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Abstract. Most existing biomedical language models are trained
on plain text with general learning goals such as random word in-
filling, failing to capture the knowledge in the biomedical corpus
sufficiently. Since biomedical articles usually contain many tables
summarising the main entities and their relations, in the paper, we
propose a Tabular knowledge enhanced bioMedical pretrained lan-
guage model, called TabMedBERT. Specifically, we align entities be-
tween table cells, and article text spans with pre-defined rules. Then
we add two table-related self-supervised tasks to integrate tabular
knowledge into the language model: Entity Infilling (EI) and Table
Cloze Test (TCT). While EI masks tokens within aligned entities in
the article, TCT converts aligned entities in the table layout into a
cloze text by erasing one entity and prompts the model to extract
the appropriate span to fill in the blank. Experimental results demon-
strate that TabMedBERT surpasses all competing language models
without adding additional parameters, establishing a new state-of-
the-art performance of 85.59% (+1.29%) on the BLURB biomedi-
cal NLP benchmark and 7 additional information extraction datasets.
Moreover, the model architecture for TCT provides a straightforward
solution to revise information extraction with paired entities.

1 Introduction

In recent years, biomedical natural language processing (NLP) tasks
have moved a big step forward with the flourishing of biomedical
pretrained language models (PLMs). For example, BioBERT [19]
and PubMedBERT [12] pretrain on the PubMed3 article abstracts
or full texts. The primary training objective is masked language
modeling (MLM) [8]. However, random masking does not consider
biomedical entities, precisely the core of understanding medical arti-
cles. Some researchers [14, 37, 36] try to inject external knowledge
into biomedical PLMs. Still, this knowledge may lack relevance to
the article, and it is costly to maintain the timeliness of a biomedical
knowledge base.

Biomedical articles often feature comprehensive tables that sum-
marize and elucidate the research findings. These tables highlight the
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Figure 1. Examples of alignment between article text and table. The
underlines represent entities in the article that align with the content of table

cells. The entity infilling task involves masking tokens within aligned
entities. The “red boxes” represent cells with layout correspondence. In

pretraining, we leverage this correspondence to build a table cloze task by
templates and erase one entity with a special [SOE] token.

key entities and their relationships within the articles, ensuring that
the extracted knowledge aligns perfectly with the corresponding con-
tent. Motivated by this, we propose TabMedBERT, a Tabular knowl-
edge enhanced bioMedical pretrained language model. Our model
incorporates table-aligned articles for secondary pretraining, build-
ing upon existing biomedical PLMs while maintaining compatibility
with various models and without introducing additional parameters.
We collect tables from various sources, including parsed PDF arti-
cles and clinical trials. We combine rules and model-based methods
to align entities between table cells and corresponding spans in the
articles. To incorporate the knowledge of aligned entities and their re-
lationships into the language model, we introduce two table-related
training tasks: Entity Infilling (EI) and Table Cloze Test (TCT). In the
EI task, tokens within aligned entities in the article are masked and
then recovered. In the TCT task, aligned entities in the table layout
are converted into a cloze text by erasing one entity. The language
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model is then prompted to extract the appropriate article span to fill
in the blank. Figure 1 provides an example of these tasks. The EI
task encourages the model to grasp the fundamental concepts in the
article, while TCT facilitates learning entity relations described in
tables. Additionally, we have observed that biomedical articles often
involve paired entities, such as endpoints and experimental results. In
such cases, our TCT task serves as a direct solution to identifying the
missing components of paired entities, thereby assisting information
extraction (IE) tasks.

We conducted experiments on various biomedical tasks, including
the BLURB biomedical NLP benchmark and many other IE tasks.
The results demonstrate that our TabMedBERT outperforms all other
language models, achieving a remarkable new state-of-the-art perfor-
mance of 85.59% (+1.29%) on the BLURB score4. Notably, our TCT
task introduces a novel and general approach for language models to
consistently revise paired entities in biomedical articles, leading to
an impressive increase of over 7%.

The contributions of our work are summarized as follows:

• We propose a groundbreaking approach that aligns tabular knowl-
edge with articles to enhance the training of biomedical PLMs.

