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Abstract. Self-supervised learning (SSL) has gained prominence
due to the increasing availability of unlabeled data and advances in
computational efficiency, leading to revolutionized natural language
processing with pre-trained language models like BERT and GPT.
Representation learning, a core concept in SSL, aims to reduce data
dimensionality while preserving meaningful aspects. Conventional
SSL methods typically embed data in Euclidean space. However, re-
cent research has revealed that alternative geometries can hold even
richer representations, unlocking more meaningful insights from the
data. Motivated by this, we propose two novel methods for integrating
Hilbert geometry into self-supervised learning for efficient document
embedding. First, we present a method directly incorporating Hilbert
geometry into the standard Euclidean contrastive learning framework.
Additionally, we propose a multi-view hyperbolic contrastive learning
framework contrasting both documents and paragraphs. Our find-
ings demonstrate that contrasting only paragraphs, rather than entire
documents, can lead to superior efficiency and effectiveness.

1 Introduction

Recently, large language models (LLMs) have emerged as one of the
most notable areas in deep learning, gaining widespread recognition
as their applications reached the general public [29]. Similarly, AI-
generated images and videos [31, 13, 12] have become well-known
concepts. The primary drivers behind these advancements include
the availability of vast quantities of unlabeled data and significant
progress in self-supervised learning (SSL) [38, 39]. This approach
exploits the inherent structures within the data, eliminating the need
for costly manual annotation, and has demonstrated performance
that is comparable to, or even surpasses, that of supervised methods
[16, 21, 10, 4].

A key challenge in SSL lies in devising a representation of data
that accurately captures its underlying structure and the relationships
among data points. Contrastive learning has emerged as a promising
strategy for training models to achieve effective image [9, 11] and
linguistic representations [16, 10, 21, 33, 36]. This method focuses
on learning embeddings that bring similar instances closer while
distancing dissimilar ones within a latent space.

Most current approaches rely on Euclidean space, leveraging the
intuitive notion of distance. However, the hyperbolic space has also
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Figure 1: A depiction of the multi-view analogy between visual [17]
and text (ours) hierarchies utilized in multi-view contrastive learning
for document representation. The scene of an image is interpreted as

the document and the objects in the scene as the paragraphs in the
document.

gained traction for visual [18, 1] and textual representation [14, 42,
26]. This space holds the potential for capturing hierarchical structures
more effectively, leading to richer representation. Recent research has
demonstrated the success of combining self-supervised contrastive
learning with the hyperbolic space for image data [17, 41].

Building on the insights from previous studies [32, 35, 17] that
highlights the advantages of using hyperbolic space for capturing hi-
erarchical structures in both visual and textual data, Hilbert geometry
emerges as a complementary approach, particularly when paired with
contrastive learning methods. Much like hyperbolic space, Hilbert
geometry excels at modeling complex, hierarchical relationships in-
herent in the text, facilitating more precise embeddings with reduced
dimensional distortion. This characteristic is crucial for text represen-
tation, as Hilbert’s geometry aligns the geometric relationships within
the space more closely with the semantic relationships between text
elements—such as paragraphs and sentences. In a contrastive learn-
ing framework, this alignment allows for a more effective distinction
between similar and dissimilar textual pairs, enhancing the learning
process. Consequently, integrating Hilbert geometry not only enriches
the text representations but also boosts the efficiency of learning algo-
rithms, resulting in more sophisticated models that better understand
and process natural language. This synergy underscores the potential
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of expanding beyond traditional Euclidean models to embrace geome-
tries like Hilbert and hyperbolic spaces, which are proving pivotal in
advancing the field of text representation learning.

In this paper, we introduce two novel approaches to self-supervised
representation learning for efficient text embedding, based on Hilbert
geometry – a generalization of the Klein model of hyperbolic space.
Our methods, named One-Branch Geometry Fusion Encoding and
Two-Branch Geometry Fusion Encoding, extend the widely used Eu-
clidean contrastive learning framework to incorporate the unique
properties of Hilbert space. Additionally, we explore the potential
of contrasting paragraphs instead of entire documents for more ef-
ficient and effective document representation learning. We evaluate
our methods on a number of benchmark NLP tasks and show that
they outperform state-of-the-art Euclidean-based methods. Our re-
sults suggest that hyperbolic geometry is a promising new approach
to self-supervised representation learning for text.

