preprocessing the
datasets are described in the Supplement [32]; Table 1 in the supple-
ment contains summary statistics. Moreover, we used two artificial
datasets (Art1 and Art2), which are obtained as follows. In Art1,

2 Source code: https://github.com/teisseyrep/SCAR_test
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Figure 3. Probability of rejecting H0 with respect to sample size n for artificial data sets 1 and 2, labeling strategy S1 and for c = 0.5. Value g = 0
corresponds to H0 and g > 0 to H1.

we first generate Y from the Bernoulli distribution with a success
probability of 0.5. Then we generate feature vectors X from the
distributions PX|Y =0 ∼ N(0, I) and PX|Y =1 ∼ N(b, I), where
b = (1, . . . , 1). In Art2, the feature vectors are generated from the
distributions PX|Y =0 ∼ N(0, I) and PX|Y =1 ∼ N(b,Σ), where
Σ[i, j] = 0.5|i−j|. In Art1 we assume independence of features,
while in Art2, the features are dependent and additionally covariance
matrices in the positive and negative classes are different.

5.2 Labeling strategies

Given a dataset with binary class variable Y , we artificially generate
PU data using various labeling strategies. All negative observations
are assigned to unlabeled subset. From the positive observations we
randomly select those that will be labeled with probability e(x) =
P (S = 1|X = x, Y = 1), whereas the remaining observations are
assigned to unlabeled set. The following strategies are considered.

S0. Propensity score is constant e(Xi) = c.
S1. Propensity score e(Xi) = σ(g · Xi,1), where Xi,1 is a value of

the first feature, for i-th observation and σ(s) = exp(s)/(1 +
exp(s)).

S2. Propensity score e(Xi) = σ(g ·XT
i β∗ + a).

S3. Propensity score e(Xi) = [σ(g ·XT
i β∗ + a)]10.

Strategy S0 is used to analyze type I error for the methods. Strategies
S2 and S3 were already used in papers on instance-based PU learn-
ing [15, 13]. Parameter vector β∗ is obtained from logistic regression
model fitted on the fully labeled data, i.e., assuming the knowledge
of Y . Parameter g ≥ 0 controls how far we are from the null hypoth-
esis H0. Note that the value g = 0, corresponds to SCAR, i.e. when
the propensity function is constant. The value of g > 0 corresponds
to the SAR situation and by increasing g, we move away from H0.
Moreover, parameter g controls how much Xi affects the propen-
sity score. Parameter a is determined to control the value of labeling
frequency c = P (S = 1|Y = 1). Value of a is calculated for the
previously found parameter β∗ and fixed g. We report the results for
S1 and c = 0.5, the results for c = 0.3, 0.7 as well as for S2 and S3
are given in the supplement.

5.3 Discussion

5.3.1 Controlling type I error

Figure 3 (top left and bottom left panels) indicates that, in the case of
artificial data, all methods control for type I error when the features
are independent (Art1). In the case of dependencies (Art2), KL, KS
and NB AUC work correctly, i.e., they do not exceed the assumed
significance level α = 0.05. For KLCOV, the probability of reject-
ing H0 exhibits undesirable increase with the sample size. KS and
NB AUC control the type I error for all 7 real data sets (Table 3). KL
and KLCOV exceed α for 2 and 3 datasets, respectively. In partic-
ular, KLCOV always rejects H0 for Banknote data, which is due to
the lack of robustness against the inaccurate estimation of the pos-
itive set P . Indeed, when assuming knowledge of set P , the type I
error does not exceed α for this method. In summary, the KL and
NB AUC perform conservatively for all data sets and they should be
recommended if controlling the type I error is our important objec-
tive. Conclusions remain similar for c = 0.3, 0.7 (Tables 2, 3 in the
Supplement).

5.3.2 Power of the tests

As expected, for artificial datasets, the power of the tests increases
when the number of observations increases (Figure 3). KL method
has the largest power, followed by KLCOV. Importantly, however,
KLCOV does not control type I error for Art2, so analyzing the
power may be misleading for this method. KS and NB AUC con-
verge more slowly to 1, but this is the price for effectively control-
ling the type I error. The power also increases when the g parameter
is increased, which is natural because a larger g indicates more sig-
nificant deviation from H0 (Figure 3). For both artificial datasets and
g = 2, the power for all methods approaches 1 for relatively small
sample size 500, whereas for g = 0.5, 1, we need significantly more
observations to achieve this level of power.

For real datasets, we also see that the power increases as the g
parameter increases (Figure 4 and Table 4). Figure 4 shows that the
KS method usually achieves the highest power. The exception is the
Wdbc dataset and S2, for which KL and KLCOV have the highest
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power (Figure 4), but for these methods the type I error is signif-
icantly exceeded, so they should not be taken into account in the
comparison for this particular dataset. Among methods that properly
control type 1 error (KS and NB AUC), KS achieves greater power
for most datasets, labeling schemes, and g parameter values (Table
4). For example, for S1, KS is the winner 12 out of 14 times. Conclu-
sions remain similar for c = 0.3, 0.7 as well as for S2 and S3 (Tables
4-6 in the Supplement).

5.3.3 Robustness and computational times

We examined the robustness of the testing procedure to the class
prior estimation error. The results in Table 7 (supplement) indicate
that overestimation of π has a greater negative impact than underes-
timation. For overestimated π we observe that very often type I error
exceeds the α level, which is due to the fact that in this case, set P
contains, in addition to true positive observations, too many negative
observations.