• We introduce two table-related self-supervised tasks: Entity In-
filling (EI) and Table Cloze Test (TCT) to improve information
extraction tasks by revising paired entities.

• Notably, our model achieves state-of-the-art performance on the
BLURB biomedical benchmarks and various other IE tasks with-
out any increase in parameters.

2 Related Work

2.1 Biomedical Pretrained Language Models

In recent years, the advent of pre-trained language models like
BERT [8] has brought about a revolution in various downstream NLP
tasks, including biomedical research. For example, SciBERT [4] in-
corporates science papers for training. PubMedBERT [12] extends
BioBERT [19] by constructing a domain-specific vocabulary and
training on PubMed abstracts. Several subsequent studies [16, 1] are
further expanded to clinical medicine. Some generative models are
also emerging, such as BioGPT [23]. These models only consider
the plain text itself, which becomes a bottleneck in model perfor-
mance. Notably, BioLinkBERT [36] incorporates the connection be-
tween biomedical documents and achieves remarkable performance
on document-level biomedical tasks.

2.2 Knowledge-Enhanced Pretrained Language
Models

Instead of focusing on internal plain text, researchers have ex-
plored ways to utilize external knowledge. For instance, WKLM [35]
leverages entities from Wikipedia. Some researchers have focused
on improving the model structure to incorporate knowledge. K-
ADAPTER [33] and KnowBERT [27] introduce additional model
structures beyond the middle layer of the PLMs to encode multiple
KGs. In the biomedical domain, KeBioLM [37] incorporate various
biomedical knowledge from the Unified Medical Language System5.
While these methods rely on existing knowledge bases or modify
the model structure, our TabMedBERT effectively incorporates over-
looked but informative tabular data, surpassing previous approaches
without additional parameters.

4 The results will be submitted soon: https://microsoft.github.io/BLURB
5 https://www.nlm.nih.gov/research/umls/index.html

3 Table Collection and Alignment

In this section, we first collect massive tables linked to biomedical
articles (§ 3.1). Then, we combine rules and model-based methods to
align table cells and corresponding articles (§ 3.2).

3.1 Table Acquisition

We collect tables from three sources: parsed PubMed PDF arti-
cles, the PubTables-1M dataset [29], and clinical trials sourced from
NCT6. We download many PDF documents on PubMed and use the
OCR tool7 to extract their tables. Furthermore, we leverage the tables
from the PubTables-1M dataset, which comprises nearly one million
tables associated with PubMed articles. Medical literature often in-
cludes pertinent clinical trials registered in NCT as supporting ev-
idence. We establish a connection between the tables in the exper-
imental records and the articles by linking them through the NCT
number mentioned on the PubMed website. In Table 1, we present
the statistics of the above resources.

Table 1. Statistics of table sources. The number of NCT articles represents
the number of clinical trial records.

Source Articles Total Tables
Avg. Tables

Per Article

NCT 55813 167439 3.1
PubTables-1M 401733 949250 2.36
PubMed PDF 52373 223632 4.27

3.2 Table Entity Alignment

We combine rules and model-based methods to align entities8 in ta-
ble cells with the corresponding spans in the article. The rules can be
outlined as follows: (i) Given a cell and its related article, we convert
each non-stopword and non-punctuation word in the cell to the same
part of speech and identify their corresponding positions in the arti-
cle. (ii) Next, we list potential spans in the article, compare them with
the cell, and select the one with the highest word overlap proportion.
For example, in the filtered cell “Sequenced genome falciparum” and
the span “Sequenced genome plasmodium falciparum”, the propor-
tion is 0.75.

Rule-based methods are generally proficient at resolving the ma-
jority of matching challenges. However, in scenarios where crafting
specific rules proves to be a complex task, we resort to employing
ChatGPT 9 to assess a subset of PubMed PDFs directly. This ap-
proach is advantageous due to its convenience and its resilience to
subpar OCR outcomes. Looking ahead, we intend to delve further
into model-based techniques, which may involve training models to
deduce the semantic relationships between entity terms in the repre-
sentation space.

