
On the Discovery of Conceptual Clustering Models

Motaz Ben Hassine 1,2,*, Saïd Jabbour 1, Mourad Kmimech 3, Badran Raddaoui 4 and Mohamed Graiet 5

1CRIL, University of Artois & CNRS, Lens, France
2University of Monastir, UR-OASIS-ENIT, Monastir, Tunisia

3EFREI, Paris-Panthéon-Assas University, France
4SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

5LS2N Nantes, Nantes, France

Abstract. Conceptual clustering is a well-studied research area in
the field of unsupervised machine learning. It aims to identify disjoint
clusters, where each cluster represents a collection of similar trans-
actions described by a common pattern. The first phase of earlier
conceptual clustering methods relies on the enumeration of closed
patterns. Nevertheless, the extraction of such patterns can be chal-
lenging, primarily due to their rigorous nature. Indeed, closed pat-
terns can be not frequent or fail to cover all the transactions within a
cluster. To overcome this issue, this paper presents a novel approach
based on the relaxation of frequent patterns called k-relaxed frequent
patterns. Then, we introduce a propositional satisfiability method for
enumerating such patterns. Afterwards, we employ an integer linear
programming approach to compute the set of disjoint clusters. Fi-
nally, we demonstrate the efficiency of our approach through an ex-
tensive experiments conducted on several popular real-life datasets.

1 Introduction

Data clustering is a popular machine learning task that helps to gain a
deeper understanding of the data. It plays a significant role in numer-
ous practical applications, including document and text classifica-
tion, customer segmentation, image and video analysis, genomic data
analysis, recommender systems, and community detection in social
networks, among others. In the literature, numerous proposals have
been studied for data clustering. The majority of existing approaches
fall under the unsupervised machine learning techniques and can
be broadly categorized into hierarchical and conceptual clustering
methods. The first category can be classified into agglomerative or
divisive approaches [29]. Agglomerative clustering techniques, e.g.
[2, 41, 18], are iterative methods for clustering data points. At each
step, new data is grouped based on a (dis)similarity function and an
optimization metric. On the other hand, divisive methods involve di-
viding data points into clusters based on a given (dis)similarity func-
tion. The process repeats until a stopping criterion is met, guided
by an optimization function, similar to the k-Means approach [28] or
also the overlapping k-Means (i.e. Neo-k-Means) [42]. Note that sev-
eral other hierarchical clustering approaches have been introduced so
far (e.g. [38, 13, 1, 43, 31]). Moreover, other methods, not falling
within the classes of divisive, agglomerative, or conceptual cluster-
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ing approaches, have been proposed, such as the Spectral Cluster-
ing method [39] and the BIRCH approach [44]. The second category
consists of conceptual clustering approaches, with the latter being of
particular interest in this paper. Conceptual clustering aims to group
data points, each described with certain features, according to their
descriptions into the same cluster. More precisely, given a dataset
D (with m transactions and f features) and let β be the desired
number of clusters, the goal of conceptual clustering is to identify
β disjoint clusters that collectively encompass all the data inD while
corresponding to meaningful concepts. Numerous approaches have
been proposed to address the problem of conceptual clustering, e.g.
[33, 14, 15]. Some of these existing techniques are based on declara-
tive approaches using boolean satisfiability problem (SAT) [32], con-
straint programming (CP) [16, 30] or also on Integer Linear Pro-
gramming (ILP) [36, 37, 7]. These earlier approaches employed data
mining techniques. Indeed, the initial phase of these methods, such
as [36], relies on enumerating all classical closed patterns. However,
in many cases, the extraction process of closed patterns can be chal-
lenging due to their rigorous nature. Indeed, they may not appear
frequently in the dataset or fail to cover all the transactions within
a cluster. To overcome this issue, we propose in this paper relaxing
these patterns in order to enhance the conceptual clustering task. The
main technical contributions of the paper are three-folds:

1. We present the k-Relaxed Frequent Pattern (or k-RFP in short)
model, and we use a SAT based encoding to enumerate these pat-
terns.

2. Leveraging ILP, we select the best clusters that match those pat-
terns based on an objective function.

3. We show the efficiency of the proposed clustering approach
through an extensive experiments conducted on various popular
real-life datasets.