Our research has several implications for the field of NLP. First, it
demonstrates the effectiveness of using hyperbolic geometry for self-
supervised representation learning of text. Second, it opens up new
possibilities for document representation learning by showing that
contrasting paragraphs instead of documents can be more efficient
and effective. Third, it suggests that hyperbolic geometry may be
a useful tool for other NLP tasks, such as machine translation and
natural language generation.

2 Background and Related Work

2.1 Hyperbolic Geometry Learning

Hyperbolic space, a type of non-Euclidean geometry, has garnered
significant interest due to its properties. It is particularly suited for
capturing tree-like hierarchical structures, which has led to its suc-
cessful application in network science and graph representation. Its
effectiveness is also evident in embedding taxonomies [26, 27, 14].
For example, one can consider the hierarchical relationship among
the words "animal," "dog," and "pug," or similarly, images represent-
ing these categories [18]. In image retrieval, hyperbolic space helps
represent hierarchies stemming from whole-to-fragment relationships
or, in recognition tasks, from image degradation [20].

Hyperbolic geometry investigates spaces characterized by constant
negative curvature. There are five isometric models of hyperbolic
spaces identified in the literature: the Lorentz (hyperboloid) model,
the Poincaré ball model, the Poincaré half-space model, the Klein
model, and the hemisphere model [3, 18, 30, 24]. Among these, the
Poincaré ball model is the most frequently utilized [20, 1, 26, 37],
primarily because its distance function is differentiable, which facili-
tates gradient-based optimization techniques [41]. Unlike Euclidean
spaces, where lines are straight, lines in hyperbolic space deviate from
straightness. Moreover, as one approaches the boundary of hyper-
bolic space, distances increase significantly, making this geometry
particularly effective for representing tree-like structures.

Recent studies have explored the application of contrastive learning
within hyperbolic space to enhance image representation [41, 17].
Traditionally, the contrastive learning framework is predicated on
Euclidean geometry; however, this framework has been expanded to
incorporate learning in hyperbolic space. Notably, [17] diverged from
contrasting a single pair of augmented views of an image to contrast-
ing two pairs derived from the same image. For instance, given a scene
image of a dog playing with a ball, one pair consisted of two cropped
views of the object region, the dog, contrasted in Euclidean space.
The other pair included a scene region, showing the dog with the

ball, and a contained object region, the ball, contrasted in hyperbolic
space. This approach leverages the assumed hierarchical relationship
between a scene and its objects to enhance the comprehension of the
entire image. Our research extends this exploration by incorporat-
ing non-Euclidean geometries into contrastive learning frameworks,
specifically examining the implications of Hilbert simplex geometry.

2.2 Hilbert Geometry Learning

Our Hilbert geometry framework is inspired by the foundational
research presented in [28], which introduced Hilbert simplex geometry
along with its closed-form distance metric. The authors characterize
this geometry as a generalization of the Klein model of hyperbolic
space and have empirically demonstrated its utility in embedding
distance matrices. In this work, we provide a detailed exposition of
their mathematical derivations, elucidating how these concepts can be
integrated and applied to further our understanding of geometric data
representations.

Consider Ω be any open bounded convex set of R
d. The Funk

distance ρΩF (p, q) between two points p, q ∈ Ω is defined by

ρΩF (p, q) :=

⎧⎪⎨
⎪⎩
log

(
‖p−q̄‖
‖q−q̄‖

)
, p �= q

0 , p = q

where q̄ denotes the point where an affine ray R(p, q) originat-
ing from p and passing through q intersects the boundary ∂Ω, as
illustrated in 2. The Hilbert distance ρΩH(p, q) is defined as the sym-
metrization of the Funk distance.

Figure 2: Depiction of the Funk distance defined in the open standard
simplex Δ2 by [28].

ρΩH(p, q) :=

{
ρΩF (p, q) + ρΩF (q, p) p �= q

0 p = q
(1)

Considering the open (d−1)-dimensional simplex Ω = Δd, where
R++ := (0,∞).