4 Method

TabMedBERT is a self-supervised pretraining approach incorpo-
rating internal knowledge from tables in biomedical articles. An
overview of our model is depicted in Figure 2. We employ table-
related tasks to learn from tabular knowledge: Entity Infilling (EI)

6 https://clinicaltrials.gov/
7 https://toscode.gitee.com/paddlepaddle/PaddleOCR
8 Here, we refer to a cell as either an entity or its attribute for convenience.
9 https://chat.openai.com/
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Figure 2. Overview of our TabMedBERT. Following Figure 1, the underlines represent aligned entities in the document, and then we convert aligned entities
with layout correspondence into cloze text. To incorporate the tabular knowledge into LM pretraining, we design two table-related training objectives: Entity

Infilling (EI) preferably masks and recovers tokens within aligned entities in the document (§ 4.1). Table Cloze Test (TCT) drives the LM to extract the correct
span in the document to fill the cloze part (§ 4.2).

and Table Cloze Test (TCT). In this approach, we convert a biomed-
ical document, comprising both the document text and its associated
tables, into a structured text format as follows:

X = [CLS] XC [SEP] XE [SEP], (1)

XC represents the table cloze text described in Section 4.2, and XE

denotes the document text with masked entities, as mentioned in
Section 4.1. [CLS] and [SEP] are special tokens commonly used in
masked language models. The input instance is then encoded using a
language model encoder:

h = Encoder(X), (2)

where h = (h1, h2, ..., hm) represents a sequence of contextualized
representations for all input tokens. The tasks of EI and TCT are
trained based on these representations.

4.1 Entity Infilling

Based on table alignment, we identify a subset of tokens that repre-
sent entities in the article. In biomedical information extraction, spe-
cialized terms abound, making it challenging to identify key medical
entities and their relationships. We argue that entities in tables mirror
medical facts in abstracts, like drugs and diseases, thus warranting
prioritized masking, a proven and efficient approach. Following the
established methods for masking and recovering key entities [21],
we introduce the Entity Infilling task (EI) to mask tokens from the
identified subset and recover their original values. The selection of
candidate tokens to mask follows these strategies:

• We prioritize considering the entire entity in the entity subset as
candidates. However, the number of tokens selected from the same
entity should not exceed 3.

• Tokens belonging to the entity that coincides with the answer in
the cloze test task (§ 4.2) must be excluded.

• If the number of candidate tokens is insufficient, we randomly se-
lect tokens from the article to supplement.

Similar to the normal MLM task [8], we guarantee that the pro-
portion of candidate tokens for masking accounts for 15% in XE ; of
those, 80% are replaced with [MASK], 10% with a random token,
and 10% are kept unchanged. After masking, we denote the docu-
ment text as XE . The training of the EI task involves optimizing the
following loss function:

LEI = −
∑

i

log p(xi|hi), (3)

where xi represents the original token at each masked position in
XE , and hi denotes its corresponding representation.

4.2 Table Cloze Test

To incorporate the relationship between aligned entities into the pre-
training process, we introduce the Table Cloze Test (TCT) task. This
task converts the aligned entities into cloze templates based on their
extracted relationships from the table layout. By randomly remov-
ing one entity from the cloze template, the TCT task prompts the
language model to identify the most suitable entity span in the docu-
ment to fill in the blank. This approach enables the language model
to simultaneously learn about the essential entities in the article and
their relationships. We will first explain how we construct the cloze
text and then provide an overview of the model architecture used for
extracting the entity span.

4.2.1 Cloze Construction

Table 2. Templates designed for the table cloze test task. Ent1/2/3 are the
placeholders that entities will replace.

Entities Templates

2 Ent1 is associated with Ent2.
3 Ent1 and Ent2 may be related to Ent3.
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By analyzing the layout of cells, we can extract relationships be-
tween aligned entities in the article. We consider the following two
cases for determining these relationships:

• Single Column or Row: When a heading cell is present in a single
column or row, it is directly related to other cells in that column or
row. For instance, in Figure 1, Sorafenib alone is directly related
to 134.