The paper is organized as follows: we introduce a brief overview
on propositional logic, the propositional satisfiability problem, and
the conceptual clustering problem in Section 2. Afterwards, Section 3
presents our motivation and discusses the k-RFP and the ILP models
for the conceptual clustering problem. Section 4 provides our exper-
imental study on real-life datasets. Finally, Section 5 concludes the
paper with hints on forthcoming work.
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2 Preliminaries

This section introduces a brief overview on propositional logic, the
propositional satisfiability and the conceptual clustering problems.

2.1 Propositional Logic & SAT

We consider a propositional language, denoted as L , constructed in-
ductively from a countable set PS comprising propositional letters,
the Boolean constants � (representing true or 1) and ⊥ (represent-
ing false or 0), and the well-known logical connectives {¬,∧,∨,→
,↔} in the usual manner. The symbols x, y, z, etc., iterate over the
elements of PS. Propositional formulas of L are represented by
Φ,Ψ,Γ, etc. A literal is either a propositional variable (x) of PS or
its negation (¬x). A clause is a (finite) disjunction of literals, while a
term is a (finite) conjunction of literals. A clause which contains only
one literal is referred to as a unit clause. For a formula Φ from L, let
Z(Φ) indicates the symbols of PS appearing in Φ. A conjunctive
normal form (CNF) formula is a (finite) conjunction of clauses, and
a formula in disjunctive normal form (DNF) is a (finite) disjunction
of terms. A Boolean interpretation I of a propositional formula Φ is
a mapping from Z(Φ) to {0, 1}. If I(Φ) = 1, then I is referred to
as a model of Φ.

The propositional satisfiability problem (SAT in short) involves
determining whether a CNF formula has a model. Acknowledged
as an NP-Complete problem, SAT has demonstrated successful ap-
plications in various practical domains, such as itemset mining
[8, 17, 9, 23, 19], association rule mining [21, 27], conceptual cluster-
ing [32], overlapping community detection in networks [24, 25, 26],
and others.

2.2 Conceptual Clustering Problem

This subsection introduces the basics of the problem of conceptual
clustering. We start with some preliminary information on pattern
mining before presenting the concept of conceptual clustering.

Let Ω be a universe of items (or symbols) that may represent ar-
ticles in a supermarket, web pages, or a collection of attributes or
events. The letters a, b, c, etc., will be employed to iterate over the
elements ofΩ. A classical pattern (or simply a pattern or an itemset)
is a subset of items in Ω, that is, P ⊆ Ω with P 	= ∅. The set of all
patterns over Ω, denoted as 2Ω, are represented by the capital letters
P,Q,R, etc. A dataset is a finite non-empty set of transactions or
records D = {T1, T2, . . . , Tm}. Given a transaction database D and
a pattern P , the cover of P in D is a mapping 2Ω �→ 2D which
maps each pattern P to a set of transactions in D containing P .
More formally, C(P,D) = {i ∈ [1..m] | Ti ∈ D and P ⊆ Ti}.
The cardinality of the cover of a pattern P represents its support

(also called frequency). We write Supp(P,D) for the support of P
in the dataset D, i.e., Supp(P,D) = |C(P,D)|. Given a pattern P
and a dataset D, P is called a closed pattern iff � R s.t. P ⊂ R
and Supp(R,D) = Supp(P,D). A Generalized Disjunctive Pat-

tern (GDP) is a composite structure, represented as [P1, . . . , Pp],
that encapsulates a collection of patterns in a disjunctive fashion.
This distinctive square bracket notation is intentionally chosen to
distinguish a GDP from classical patterns [34]. In essence, a GDP
[P ] = [P1, . . . , Pp] can be equivalently expressed as a formula in
DNF:

∨
1≤i≤p(∧a∈Pia).

Definition 1. The support of a GDP in the dataset D is defined by
the following equation:

Supp([P ],D) = |⋃Pi∈P C(Pi,D)|
|D|

Next, let us introduce the notion of a concept as follows:

Definition 2. Given a dataset D, a closed pattern P , and a subset of
transactions O ⊆ D s.t. |O| = r. Then, the pair (O,P ) is called a
concept iff ∀ Ti ∈ O we have P ⊆ Ti with 1 ≤ i ≤ r.

Now, we are ready to define the problem of conceptual clustering.

Definition 3. Let D be a dataset, and β a positive integer where
β > 1. The conceptual clustering problem aims to find β disjoint
clusters Cl = {O1, O2, . . . , Oβ} that cover D and corresponds to
concepts.