Δd :=
{
(x1, ..., xd) ∈ R

d
++ :

d∑
i=1

xi = 1
}

(2)

In this case, the Funk distance can be formulated as

ρ
Δd
F (p, q) = log maxi∈{1,...,d}pi

qi
(3)

and because the logarithm function strictly increases, we can further
write

ρ
Δd
F (p, q) = maxi∈{1,...,d}log pi

qi
. (4)
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To make the function differentiable, one can approximate the maxi-
mum operator by the so-called log-sum-exp function LSE. For any
x ∈ R

d and τ > 0 the approximation formula is denoted by

LSET :=
1

τ
log

(
d∑

i=1

exp(τxi)

)
. (5)

Incorporating the approximation we can denote a differentiable
pseudo-distance by

ρ̃H(p, q) =
1

τ
log

(
d∑

i=1

(pi
qi

)T)( d∑
i=1

( qi
pi

)T)
, (6)

which was used in our contrastive learning frameworks to measure
the divergence between embeddings. To illustrate the Hilbert simplex
geometry and its associated distance function, we visualized balls
of constant radius increments centered at a specific point within the
simplex. These representations are shown in Figure 3, where each ball
depicts the spatial expansion at equidistant steps, providing a clear
visualization of the geometry’s inherent properties.

Figure 3: Illustration of balls with constant radius increment step
centered at c ∈ Δ2 by [28]. The last figure shows the distance color

maps with brightness decreasing with increasing distance.

Finally, we converted divergences into similarities by the following
strictly monotone function:

ψ =
1

ρ̃H(p, q) + 1
(7)

2.3 Contrastive Learning

Contrastive learning aims on robust representation learning by com-
paring pairs of data points. Its primary goal is to align representations
of similar ("positive") examples more closely, while distancing those
of semantically dissimilar ("negative") examples within a hidden, ab-
stract space known as the latent representation. This technique often
utilizes data augmentation to enhance the diversity of input data. As
a prominent method in self-supervised learning, it enables models
to learn without explicit labels. Figure 4 presents a simplified dia-
gram of a typical contrastive learning model. In this model, a data
point—whether an image or text—is subjected to two distinct trans-
formations. These transformed data points are then processed by an
encoder and a Multilayer Perceptron (MLP) head. Subsequently, the
model evaluates the similarity or difference between these processed
representations within a small batch of data points. This evaluative
step is integral to the model’s training objective, facilitating the learn-
ing of meaningful and discriminative features.

Encoder

Encoder

MLP Head

MLP HeadData
Augmentation

Data
Augmentation

maximize
similarity

Figure 4: Simplified illustration of a vanilla contrastive learning
framework inspired by [8] and [9].

Contrastive learning has become a rising area because of its notable
success in Computer Vision. SimCLR [9] is considered one of the

pioneers. It is also one of the most simple frameworks. Two views
of an image are created by augmentation methods with a random
component, such as color distortion and random cropping. They are
considered a "positive" example and every other pair in the mini-batch
is considered "negative". The cosine similarity of the embeddings,
commonly used for visual representations, is measured to compute
the temperature-scaled cross-entropy loss.

The success of contrastive learning in visual contexts has prompted
its application to textual data as well [16, 40, 22]. For instance, [16]
adapted the SimCLR architecture to develop a straightforward method
for generating sentence embeddings, demonstrating that complex data
augmentation techniques are unnecessary. Instead, they utilized ran-
dom dropout masks as a minimal augmentation approach, achieving
notable performance across various semantic textual similarity tasks.
However, their methodology was generally restricted to short textual
segments.

Efforts to refine and enhance the basic contrastive learning model
have led to various innovations. Different methods of data augmen-
tation, selection of "positive" and "negative" pairs, and adaption of
the objective function were proposed [40, 11, 34]. Our work was
inspired by the idea of incorporating measures of divergence beyond
Euclidean as presented by [35] and [32]. They computed not only the
cosine similarity between representations but also added an ensem-
ble of subnetworks on top and considered the functional Bregman
divergence.

3 Method

In this study, we enhance self-supervised representation learning by
projecting embedding representations into hyperbolic space. Specifi-
cally, we propose to investigate two fundamental questions: (i) How
can the Hilbert distance be effectively utilized to quantify divergence
among embeddings? (ii) How can the Hilbert distance be applied to
evaluate similarity among text representations?