• Cells with Row and Column Headings: A cell with row and col-
umn heading cells is associated with specific entities. In boxes
of Figure 1, Median OS and 10.7 months are associated with
Sorafenib-pravastatin.

It is important to highlight that in medical clinical trials, the interven-
tion methods, measurement indicators, and resulting measurements
all play vital roles in accurately describing medical events. For in-
stance, in specific tasks like PICO [26] and relation extraction, spans
such as “Median OS” and “10.7 months” hold significant importance
as key pieces of information extracted from medical texts. We gather
aligned entities that meet either of the above cases. Then, we create
relations with 2 or 3 entities and design corresponding templates, as
shown in Table 2. The placeholders in the templates are replaced with
the actual entities from the tables. During pretraining, we randomly
erase at most one entity in the cloze template. As depicted in Fig-
ure 2, we introduce a new special token [SOE] to replace the erased
entity, representing the Span Of Entity. We denote the modified cloze
text as XC . In practice, each input instance can contain up to 5 cloze
templates in XC .

4.2.2 Attention-based Pointer Network

To learn the Table Cloze Test (TCT), we utilize an attention-based
pointer network inspired by the works of attention mechanisms [31]
and pointer networks [32]:

Q = Wq · q, (4)

K = Wk · k, (5)

f(q, k) =
QKT

√
d

. (6)

Here, Wq and Wk are learnable parameters, and d is the dimension of
q, k. We compute scores for each token in X using separate functions
depending on whether the token corresponds to the start or end of the
entity span replaced by [SOE]:

uSOE
i = fstart(hSOE , hi), (7)

vSOE
i = fend(hSOE , hi), (8)

where hSOE represents the representation of [SOE], and fstart and
fend are functions with their own independent parameters. The prob-
abilities for the start and end positions are computed as follows:

p
start = softmax(uSOE

1 , ..., uSOE
m ), (9)

p
end = softmax(vSOE

1 , ..., vSOE
m ), (10)

where both pstart, pend ∈ Rm×1. We optimize this task by min-
imizing the cross-entropy loss between the predicted start and end
indices (s, e) and the ground truth start and end indices (s, e) for
each [SOE]:

LTCT = −
∑

i∈D

{log p(si|pstart
i )

+ log p(ei|pend
i )},

(11)

where D is the set of all [SOE] tokens in XC . In addition, we ran-
domly sample aligned entities that do not have corresponding re-
lations to construct negative cloze text. This further enhances the
model’s ability to discern relationships. The pointer is uniformly di-
rected to the [CLS] token for these negative samples. We empirically
set the proportion of negative samples to 30%.

To summarize, the complete pretraining loss of TabMedBERT is a
combination of the losses from the EI and TCT tasks:

L = LEI + LTCT . (12)

4.3 Revising Paired Entity Recognition

Entities in biomedical articles often appear in pairs, such as drug
combinations, endpoints, and results. However, the co-occurrence
between these entities is often overlooked by existing models. To
address this, we propose a revision method using TabMedBERT to
enhance paired entity recognition. For paired entities, if an entity is
missed during NER, we revise it using the following steps: (i) After
processing the article with the NER model, we convert the predicted
part of paired entities into cloze text using a designed template. (ii)
The cloze text and the article are inputted similarly to the Table Cloze
Test (TCT) task to identify the missing entities. (iii) The revised enti-
ties are combined with the previous NER results to generate the final
outcomes. For example, in the BC5CDRr dataset, each sentence usu-
ally contains two paired entity types: “Chemical” and “Disease”. If
the NER model only predicts “Chemical”, we form a cloze text for
revision like “[Chemical] is associated with [SOE].” The same pro-
cess applies to vice versa.

Similarly, our approach can also be applied to revise relation ex-
traction. Suppose a RE model fails to predict the relationship be-
tween two entities. In that case, we utilize the same method as entity
revision to check if we can construct a cloze with one entity and find
the other. We revise the RE predictions accordingly if the two entities
can be connected. In the practical workflow of biomedical text data
annotation, annotators are entrusted with identifying medical entities
within paragraphs. To uphold annotation accuracy, the paired entity
revision model is utilized to detect any potential gaps in annotations,
thereby offering prompts to annotators for necessary corrections. Our
experiments demonstrate that TabMedBERT exhibits excellent revi-
sion capability in zero-shot and fine-tuning scenarios (§ 5.4.3).