Test execution times are shown in Table 5. Importantly, they are
lower than the times for the representative SCAR method shown in
Table 1. Moreover, the total execution time of the proposed test and
the SCAR method is lower than the time for the representative SAR
method shown in Table 1.

Table 3. Type I error (probability of rejecting H0 when H0 is true, also
called observed level of significance) for c = 0.5. Cases in which the type I

error exceeds the assumed level α = 0.05 are marked in red.

Dataset KL KLCOV KS NB AUC

Breast-w 0.01 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Wdbc 0.18 ± 0.04 0.2 ± 0.04 0.0 ± 0.0 0.02 ± 0.01
Banknote 0.03 ± 0.02 1.0 ± 0.0 0.04 ± 0.02 0.0 ± 0.0
Segment 0.12 ± 0.03 0.15 ± 0.04 0.04 ± 0.02 0.01 ± 0.01
CIFAR10 0.01 ± 0.01 0.03 ± 0.02 0.05 ± 0.02 0.0 ± 0.0
USPS 0.02 ± 0.01 0.05 ± 0.03 0.02 ± 0.01 0.0 ± 0.0
Fashion 0.01 ± 0.01 0.03 ± 0.02 0.02 ± 0.01 0.0 ± 0.0

Table 4. Power of the tests (probability of rejecting H0 when H1 is true)
fro c = 0.5 and labeling schemes S1 and S2. The results for the winning

method among methods KS and NB AUC are in bold (KL and KLCOV are
excluded from the comparison because they do not control type I error for

some datasets).

Labeling scheme S1
Dataset g KL KLCOV KS NB AUC

Breast 1 0.15 ± 0.04 0.02 ± 0.01 0.24 ± 0.04 0.02 ± 0.01
2 0.79 ± 0.04 0.17 ± 0.04 0.74 ± 0.04 0.54 ± 0.05

Wdbc 1 0.79 ± 0.04 0.3 ± 0.05 0.91 ± 0.03 0.8 ± 0.04
2 1.0 ± 0.0 0.66 ± 0.05 1.0 ± 0.0 1.0 ± 0.0

Banknote 1 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Segment 1 0.15 ± 0.04 0.19 ± 0.04 0.4 ± 0.05 0.27 ± 0.04
2 0.18 ± 0.04 0.26 ± 0.04 0.95 ± 0.02 0.83 ± 0.04

CIFAR10 1 0.07 ± 0.03 0.0 ± 0.0 0.41 ± 0.05 0.0 ± 0.0
2 0.19 ± 0.04 0.01 ± 0.01 0.57 ± 0.05 0.0 ± 0.0

USPS 1 0.96 ± 0.02 0.92 ± 0.03 0.87 ± 0.03 0.92 ± 0.03
2 0.96 ± 0.02 0.9 ± 0.03 0.94 ± 0.02 0.91 ± 0.03

Fashion 1 0.99 ± 0.01 0.95 ± 0.02 0.99 ± 0.01 1.0 ± 0.0
2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

6 Conclusions

Using the proposed method, it is possible to decide whether PU data
correspond the SCAR or SAR assumption, controlling type I error.
The method is of significant practical importance, because it allows

Table 5. Computation times [sec] for the considered methods, for
B = 300. The results are averaged over 10 simulations. For image datasets
(CIFAR10, USPS and Fashion), experiments were performed on randomly

selected samples of 5000 observations.

Dataset KL KLCOV KS NB AUC

Breast 1.07 ± 0.01 1.29 ± 0.1 1.84 ± 0.06 1.37 ± 0.06
Wdbc 1.07 ± 0.03 1.4 ± 0.13 2.95 ± 0.23 1.44 ± 0.21
Banknote 2.57 ± 0.07 3.25 ± 0.47 2.97 ± 0.09 2.82 ± 0.07
Segment 1.63 ± 0.03 2.34 ± 0.28 3.07 ± 0.12 2.13 ± 0.25
CIFAR10 1.91 ± 0.06 2.96 ± 0.26 4.17 ± 0.14 2.22 ± 0.06
USPS 3.57 ± 1.25 6.03 ± 1.41 4.80 ± 0.91 3.52 ± 0.62
Fashion 2.25 ± 0.19 4.74 ± 0.99 4.10 ± 0.71 3.01 ± 0.54

Figure 4. Probability of rejecting H0 with respect to parameter g for
selected tabular and image datasets, for c = 0.5. Value g = 0 corresponds to

H0 (SCAR), whereas g > 0 to H1 (SAR).

to choose between using more computationally expensive SAR algo-
rithms or simpler alternatives based on SCAR. In many real applica-
tions, the impact of features on propensity score may be negligible
and then SCAR algorithms are clearly a better choice. Theoretical re-
sults justify the method of estimating the set of positive observations
and show that if it is estimated correctly, controlling the type I error is
actually possible. In future work, other positive set estimation meth-
ods can be considered that do not assume knowledge of class prior
and are based, for example, on FDR control. The proposed procedure
is generic and can be combined with any classifier and test statistic
that meets the general conditions. Among the investigated test statis-
tics, we recommend using the Kolmogorov-Smirnov statistic, which
properly controls for type I error while still having high power.
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