These questions serve as the basis for our proposed solutions, which
introduce two novel methods for self-supervised representation learn-
ing of text based on hyperbolic geometry.

3.1 Self-supervised Representation Network

Consider a randomly sampled mini-batch of sequence data X =
{xs(i)}Ni=1, xs ∈ X ⊆ R

p, the transformation function t derives two
augmented views xsi,1 = t(xs),xsi,2 = t′(xs) for each sample
xsi ∈ X . The augmented views are obtained by sampling t, t′ from
a distribution over suitable data augmentations, such as masking parts
of sequences [16]. The two augmented views xsi,1 and xsi,2 are then
fed to an encoder network fθ with trainable parameters θ ⊆ R

d. The
encoder maps distorted samples to a set of corresponding features. We
call the output of the encoder the representation. The Hilbert network
takes the representation vectors zsi,1 , zsi,2 , respectively, for xsi,1

and xsi,2 . We define Leucl as:

1

N

N∑
i=1

−log
e
cos(zsi,1 , zsi,2 )/τe∑2

k=1

∑N
j=1 e

cos(zsi,1,zsj,k
)/τe

(8)

3.2 One-Branch Geometry Fusion Encoding

To enhance the representation, our proposed one-branch algorithm
takes the output of two embedding vectors zsi,1 , zsi,2 . Each vector
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Self-supervised
Euclidean Geometry Network

Hilbert Geometry
Network

MLP Head

MLP Head

Figure 5: Illustration of our proposed "One-Branch Geometry Fusion
Encoding" framework. A sequence from a document is augmented
twice and fed to an encoder network to obtain a representation in

Euclidean geometry and additionally fed to an MLP Head for one in
Hilbert geometry. In each geometry, a contrastive loss is calcluated.
is encoded and then passed through a Hilbert geometry network, de-
noted as DHφ , which features learnable parameters φ. This network
is structured with a single Multilayer Perceptron (MLP) head and a
softmax layer, producing outputs osi,1 and osi,2 on a simplex. These
outputs are then utilized for calculating the loss specific to the re-
spective geometry. Here, we measure the Hilbert distance between
positive and negative examples. Additionally, we implement a trans-
formation function ψ that converts distances into similarities, which
then formulates the basis for our second objective function, Lhilb:

1

N

N∑
i=1

−log
eψ(ρ̃H (osi,1, osi,2))∑2

k=1

∑N
j=1 e

ψ(ρ̃H (osi,1,osj,k
))

(9)

in which osi represents network outputs, ψ converts divergences into
similarity as Eq. (7), and ρ̃H is our differentiable Hilbert distance
function in Eq. (6). The total loss Lone−branch is a linear combination
of the Euclidean loss Eq.(8) and the Hilbert loss Eq.(9), weighted by
a factor λ, where:

Lone−branch = λLeucl + Lhilb (10)

The one-branch geometry fusion coding approach is designed to
exploit the structural advantages of both Euclidean and Hilbert spaces
in learning document representations. The Euclidean space excels
at representing plane geometric structures, while the Hilbert space
is more adept at encapsulating hierarchical and intricate geometric
configurations. By integrating these spaces, this method seeks to
produce a more efficient and expressive representation of documents.

3.3 Two-Branch Geometry Fusion Encoding

The two-branch algorithm takes different granularities of text within
the document. As depicted in Fig. 6, a single document xd is pro-
cessed alongside portions of its content and paragraphs xp of text
within the document. Our goal was to leverage the inherent suitability
of Hilbert geometry for capturing hierarchical relationships more ef-
fectively. The similarity in Euclidean geometry is measured between
two of the paragraph representations and the similarity in Hilbert
geometry is measured between the third paragraph embedding and
the document embedding. Our two-branch geometry fusion encoding
offers advantages for tasks that require understanding at both the
granular level of paragraphs and the holistic level of entire documents.
By fusing Euclidean and Hilbert geometries, this algorithm enables a
richer and more nuanced understanding of text, effectively capturing
both fine-grained details and abstract relationships. The final loss
function is computed as:

Ltwo−branch = λ′Leucl + Lhilb (11)

Self-supervised
Euclidean Geometry Network

Hilbert Geometry
Network

MLP Head

MLP Head

Figure 6: Illustration of our proposed "Two-Branch Geometry Fusion
Encoding" framework. A document is fed once and a paragraph from

it is fed three times to the encoder. The similarity in Euclidean
geometry is measured between two of the paragraph embeddings and

the similarity in Hilbert geometry is measured between the third
paragraph embedding and the document embedding.