5 Experiments

5.1 Datasets

Pretraining We gather 509,919 PubMed abstracts linked to tables
and ensure through PMID that there is no overlap between the train-
ing abstracts and the downstream evaluation datasets. On average,
each abstract contained 31.5 aligned entities for the Entity Infilling
(EI) task and 3.75 relations for the Table Cloze Test (TCT) task. To
care for shorter sentence-level tasks, we included two additional re-
lation extraction (RE) datasets, namely BioRel [34] and TBGA [24],
in the pretraining process. We utilize gold entities and relations from
these datasets to construct inputs similar to the abstract.

BLURB Benchmark consists of five named entity recognition
(NER) tasks [20, 9, 10, 7], a PICO (population, intervention, com-
parison, and outcome) extraction task [26], three relation extraction
(RE) tasks [18, 15, 5], a sentence similarity (SS) task [30], a docu-
ment classification (DC) task [2], and two questions answering (QA)
tasks [17, 25], as shown in Table 5. We follow the same fine-tuning
method and evaluation metric used by BioLinkBERT.
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Information Extraction We conduct experiments on vari-
ous biomedical NER and RE tasks to verify the effective-
ness of our method, including datasets published in the popu-
lar BLURB benchmark: On NER, BC5-chem&BC5-disease [20],
NCBI-disease [9], BC2GM [10], JNLPBA [7] belong to the BLURB,
while BC5CDR [20], ADE [13], CHR [28], BioRED [22] are not. On
RE, ChemProt [18], DDI [15], GAD [5] all belong to BLURB, while
AIMed [6], BC5CDR [20], ADE [13] are not. We conducted two
kinds of RE experiments on BC5CDR and ADE, using gold entities
or prediction results of a NER model as input. We make statistics on
the above datasets and list the results in Table 3 and 4.

Table 3. Statistics of NER datasets. “Classes” means the number of entity
categories in the dataset. The dataset with special mark † belongs to BLURB.

NER Train Dev Test Classes

BC5-chem† 4560 4581 4797 1
BC5-disease† 4560 4581 4797 1
NCBI-disease† 5424 923 940 1
BC2GM† 12500 2500 5000 1
JNLPBA† 16807 1739 3856 1

BC5CDR 500 500 500 2
ADE 3845 - 427 2
CHR 7298 1182 3614 1
BioRED 400 100 100 6

Table 4. Statistics of RE datasets. “Classes” means the category number of
relations in the dataset.

RE Train Dev Test Classes

ChemProt† 18035 11268 15745 5
DDI† 25296 2496 5716 4
GAD† 4261 535 534 1

AIMed 5251 - 583 1
BC5CDR 500 500 500 1
ADE 3845 - 427 1

Paired Entity Revision We construct a dataset containing paired
entities based on the BC5CDR dataset to evaluate our model’s re-
vision ability according to the following principles: (1) Divide the
dataset by sentence, and filter out all cross-sentence relation pairs;
(2) Keep the entity pairs with relations in the sentence and filter out
sentences without relations. After that, 1085/1176/1144 sentences in
train/dev/test are qualified. We call this dataset BC5CDRr .

5.2 Baselines

We compare different types of pretrained models according to
the performance on the BLURB benchmark. We first choose
SciBERT [3] and PubMedBERT [11], trained on plain text
as baselines. We also involve knowledge-enhanced models: Bi-
oLinkBERT [36] and KeBioLM [37]. For generative models, in ad-
dition to BioGPT [23] and ChatGPT, we include two additional
biomedical models: PMC-LLaMA 10 and BioMedGPT 11.