3 Conceptual Clustering Approach via k-RFP

In this section, we begin by presenting a motivating example to elu-
cidate more concretely the issue of classical patterns in conceptual
clustering. Following that, we discuss the process of extracting k-
RFP from the input data using a SAT-based encoding. Then, we intro-
duce our ILP models for optimization and acquiring the best clusters
utilizing k-RFPs.

3.1 Motivating Example

Our work is motivated by the inherent rigidity of classical patterns
in addressing the conceptual clustering problem. To be precise, in
certain cases, classical patterns may not manifest frequently enough
or fail to cover transactions to adequately characterize a high-quality
clusters. To illustrate, let us consider the following data set depicted
by Example 1.

Example 1. Consider the dataset D outlined in Table 1. Assume
that the target number of clusters is β = 2, with the desired clusters
identified as {T1, T2, T3, T4} and {T5, T6, T7, T8}. Our objective is
to discover the patterns that thoroughly cover the two desired clus-
ters. When attempting with classical patterns, let us consider the two
patterns, P = {d} and R = {e}, employed for cluster description.
These patterns exhibit a support of 3 for both P and R, represent-
ing the closest coverage to generate clusters akin to the desired ones.
Patterns P and R appear respectively in clusters {T2, T3, T4} and
{T6, T7, T8}. However, T1 and T5 remain uncovered. Importantly,
any alternative pattern discovered would cover transactions less or
equal than P and R. Then, it is impossible to achieve the desired
cluster formation. This discrepancy poses a challenge. To overcome
this, our goal is to use relaxed patterns.

Table 1. A sample dataset D

Transactions Items
T1 a b c
T2 a b d
T3 a c d
T4 b c d
T5 f g h
T6 e g h
T7 e f h
T8 e f g

To address the challenges outlined in Example 1, we propose to
leverage a novel pattern model called k-RFP. To enumerate such pat-
terns, we employ a SAT-based encoding, previously used in the con-
text of association rule mining [27].
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3.2 k-Relaxed Frequent Pattern

It has been shown in [36] that classical patterns are essential for con-
ceptual clustering. However, classical patterns can be not frequent or
fail to cover transactions in a given input data.

To address this issue, we first revisit the traditional pattern model
by recalling the concepts of k-cover and k-support [27].

Definition 4. Let D be a dataset and k a positive integer. Then, the
k-cover of a pattern P is Ck(P,D) = {i ∈ [1..m] | Ti ∩ P 	= ∅
and |P \ Ti| ≤ k}. The k-support of P is defined as usual as:
Suppk(P,D) = |Ck(P,D)|.

Unlike the traditional pattern model, which necessitates the com-
plete inclusion of a pattern within a transaction, the k-cover relaxes
this constraint. It allows transactions to have up to k missing items
from the pattern to be considered as matching the pattern. The k-
support of a pattern, in turn, tells us how many transactions in the
dataset match these relaxed criteria of the k-cover.

Note that for a given pattern P , one can derive a GDP
[P1, P2, . . . , Pp], where each Pi is defined as [P ∩ Ti | i ∈
Ck(P,D)]. Now, we can evaluate the significance of a pattern using
the k-support concept.

Definition 5. Let D be a dataset and α a support threshold s.t. α >
0. Then, a pattern P is called a k-Relaxed Frequent Pattern (k-
RFP) iff Suppk(P,D) ≥ α.

In informal terms, Definition 5 states that a pattern is considered
frequent according to the k-support if it satisfies a specified mini-
mum support threshold. Additionally, we characterize a pattern P
as closed w.r.t. the k-support iff for all P ⊂ R, Suppk(R,D) <
Suppk(P,D).

In this paper, our goal is to identify all closed k-RFPs that will
be used for conceptual clustering. Specifically, given a dataset D,
a minimum support threshold α, and a positive integer k, we em-
ploy a SAT based encoding to discover the complete set of closed
k-RFPs. Our approach involves translating the problem of extract-
ing closed k-RFPs into the enumeration of all possible models of a
corresponding CNF formula. Each model corresponds exactly to a
closed k-RFP. It is important to note that separating the modeling
and solving steps provides a flexible means to evolve the problem
specification. This allows us to easily introduce new constraints to
the symbolic encoding. Additionally, advancements in SAT solving
technology contribute to the optimization of the solving step. How-
ever, it is important to acknowledge that the efficiency of the solving
phase is significantly influenced by how the problem is encoded. The
challenge lies in creating the most suitable encoding that balances
efficiency and conciseness while ensuring correctness and complete-
ness. This entails making judicious choices regarding propositional
variables and logical constraints, as well as their reformulation into
CNF.