4 Experimental Setup and Results

Datasets We examine our models on two legal datasets as well
as a medical text dataset. ECtHR [6] is a multi-label classification
task, where factual paragraphs from a case description are given and
each document is labeled with the article(s) of the European Court
of Human Rights (ECHR) believed to have been breached. There
are 11k cases and 10 possible labels. SCOTUS [7] is a single-label
classification task containing 4.7k cases from the Supreme Court of
the USA categorized by 14 issue areas. The legal datasets ECtHR-
B (ECtHR) and SCOTUS are part of the LexGLUE benchmark by
Chalkidis et al. [7]. The medical dataset MIMIC-III (MIMIC) [19]
is a collection of 50k discharge summaries from US hospitals. It is a
multi-label task, where each document is labeled with one or more
1st-level codes from the ICD-9 hierarchy. In total, there are 19 labels.

Division of Documents in Paragraphs For our two-branch algo-
rithm, we needed to divide documents into paragraphs. As ECtHR is
a collection of paragraphs pre-defined by the authors, we were able to
use them directly. In the case of SCOUTS and MIMIC, we split the
documents whenever there were at least two consecutive new lines,
potentially preceded by whitespace characters. If the resulting para-
graph was shorter than 32 terms, which we regarded as a minimum
length of a section with useful content, it was merged with the next
unit.

Choice of One Paragraph per Document We had to define pairs
of paragraphs and documents. As a document consists of multiple
paragraphs, we could either couple every paragraph to the respective
document, extract one paragraph for each document, or do some-
thing in between. To minimize the computational resources needed,
we included every document only once and randomly sampled one
paragraph from each document.

To prevent selecting irrelevant paragraphs, like those containing
sequences of numbers found in SCOTUS or MIMIC, we assessed the
relevance of each paragraph within the documents and excluded those
ranking within the lowest 10%. Inspired by the Inverse Document
Frequency (IDF), the relevance of a paragraph was determined by
the mean Inverse Paragraph Frequency (IPF) of all words. Terms
common across all paragraphs (e.g. a, the, and) are measured with a
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Table 1: Document classification benchmark with micro- and macro-F1 scores and their harmonic averages. SimCSE was implemented
following Gao et al. [16]. DA Longformer is the domain-adapted Longformer used as a baseline.

ECtHR SCOTUS MIMIC Average

Method mi-F1 ma-F1 mi-F1 ma-F1 mi-F1 ma-F1 mi-F1 ma-F1
DA Longformer 54.2 35.7 60.9 33.1 66.4 50.5 60.1 38.5
+ SimCSE 59.8 45.4 56.2 29.9 68.0 54.9 61.0 40.7
+ One-branch (ours) 65.0 49.2 65.1 46.0 67.1 53.3 65.7 49.3
+ Two-branch (ours) 65.5 53.0 66.2 42.1 68.9 56.4 66.9 49.7

Table 2: Comparison of the micro- and macro-F1 scores of SimCSE and One-branch trained either using documents (doc) or paragraphs (par).
The harmonic average is reported and training hours are measured by the wall clock time.

ECtHR SCOTUS MIMIC Average Training

Method mi-F1 ma-F1 mi-F1 ma-F1 mi-F1 ma-F1 mi-F1 ma-F1 Time (h)

+ SimCSE (doc) 59.8 45.4 56.2 29.9 68.0 54.9 61.0 40.7 4.6
+ SimCSE (par) 68.0 52.8 63.1 36.2 68.8 55.9 66.5 46.5 1.2
+ One-branch (doc) 65.0 49.2 65.1 46.0 67.1 53.3 65.7 49.3 4.6
+ One-branch (par) 68.0 51.6 64.9 44.9 68.4 55.0 67.1 50.1 1.2

lower IPF score than infrequent ones that might be domain-specific.
It is calculated by:

IPF = log
(

number of paragraphs in document
number of paragraphs in document containing the term