10 https://huggingface.co/axiong/PMC_LLaMA_13B
11 https://huggingface.co/PharMolix/BioMedGPT-LM-7B

5.3 Implementation Details

Pretraining In our pretraining process, we initialize the encoder
with the parameters officially released by BioLinkBERTbase (110M
params) for the base model and randomly initialize the parameters
of the pointer network. We use a peak learning rate 5e-5, batch size
512, and train for 648000 steps. We warm up the learning rate in
the first 10% steps. The base model was pretrained on 8 NVIDIA
RTX A5000 GPUs for half a week. For the large model, we initialize
parameters from BioLinkBERTlarge (340M params), following the
same procedure as the base but appropriately increasing the learning
rate to 6e-5 and the batch size to 1024. Training took 12 days on 8
NVIDIA RTX A5000 GPUs with automatic mixed precision.

Fine-tuning Our downstream tasks are primarily NER and RE
tasks. In our NER model, we couple the encoder portion of the
language model with conditional random fields (CRF). We set the
learning rate to 3e-5, utilize a batch size of 16, and impose a max-
imum input sentence length of 1024. The training process runs for
a maximum of 100 epochs, with early stopping triggered after 10
epochs. For Relation Extraction, we adopt the method proposed by
PURE [38]. The learning rate for the downstream RE model is set
to 2e-5. We configure the sentence-level RE task with 10 training
epochs, a maximum input sentence length of 256, and a batch size
of 32. Regarding document-level RE tasks, training continues for 5
epochs, the maximum input sentence length is set to 1024, and the
batch size is 8. In evaluating our models on the BLURB benchmark
datasets, we extensively employ the official fine-tuning and evalua-
tion code 12, making only minor adjustments to a limited number of
hyperparameters.

Paired Entity Revision We use the same model framework for the
TCT task in the revision phase. The model parameters are initialized
with our trained TabMedBERTbase and fine-tuned with BC5CDRr .
We set the learning rate of the revision model to 2e-5, the batch size
to 16, and the limit of the input sentence maximum length to 512.
The train epochs are set to 15.

5.4 Experimental Results

5.4.1 BLURB Benchmark

Table 5 presents the results obtained on the BLURB dataset.
TabMedBERT achieves a new state-of-the-art (SOTA) performance
on the BLURB leaderboard, with an impressive absolute value of
85.59%. In particular, TabMedBERTlarge outperforms the previous
SOTA model, BioLinkBERTlarge, in nearly all task categories, ex-
hibiting an average performance improvement of +1.29%. It also
surpasses PubmedBERTlarge by a significant margin. At the base
level, our TabMedBERTbase also far surpasses other models, reach-
ing 84.14%.

TabMedBERT excels in information extraction tasks, particularly
in NER, RE, and PICO, with an average improvement of +1.65%.
This is due to the fact that our table-related tasks reinforce the
model’s understanding of entities and their relationships. Addition-
ally, our model achieves promising results in Question Answering
(QA) and Document Classification (DC) tasks, even without spe-
cific document-level training like BioLinkBERTlarge. This may be
attributed to the Table Cloze Test (TCT) task, which requires the
model to identify relevant spans from the overall context, thereby
enhancing its performance on document-level tasks.

12 https://github.com/michiyasunaga/LinkBERT.git
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Table 5. Performance on BLURB benchmark. TabMedBERT attains improvement on all tasks, establishing a new state of the art on
BLURB. Gains are notably large on information extraction tasks such as NER, PICO, and RE.

SciBERT KBioLM PubMed-
BERTbase

BioLink-
BERTbase

TabMed-
BERTbase

PubMed-
BERTlarge

BioLink-
BERTlarge

TabMed-
BERTlarge

NER

BC5-chem 92.36 93.17 93.33 93.75 93.80 93.23 94.04 94.67
BC5-disease 84.16 85.98 85.62 86.10 86.16 85.77 86.39 86.25
NCBI-disease 86.88 88.40 87.82 88.18 88.51 88.25 88.76 89.73
BC2GM 82.6 84.19 84.52 84.90 84.82 84.72 85.18 87.54
JNLPBA 78.67 79.04 80.06 79.03 82.64 79.44 80.06 82.43