Next, let us outline the SAT-based encoding to compute the
(closed) k-RFPs from input data. First, we establish a clear connec-
tion between the models of the SAT encoding and the set of (closed)
k-RFPs. This connection is made by associating each item a ∈ Ω
and each transaction Ti ∈ D with respective propositional variables
xa and oi. Second, we introduce a propositional formula consisting
in a set of constraints allowing a one-to-one mapping between this
formula and the set of k-RFPs.

Cover Constraint. The first This constraint is expressed as fol-
lows:

∧

Ti∈D
(oi ↔ (

∑

a∈Ω\Ti

xa ≤ k)) (1)

Constraint (1) guarantees that a transaction Ti supports the k-RFP
candidate when at most k items of k-RFP are not present in Ti.

Frequency Constraint. The second constraint is the Frequency
constraint expressed as follows:

m∑

i=1

oi ≥ m× α (2)

Constraint (2) guarantees that a k-RFP covers at least m × α trans-
actions. Where α is a percentage.

Closure Constraint. The third constraint is the Closure constraint
expressed as follows:

∧

a∈Ω

(¬xa →
∨

Ti∈D,a∈Ti

(oi ∧
∑

b∈Ω\Ti

xb = k)) (3)

Constraint (3) ensures that the item a cannot be part of the candidate
k-RFP if its inclusion violates the cover constraint in at least one
transaction.

Item Frequency Constraint. The fourth constraint is the Item Fre-
quency Constraint expressed as follows:

∧

Ti∈D
(xa → (

∑

Ti∈D | a∈Ti

oi ≥ γ)) (4)

Constraint (4) ensures that each item appears at least γ times in a
pattern.

For Constraint (4), the objective is to minimize the number of iden-
tified k-RFPs and then extract only the most relevant k-RFPs.

It is important to emphasize that these constraints will be trans-
lated into CNF. Almost constraints involve cardinality expressions

of the form
n∑

i=1

yi ≥ θ,
n∑

i=1

yi ≤ θ, or
n∑

i=1

yi = θ. Various encod-

ing techniques have been proposed to translate cardinality constraints
into CNF, see e.g., [40, 12, 3, 5].

This encoding consists of four constraints using cardinality con-
straints by using the sequential unary counter encoding [40, 22] hav-
ing a complexity ofO(b×(n−b)), for a cardinality constraint of the
form x1 + . . .+ xn ≥ b. The complexity of each constraint (1), (2),
(3) and (4) is respectivelyO(k×(n−k)×m),O(m2×α×(1−α)),
O(n+m×k×(n−k)) andO(n×γ(m−γ)). Considering the worst-
case complexity, then we have O(n ×m2 +m × n2) for α = 0.5,
γ = m

2
, k = n

2
.

Proposition 1. The propositional formulaΦα,γ,k = (1)∧(2)∧(3)∧
(4) encodes the constraints for closed k-RFPs extraction problem
where each k-RFP covers at least m×α transactions and each item
must appears at least γ times.

Note that in Proposition 1, the propositional formulaΦα,γ,k serves
as a propositional encoding for the constraints involved in the closed
k-RFPs extraction problem. In other words, this formula encapsu-
lates the essential requirements for closed k-RFPs, guaranteeing a
meaningful and reliable extraction of patterns that adhere to speci-
fied coverage and frequency constraints. It should be noted that when
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k = 0, there is no relaxation. In fact, the 0-RFP patterns is identical
to the classical closed patterns.

Next, we illustrate the importance of using k-RFP for clustering
through the following example, utilizing the same dataset from Ex-
ample 1.

Example 2. Consider the same dataset D presented in Ta-
ble 1. Let k = 1, α = 3, γ = 3 and P = {a, b, c, d}
and Q = {e, f, g, h}, both being closed 1-RFPs. Then,
the GDP representation of P and Q are correspondingly:
[{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}], [{f, g, h}, {e, g, h}, {e, f, h},
{e, f, g}] P and Q satisfies the four constraints. In fact, P and Q
cover 4 transactions respectively T1 to T4 and T5 to T8 (Constraint
(2)), and all transactions covered miss at most 1 item that exist in P
and Q (Constraint (1)). Moreover, P and Q are closed (Constraint
(3)). Furthermore, each item in P and Q respectively appears 3
times in each covered transactions respectively (Constraint (4)).