)
(12)

4.1 Experimental Setting

Domain-adapted Longformer As our datasets contain long docu-
ments with an average number of words of 1613, 1621, and 5853, for
ECtHR, MIMIC, and SCOTUS respectively, our model architecture
is Longformer [2]. It induces sparsity in the attention mechanism of
Transformer using a sliding window that focuses on local context. Ad-
ditionally, we warm-start from models pre-trained on domain-specific
corpora. We applied Legal-BERT (small) [5] and BioBERT (medium)
[23] for the legal and medical datasets, respectively. The initial posi-
tional embeddings were replicated 8 times, resulting in 4096 token
positions. Then, most parameters, including word embeddings and
Transformer layers, could be transferred to Longformer.

Model Optimization and Hyperparameters Our models were
optimized using AdamW [25] with 2500 steps per epoch and a weight
decay of 0.01. The learning rate was increased from 0 to the maximal
learning rate for 10% of the training data before linearly decreasing
(warm-up). The temperature hyperparameters τeucl and τhilb were set
to 0.1 and 5, respectively [35, 28]. We performed Bayesian Optimiza-
tion and Hyperband (BOHB) [15] to tune the other hyperparameters
(loss weight λ, MLP head embedding size, learning rate, number of
epochs, mini-batch size) on the development datasets. The tuning
procedure was limited to 50 trials, the search algorithm ran for 20
hours, and the optimization metric was the micro-F1. More details are
provided in Section 4.3.

Linear Evaluation We evaluated the models using the standard
linear evaluation protocol [9, 11]. A linear classification head on top
of the frozen encoder was trained for 20 epochs and a learning rate of
3e−5. As the datasets are quite imbalanced, we report not only the
micro-F1 score but also the macro-F1 score on the test datasets.

4.2 Results and Discussion

The results for document classification are presented in Table 1. The
domain-adapted Longformer is compared to SimCSE [16] imple-
mented by ourselves and our algorithms. The results obtained in Table

1 indicate that our proposed method outperforms the baseline and
SimCSE-augmented models. The two-branch algorithm shows the
best overall performance, suggesting that its strategy for process-
ing and learning from document data is particularly effective for
document classification. The mi-F1 and ma-F1 scores are highest
with this method, reaching 65.5 and 53.0 in ECHR, 66.2 and 42.1
in SCOTUS, and 68.9 and 56.4 in MIMIC, respectively. According
to results obtained in Table 2, paragraph-level training consistently
outperforms document-level training across both methods and all
datasets. The One-branch algorithm provides the best overall perfor-
mance, particularly when applied at the paragraph level, suggesting
that finer-grained training inputs can lead to more effective docu-
ment classification. Moreover, paragraph-level methods demonstrate
a significant reduction in training time, indicating a more efficient
training process without compromising, and even improving, model
performance.

4.3 Implementation Details

We will make our code and trained model publicly available to
facilitate further research and development in this field. Table 3 out-
lines the hyperparameter search space used for training in a machine
learning context. The hyperparameters include mini-batch size, loss
weight λ, MLP head embedding size, learning rate, and the number of
epochs. These parameters are crucial for tuning the model to achieve
the best performance. The result indicates that the search space for the
mini-batch size was constrained by the maximum memory capacity
of the GPU, and it was calculated on a log2 scale. This constraint led
to differences in the mini-batch sizes available for each algorithm-
dataset combination. These hyperparameters are critical to optimize
for effective training of the model, with each combination likely to
yield different performance results.

Table 4 presents the optimal hyperparameters selected for differ-
ent document classification methods across three datasets: ECtHR,
SCOTUS, and MIMIC. Each row corresponds to a method-dataset
combination and lists the best-performing hyperparameters after tun-
ing. Across the datasets, the Two-branch method often has a larger
loss weight λ and a lower learning rate compared to the One-branch
method, while the mini-batch size is typically smaller. For instance, in
the ECtHR dataset, the One-branch method (document level) uses a
loss weight of 2, an embedding size of 64, a learning rate of 1e-5, over
15 epochs, with a mini-batch size of 2. In contrast, the Two-branch
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Table 3: Search space of the training hyperparameters. The search
space of the mini-batch size was limited by the maximal memory

capacity of our GPU on log2-scale resulting in differences between
algorithm-dataset combinations.