PICO

EBM PICO 72.90 73.56 73.38 73.97 74.25 73.61 74.19 76.32

RE

ChemProt 75.02 77.51 77.24 77.57 77.51 78.77 79.98 80.22
DDI 82.32 82.56 82.36 82.72 82.84 82.39 83.35 83.83
GAD 81.76 80.97 82.34 84.39 85.04 83.57 84.90 85.61

SS

BIOSSES 89.51 51.33 92.30 93.25 93.10 92.73 93.63 92.78

DC

HoC 83.43 83.75 82.32 84.35 84.97 82.57 84.87 85.99

QA

PubMedQA 59.60 52.80 55.84 70.20 64.80 67.38 72.18 71.70
BioASQ 80.71 73.57 87.56 91.43 95.42 93.36 94.82 95.71

BLURB score 80.76 77.48 81.10 83.39 84.14 82.86 84.30 85.59

Table 6. Comparison of results on NER. BLURB-NER represents the average score of NER tasks in BLURB. AVG is the mean F1 on all NER datasets.

NER ChatGPT SciBERT KeBioLM PubMed-
BERTbase

BioLink-
BERTbase

TabMed-
BERTbase

BioLink-
BERTlarge

TabMed-
BERTlarge

BLURB-NER - 84.93 86.24 86.27 86.39 87.18 86.88 88.12

BC5CDR 54.80 88.37 90.07 89.37 89.56 90.18 90.06 90.42

ADE 71.79 89.94 90.33 90.22 90.12 90.80 90.83 91.38

BioRED 64.51 88.47 90.15 90.74 90.87 91.13 89.13 91.81

AVG 63.70 86.42 87.77 87.27 87.50 88.50 88.05 89.27

5.4.2 Information Extraction

Tables 6 and 7 provide a comprehensive overview of the per-
formance of various models on information extraction tasks. Our
TabMedBERT model consistently outperforms other models across
different model sizes, demonstrating the significant advantage of
our training approach in information extraction. When comparing
our base model to its initialized counterpart, BioLinkBERTbase,
we observe improvements of +1.0% and +1.01% in averaged NER
and RE, respectively. Similarly, for TabMedBERTlarge compared
to BioLinkBERTlarge, these improvements are +1.22% and +0.7%.
These results underscore the effectiveness of our table-based training
tasks in boosting model performance.

As shown in Table 9, generative models demonstrate subpar per-
formance in information extraction tasks and require significantly
more parameters to achieve comparable results. This highlights the
ongoing preference for understanding-based models for such tasks.
The results show that generative models perform much worse than
discriminative models in IE tasks and require significantly more
space and time. However, generative models excel in question-
answering (QA) tasks and are effective in document classifica-
tion without needing complex prompts. In summary, TabMedBERT
should be the preferred choice for IE tasks.

Figure 3. The scalability performance of the model. The IE score
represents the performance of IE tasks. Squares and triangles represent the

use of plain text without introducing table-related tasks.

5.4.3 Paired Entity Revision

The findings are detailed in Table 8. Our model showcases notable
enhancements across all Relation Extraction (RE) models, even in
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Table 7. Comparison of experimental results on RE. BLURB-RE represents the average score of RE tasks in BLURB. AVG is the mean F1 on all RE
datasets. Results of BC5CDR and ADE mean to predict relations on entities predicted by the NER model in Table 6.

RE ChatGPT SciBERT KeBioLM PubMed-
BERTbase

BioLink-
BERTbase

TabMed-
BERTbase

BioLink-
BERTlarge

TabMed-
BERTlarge

BLURB-RE - 79.70 80.34 80.64 81.56 81.80 82.74 83.22

AIMed - 88.51 87.50 88.41 85.96 89.66 87.89 89.87

BC5CDR 32.01 57.24 61.35 60.55 61.24 62.30 62.42 62.56

ADE 59.90 81.52 83.37 81.62 82.30 83.60 83.47 84.08

AVG 45.95 77.72 78.87 78.75 79.03 80.16 80.33 81.02

Table 8. Comparison of results before and after revision of our model on BC5CDRr . F1 measures the results here.