Unlike traditional patterns, the clusters identified based on P and
Q are {T1, T2, T3, T4} and {T5, T6, T7, T8}, representing the de-
sired best clusters that cover all the data. This demonstrates that the
k-RFPs successfully addresses this issue, as elaborated in Subsec-
tion 3.1.

Our goal is to choose from the candidate k-RFPs by leveraging
ILP models to obtain high-quality clusters. The detailed explanation
of ILP models will be presented in Subsection 3.3.

3.3 Integer Linear Programming Models for
Conceptual Clustering

In this section, we employ integer linear programming models to
choose the optimal clusters. Before diving into the details, let us
provide a formal definition of an ILP model. An ILP [35] can be
described as a linear program, but it comes with an additional con-
straint: every variable involved must be an integer. The objective of
an ILP problem is to maximize or minimize an objective function,
subject to a set of linear constraints, while ensuring that all decision
variables are integers.

The flexibility of ILP makes it applicable to a wide range of fields,
including logistics, finance, manufacturing, and telecommunications,
among others. Solving an ILP problem involves finding the optimal
values for the decision variables that satisfy the constraints and opti-
mize the objective function. Various algorithms, such as branch and
bound [35], [6], [20] are employed to explore the solution space ef-
ficiently and identify the best combination of integer values for the
variables.

In summary, ILP provides a powerful and versatile approach to
solving optimization problems with discrete decision variables, mak-
ing it a valuable tool in operational research and decision science.
Denoting y as the vector of decision variables, where n represents
the total number of integer variables. The objective coefficients, la-
beled as cj for 1 ≤ j ≤ n, signify the coefficients in the objective
function. The matrix A has dimensions h × n, where h is the num-
ber of constraints, containing coefficients for the constraints, and d
is a h × 1 vector representing the right-hand-side values of the con-
straints. Formally, the ILP problem takes the form:

Maximize or Minimize cTy

Subject to Ay( ≤ , = or ≥ ) d

yi ∈ Z, i = 1, 2, . . . , n

cj ∈ R, j = 1, 2, . . . , n

For our problem and following Ouali et al. [36], the conceptual
clustering problem can be modeled into an ILP model. Then, we
adopt the number of the covered transactions by a k-RFP as the ob-
jective function which should be maximized. The latter is under two
constraints:

• The first constraint (1) states that each transaction Ti must be
covered by exactly one k-RFP. However, the k-RFPs have higher
cover than classical closed patterns. As a consequence, it can be
difficult to satisfy the uniqueness constraint. To address this chal-
lenge, we limited the coverage by introducing a positive integer
called ILP-cover-threshold σ where σ < k.

• The second constraint (2) limits the number of clusters to β = β0

clusters.

Formally, our ILP model called M1 is presented as follows:

Maximize
∑

c∈C

vc · yc

Subject to (1)
∑

c∈C

aTi,c · yc = 1, ∀ Ti ∈ D

(2)
∑

c∈C

yc = β0

yc ∈ {0, 1}, c ∈ C

i = 1, . . . ,m

where D is a dataset with m transactions defined on a set of f items.
Let C be the set of p closed k-RFPs. Let aTi,c be an m × p binary
matrix where aTi,c = 1 iff |c \ Ti| ≤ σ where c ∈ C. For classical
patterns aTi,c = 1 iff c ⊆ Ti. Moreover, using p boolean variables
yc, where yc = 1 iff the cluster represented by the closed k-RFP c
belongs to the clustering. The objective function is defined by associ-
ating to each cluster c a value vc reflecting the number of transactions
covered by c, which should be maximized. Additionally, we aim to
investigate the impact of relaxing the first constraint (1) of model M1
on the number of optimal solutions found. Subsequently, we propose
a second model that allows for some transaction overlap. This model,
referred to as M2, is presented as follows:

Maximize
∑

c∈C

vc · yc

Subject to (1)
∑

c∈C

aTi,c · yc ≤ θ, ∀ Ti ∈ D

(2)
∑

c∈C

yc = β0

yc ∈ {0, 1}, c ∈ C

i = 1, . . . ,m

M2 has the same objective function, variables, and constraint (2)
as M1. The only difference is that constraint (1) in M2 specifies that
each transaction is covered by at most θ relaxed patterns.