Search Space of Mini-Batch Size
One-branch on ECtHR/SCOTUS {2, 4, 8, 16}
Two-branch on ECtHR/SCOTUS {2, 4, 8}

One-branch on MIMIC {2, 4}
Two-branch on MIMIC {2}

Search Space of Other Hyperparameters
loss weight λ {0.5, 1, 1.5, 2, 2.5, 3, 3.5}

MLP head embedding size {64, 128}
learning rate {1e−7, 1e−6, 1e−5}

number of epochs {10, 15, 20}

method on the same dataset employs a slightly higher loss weight of
3.5, the same embedding size and learning rate, but fewer epochs (10)
and a mini-batch size of 2.

The One-branch method at the paragraph level usually has fewer
epochs and smaller mini-batch sizes compared to the document level,
suggesting that paragraph-level training may converge faster and
require less memory.

Table 4: Tuned hyperparameters (loss weight λ, MLP head
embedding size, learning rate, number of epochs, mini-batch size) for

every algorithm and dataset.
Dataset Method Tuned Values

ECtHR
One-branch (doc) (2, 64, 1e−5, 15, 2)
One-branch (par) (2, 64, 1e−5, 10, 4)

Two-branch (3.5, 64, 1e−5, 10, 2)

SCOTUS
One-branch (doc) (3.5, 128, 1e−5, 20, 2)
One-branch (par) (0.5, 64, e−5, 10, 8)

Two-branch (3, 128, 1e−6, 15, 4)

MIMIC
One-branch (doc) (4, 128, 1e−5, 20, 4)
One-branch (par) (3, 64, 1e−5, 10, 4)

Two-branch (2, 64, 1e−5, 15, 2)

We further assess the generalization capacity of the learned repre-
sentation on learning a new task. We implemented our two-branch
algorithm on the top of DiffCSE and trained on a dataset of sentences
from Wikipedia and fine-tuned the pretrained representation for one
epoch on seven different semantic textual similarity datasets from
the SentEval benchmark suite: MR (movie reviews), CR (product re-
views), SUBJ (subjectivity status), MPQA (opinion-polarity), SST-2
(sentiment analysis), TREC (question-type classification), and MRPC
(paraphrase detection). Then, we evaluate the test set of each dataset.
The results shown in Table 5.

5 Ablation Studies

To examine single components of our two-branch algorithm more
closely, we conducted ablation studies. We aimed to better understand
the functionality of our method and see how robust it is concerning
design choices. Concretely, we investigated multiple possibilities
to convert divergences into similarities, worked with paragraphs of
varying length, and applied cleansing procedures to the data.

5.1 From Divergence to Similarity

Different from the (cosine) similarity function, a distance function
must be converted to represent proximity. Any strictly monotone
function could be deployed. [32] explored different possibilities to
convert the Bregman divergence to contrast images. Following their

work, we tested multiple functions in the Two-branch algorithm using
the MIMIC dataset. We only included conversion functions that do
not require any hyperparameters, except for the Gaussian kernel for
which we could apply the ones tuned by [35]. As expected, the con-
version function interacts significantly with the hyperparameters of
our algorithm. The results of this interaction are presented in Table 7.

The micro-F1 score does not appear to be affected by the choice
of the conversion function as much as the macro-F1 score. While
ψ1 performed the worst, our function ψ4 performed the best but was
comparable to the Gaussian kernel.

5.2 Minimum Length of Paragraphs

We obtained paragraphs from the corpora of documents by splitting
them into sections that contain at least 32 terms. To investigate how
different values of minimal length affect our methods, we additionally
tested our algorithms on paragraphs with at least 64, 128, and 256
terms. In our experiments before, we used the pre-defined paragraphs
for ECtHR. Here, we merged paragraphs with the next one, if they
were shorter than the minimum length, as done for SCOTUS and
MIMIC. This procedure yielded datasets with different sizes shown
in Table 8.

Figure 7: Comparison of our Two-branch algorithm trained using
paragraphs of varying minimum lengths. The x-axis is represented on

log2-scale.