Revision Type SciBERT BioLinkBERT KeBioLM PubMedBERT TabMedBERT

before 89.26 90.72 90.85 91.19 91.51
NER zero-shot 88.90 90.41 90.68 90.96 91.18

fine-tuned 89.82 90.88 91.16 91.48 91.79

before 73.65 74.24 77.10 76.78 77.86
RE zero-shot 78.87 79.65 81.38 81.86 82.21

fine-tuned 80.04 81.37 82.30 83.20 83.71

Table 9. Comparison of large generative LMs in effectiveness and
efficiency. † indicates fine-tuning, others are zero-shot.

BC5CDR(RE) ADE(NER) HoC(DC) PubMedQA Params Time Cost

TabMedBERT† 62.5 91.3 86.0 71.7 340M 1×
BioGPT† 44.9 83.1 85.1 78.2 355M ≥ 4×
PMC-LLaMA 51.3 79.5 78.4 77.9 13B ≥ 10×
BioMedGPT 49.2 68.0 75.7 74.9 7B ≥ 10×
ChatGPT 32.0 71.8 73.1 63.9 175B > > >

scenarios where zero-shot learning is applied. TabMedBERT exhibits
its effectiveness in refining the outcomes of Named Entity Recogni-
tion (NER) and RE tasks through fine-tuning. Especially in the RE
task, there is a substantial average improvement of over 6% observed
across five models. This improvement can be attributed to the com-
plexities involved in error propagation within the RE task. On one
hand, numerous entity pairs within sentences are inadequately iden-
tified. Conversely, the relationships between entity pairs are often
inaccurately predicted. Our approach, employing the table cloze test
task, adeptly tackles these challenges by refining predictions that in-
volve missing paired entities. This simultaneous refinement signifi-
cantly contributes to the observed performance improvements.

5.5 Scalability Study

As portrayed in Figure 3, the proficiency of our TabMedBERT model
shows a consistent upward trend as we augment the volume of train-
ing data. Conversely, there is a noticeable decline in its performance
when it relies solely on textual data, excluding tasks related to tables.
This discrepancy underscores a crucial aspect: the effectiveness of
our approach lies not solely in the richness of the dataset but rather
in the intricacies of our training methodology. It is noteworthy that as
training progresses, the performance of LinkBERT exhibits a gradual
deterioration. This decline can predominantly be attributed to the dis-
ruption in knowledge assimilation arising from the absence of docu-
ment linking, a vital component of training with textual data.

5.6 Ablation Study

In Table 10, substituting EI with a random masked MLM leads to a
decrease of 2.0% in the mean F1 score for the NER task and 1.73%

for the RE task. Significantly, the absence of the Entity Infilling (EI)
task notably affects the NER tasks more than other aspects. This is
chiefly due to the EI task’s contribution of a substantial amount of
biomedical entity information to the model. Additionally, excluding
the cloze task diminishes the model’s capacity to grasp relationship
information between entities, leading to a noteworthy 2.4% decrease
in performance on downstream RE tasks. These observations high-
light the critical significance of both tasks for the model’s overall
efficacy.

Table 10. Ablation experiment of TabMedBERT on NER and RE tasks.
“w/o EI” replaces biomedical entities masking with random masking. “w/o

TCT” refers to removing the table cloze task.

TabMedBERT w/o EI w/o TCT

NER-AVG 88.50 86.51 87.23

RE-AVG 80.16 78.43 77.75

6 Conclusion

This paper presents TabMedBERT, an innovative biomedical pre-
trained language model enriched with tabular knowledge. TabMed-
BERT incorporates two novel self-supervised tasks related to tables,
namely Entity Infilling (EI) and Table Cloze Test (TCT), enhancing
its understanding of structured data. Our evaluation across various
biomedical tasks demonstrates TabMedBERT’s state-of-the-art per-
formance compared to other language models. Particularly notewor-
thy is the model’s architecture for TCT, offering a straightforward
solution for refining information extraction involving paired entities.
Looking ahead, we envision several avenues for advancing our re-
search. Firstly, we intend to explore generative approaches to harness
tabular knowledge more effectively. Additionally, we are actively
pursuing the extension of this model’s applicability to multilingual
scenarios.
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