We have theoretically the k-RFP model, and the corresponding
ILP models M1 and M2. To demonstrate the practical applicability
of our approach, we will detail our experiments in Section 4.

4 Experimental Evaluation

To demonstrate the efficiency of our proposed approach, we con-
ducted an empirical evaluation on various well-known real-world
datasets 1 as presented in Table 2.
1 The datasets were collected from the UCI repository are available at:
https://dtai.cs.kuleuven.be/CP4IM/datasets/.
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Table 2. Real-world datasets caracteristics

D #Transactions #Items Density (%)

Lymph 148 68 40
Mushroom 8124 119 18
Primary-Tumor 336 31 48
Soybean 630 50 32
Tic-tac-toe 958 27 33
Vote 435 48 33
Zoo-1 101 36 44

First, we computed the classical closed patterns (CCP), which
were identified for k = 0 and then the k-RFPs (k ≥ 1). It should
be noted that, the number of enumerated patterns will increase due
to the relaxation requirement. Therefore, we set k = 1 to prevent
having too many patterns.

To enumerate our k-RFPs, we used the well-known satisfiability
solver MiniSAT [11] implemented in C++. Our implementation in-
cludes slight modifications to MiniSAT to enumerate all models. We
followed the approach of [10] and we considered a non-blocking
models approach. The restart strategy is then disabled and a simple
backtracking is performed each time a model is found. Moreover,
the clause learning component is also disabled for efficiency rea-
sons. Finally for variables selection strategy, we started by assigning
variables representing items. Those of transactions are then propa-
gated accordingly. Subsequently, leveraging the extracted patterns,
we identified the set of clusters using ILP models described in Sub-
section 3.3. Our implementation was carried out in Python v3.9 using
the Pulp framework. The implementation of the modified solver and
ILP models is available in [4]. For our ILP models we fixed σ to 0.
Moreover, we adjusted the timeout to 7 hours. All experiments were
carried out on a MacBook Air with 16 GB of RAM.

Subsequently, we evaluated the effectiveness of our novel patterns
by initially applying our k-RFPs to the model M1. Specifically, we
extracted the k-RFPs by varying the minimum support α from 10%
to 40%. When k-RFPs extracted with a fixed α = 10% were used
for M1, we called the Conceptual Clustering Approach based on
k-RFP (CCA-k-RFP-M1). This approach was compared with all
classical closed patterns on M1, (CCP-M1). Additionally, we com-
pared CCA-k-RFP-M1 with various other disjoint clustering meth-
ods. Moreover, we applied our k-RFPs extracted with α = 10% to
the model M2, we called CCA-k-RFP-M2, which is compared with
all classical closed patterns on the model M2, referred to as CCP-M2,
by varying the θ parameter from 2 to 5 in order to observe the im-
pact of relaxing the first constraint (1) on the number of optimal so-
lutions found. In addition, we compared CCA-k-RFP-M2 with an-
other well-known overlapping clustering method, Neo-k-means.

All these comparisons are conducted in terms of the running time
required for searching the optimal solution in the ILP models, the
number of the found optimal solutions and the quality of the identi-
fied clusters.

To evaluate the quality of a clustering, we performed a measure
called the Intra-Cluster Similarity (ICS). We adopted the Jaccard
similarity measure, computed as follows: Given two transactions Ti

and Tj where i 	= j and i, j ∈ [1,m] we have s: D × D �→ [0, 1],
s(Ti, Tj) =

|Ti∩Tj |
|Ti∪Tj | . Then:

ICS(c1, . . . , cβ) =
1

2

∑

1≤r≤β

(
∑

Ti,Tj∈cr

s(Ti, Tj))

For M1, we varied the minimum support threshold α and the min-
imum item frequency γ from 10% to 40%. For efficiency reasons,

we set γ = α for both classical closed patterns and k-RFPs. For each
variation of α, we varied the desired number of clusters β from 3 to
30.

For M2, we varied θ from 2 to 5, and for each variation of θ, the
number of desired clusters β is varied from 3 to 30 because our goal
is to observe the impact of relaxing constraint (1) on the number of
optimal solutions found when using our novel patterns. For k-RFPs,
γ = α = 10%, while for classical patterns, we extracted all patterns
(α = 0%).