Figure 7 depicts the results for Two-branch. For the micro-F1 score,
the differences were minimal and a clear tendency was not visible.
The macro-F1 scores seemed to be more sensitive. For ECtHR, we
observed a better macro-F1 performance with the increasing length
of paragraphs up to 128. The score even outperformed Two-branch
trained with pre-defined paragraphs by 1.9%. However, on average
our Two-branch was not heavily affected by the choice of the minimal
paragraph length.

5.3 Data Cleansing

Similar to the reason, why we excluded paragraphs with low relevance
in terms of the IPF score in the Two-branch algorithm, cleansing the
data might be advantageous. For example, documents in MIMIC often
begin with a header that includes dates, gender, etc. Sequences of
uppercase letters or newlines are also possible and might affect data
quality. To investigate this matter, we tested our models on cleansed
data. We removed sequences of uppercase letters, replaced multiple
newlines with either a period or space between them by two consecu-
tive newlines, and removed headers from MIMIC.

The results are reported in Table 6. A positive effect of the cleansing
procedure was not found. Instead, we observed that it rather tends
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Table 5: Comparison on a new baseline (DiffCSE) for the transfer learning task.
Model MR CR SUBJ MPQA SST TREC MRPC Avg.
DiffCSE-RoBERTa_base 82.82 88.61 94.32 87.71 88.63 90.40 76.81 87.04
Ours 83.01 88.92 94.37 88.09 88.21 91.02 76.04 87.09

Table 6: Comparison of the micro- and macro-F1 scores of models using data with or without the cleansing procedure.

Method Cleansing ECtHR SCOTUS MIMIC Harmonic Mean
mi-F1 ma-F1 mi-F1 ma-F1 mi-F1 ma-F1 mi-F1 ma-F1

Two-branch with 66.1 52.4 66.1 41.6 68.7 55.5 66.9 49.0
without 65.5 53.0 66.2 42.1 68.9 56.4 66.9 49.7

Table 7: Comparison of the micro- and macro-F1 scores of our
Two-branch algorithm on the MIMIC dataset using different

functions suitable for converting divergences into similarities [32],
with D being a distance matrix. For the Gaussian kernel ψ3, we used

σ = 2 as [35] suggested. ψ4 was used in our models.

Strictly Monotone Functions mi-F1 ma-F1

ψ1 =
√
1−D 66.4 50.6

ψ2 = 1− D
max(D)

67.8 53.3

ψ3 = exp(−D
2σ2 ) 68.7 56.1

ψ4 = 1
D+1

(our) 68.9 56.4

Table 8: Rounded number of paragraphs in the training set after
splitting documents into paragraphs with different minimum lengths

and using paragraphs pre-defined for ECtHR.
minimum length of paragraphs ECtHR SCOTUS MIMIC

pre-defined paragraphs 213k - -
32 159k 214k 472k
64 127k 176k 286k
128 110k 112k 130k
256 105k 31k 54k

to be harmful. The censored and replaced sequences seem not to
negatively affect the data quality as we expected.

6 Conclusion

This paper explores the efficacy of non-Euclidean geometries in
enriching document representation learning. Our investigation into
Hilbert geometry unveils its remarkable potential to enhance the qual-
ity of document embeddings. The proposed methods, One-branch and
Two-branch, outperform their Euclidean counterparts, demonstrating
the effectiveness of Hilbert geometry. Additionally, we uncover that
data cleansing is not a critical component of our approach, and that
employing paragraphs as training units instead of documents yields
enhanced performance and reduced training time.

Ethics Statement

Our proposed model is designed with safeguards to ensure it does
not cause harm. All data used for training, testing, and evaluation
are sourced from publicly available datasets, adhering to open data
principles. Upon acceptance of our work, we will release both the
code and the trained model to foster transparency and facilitate further
research in the field.

Limitations

In this paper, we concentrate on smaller to medium-sized models, with
a parameter count of up to 134 million. This contrasts with recent
advancements in LLM, which utilize architectures with billions of
parameters. The degree to which the observed enhancements from
our network architecture apply to varying model scales or different
foundational architectures, such as those used in GPT models, remains
uncertain. Additionally, the extent to which our results can be gener-
alized to different application areas, data sets, or influence other NLP
tasks like document retrieval and ranking, is yet to be determined.
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