To compare with other approaches, we used the following settings:
For the model M1, we fixed α = 10% and β = 30. For M2, α and β
were kept the same as in M1, while the relaxation parameter θ = 2.

It is important to note that the purpose of comparing our approach
with various other clustering methods is to demonstrate its competi-
tiveness in terms of clustering quality.

Analysis of the number of found optimal solutions for M1 and

M2. Table 3 illustrate the obtained results for both classical and
relaxed patterns applied to model M1. Notably, our consideration is
limited to optimal solutions found using ILP. As expected, increasing
the minimum support threshold α decreases the number of both k-
RFPs and classical closed patterns. However, the number of k-RFPs
is higher than that of classical patterns, due to the relaxation. Ac-
cording to the obtained results, we observe that for classical closed
patterns, the number of found solutions for many datasets is at most
8. This is the case for Lymph data. Indeed, the solutions are found
within the fixed timeout for low values of β i.e., from 3 to a maxi-
mum of 10, especially for α close to 40%. This is the case for the
Vote dataset. However, using relaxed patterns, our approach allow
to find solutions for a wide range of β values showing the relevance
of k-RFPs to reach the clustering goal and demonstrating that k-
RFPs surpasses the one of classical patterns. Specifically, the relaxed
patterns allows to find solutions for values of β ranged from 3 to
30 (up to 28 solutions) for many datasets e.g., Zoo-1, Vote and
Tic-tac-toe.

Table 4 presents the comparison between CCA-k-RFP-M2 and
CCP-M2. The results demonstrate that our method achieves optimal
solutions for all variations of θ and β across all datasets. However,
CCP-M2 fails to extract optimal solutions for certain variations of
β. This is the case for Lymph, Mushroom, and Tic-tac-toe
datasets.

These results underscore how relaxing classical patterns enhances
the likelihood of solution discovery for both M1 and M2 models.

Analysis of running time for M1 and M2. Table 3 presents the
average CPU time required to find the optimal clustering solution for
M1. The average running time is calculated only for configurations
where optimal solutions are found, it is determined by summing the
running times for each β variation and then dividing by the number
of these variations. As we can remark, the average running time for
classical patterns is faster than for k-RFP. This outcome aligns with
expectations, as the number of classical closed itemsets is relatively
smaller compared to k-RFPs. Moreover, It is known that the aver-
age running time is calculated only for configurations where optimal
solutions are found. Since the number of optimal solutions is higher
when using k-RFPs compared to classical closed patterns, this con-
tributes to the increased running time. Furthermore, as α increases,
the average CPU time decreases.

Table 4 shows that CCA-k-RFP-M2 outperforms CCP-M2 in
terms of solving time across various θ values and datasets, including
Primary-Tumor, Soybean, Tic-tac-toe, and Vote. How-
ever, exceptions were observed for Lymph, Zoo-1, and Mushroom
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Table 3. k-RFP for M1 vs. Classical Closed pattern for M1

D α
k-RFP Classical Closed pattern

#k-RFP #Found sol Average time (s) #CCP #Found sol Average time (s)

Lymph

10% 3605378 27 3760.40 51862 8 62.85

20% 759630 27 415.81 13934 2 2.37

30% 202602 27 74.12 4910 1 0.92

40% 60470 0 - 2058 0 -

Mushroom

10% 128962 27 930.68 3287 6 34.21

20% 19712 27 74.59 817 1 6.03

30% 4055 0 - 293 1 3.06

40% 1135 0 - 107 0 -

Primary-Tumor

10% 256991 27 42.71 32183 7 19.70

20% 76081 27 13.89 9891 2 6

30% 30372 27 8.88 3614 1 1.42

40% 14778 0 - 1382 0 -

Soybean

10% 69191 27 16.19 2907 6 2.57

20% 11900 0 - 844 2 0.53

30% 3383 0 - 380 0 -
40% 1484 0 - 205 0 -

Tic-tac-toe

10% 4479 28 19.94 191 2 0.17

20% 811 28 1.45 26 1 0.10

30% 171 0 - 18 0 -
40% 15 0 - 5 0 -

Vote

10% 280386 28 67.38 37399 3 14.93

20% 34098 0 - 7227 0 -
30% 6606 0 - 658 0 -
40% 693 0 - 79 0 -

Zoo-1

10% 92711 28 4.71 3291 7 0.32

20% 35081 28 2.02 1743 2 0.23

30% 12614 28 0.86 818 1 0.14

40% 3555 28 0.28 316 0 -

Table 4. CCA-k-RFP-M2 vs. CCP-M2

D θ
CCA-k-RFP-M2 CCP-M2

#Found sol Average time (s) #Found sol Average time (s)

Lymph

2 28 4156.28 28 2536.88

3 28 3519.44 26 351.28

4 28 6115.981 26 623.40

5 28 3998.53 24 218.67

Mushroom

2 28 355.77 2 15244.37
3 28 362.99 1 195.29

4 28 355.79 1 187.84

5 28 332.93 1 196.36

Primary-Tumor

2 28 47.96 28 198.12
3 28 48.54 28 183.98
4 28 59.25 28 159.136
5 28 52.73 28 123.17

Soybean

2 28 11.97 28 137.062
3 28 11.72 28 100.11
4 28 12.72 28 80.66
5 28 10.68 28 73.489

Tic-tac-toe

2 28 27.01 27 1693.54
3 28 22.46 27 447.67
4 28 19.60 25 227.98
5 28 16.24 24 221.14

Vote

2 28 77.77 28 2716.59
3 28 103.17 28 2660.54
4 28 531.33 28 1436.24
5 28 240.68 28 963.59

Zoo-1

2 28 5.12 28 0.61

3 28 5.27 28 0.53

4 28 5.25 28 0.54

5 28 5.24 28 0.53

(with θ ranging from 3 to 5). This is due to two factors: the number
of patterns found and the order in which the SAT solver identifies
them, both of which can affect the ILP solver’s runtime.

CCA-k-RFP-M1 vs. CCP-M1, CCA-k-RFP-M1 vs. other meth-

ods and CCA-k-RFP-M2 vs. Neo-k-Means. The results of Ta-

ble 5 show that our approach outperforms CCP-M1 in terms of clus-
ter quality across all datasets. To quantify this superiority, we specif-
ically examined the ICS quality values for both approaches. The re-
sults revealed that the ICS values achieved by our approach were con-
sistently higher, with the improvement ranging from approximately
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Table 5. CCA-k-RFP-M1 vs. CCP-M1

D
CCA-k-RFP-M1 CCP-M1

k = 1, β = 30, α = 10% β = 30

#k-RFP ICS Time (s) #CCP ICS Time (s)

Lymph 3605378 3723.17 3305.40 154220 277.93 270.67

Mushroom 128962 5652568.44 932.69 221524 - -
Primary- 256991 15984.25 44.11 87230 1895.89 241.95
Soybean 69191 40133.02 14.23 31759 10795.60 87.50
Tic-tac-toe 4479 47165.55 19.52 42711 29278.23 1466.06
Vote 280386 16992.90 68.75 227031 8563.77 1268.51
Zoo-1 92711 768.37 4.74 4567 267.79 0.422

Table 6. CCA-k-RFP-M1 vs. Other Clustering methods for β = 30.

D CCA-k-RFP-M1 k-Means BIRCH SPECTRAL Aggl-Clust

ICS Time (s) ICS Time (s) ICS Time (s) ICS Time (s) ICS Time (s)

Lymph 3723.17 3305.40 252.80 0.45 257.89 0.04 452.48 0.429 250.86 0.008

Mushroom 5652568.44 932.69 883931.50 3.17 926729.75 15.90 1442391.09 100.98 1072855.32 11.32
Primary-Tumor 15984.25 44.11 1745.32 0.47 2030.70 0.06 5632.47 0.76 1792.95 0.014

Soybean 40133.02 14.23 5067.89 0.64 5433.03 0.182 17066 1.14 5040.35 0.04

Tic-tac-toe 47165.55 19.52 7751.78 0.89 7049.87 0.32 7353.16 2.07 7059.29 0.08

Vote 16992.90 68.75 2794.59 0.51 3189.58 0.12 14807.83 0.86 2533.51 0.02

Zoo-1 768.37 4.74 218.60 0.39 248.17 0.02 467.03 0.23 164.77 0.005

Table 7. CCA-k-RFP-M2 vs. Neo-k-Means for β = 30 and θ = 2.

D CCA-k-RFP-M2 Neo-k-Means

ICS Time (s) ICS Time (s)

Lymph 7470.67 3288.04 461 0.21

Mushroom 12259500.13 332.13 1967290.99 7.36

Primary-Tumor 36752.61 50.74 2965.39 0.16

Soybean 71741.53 13.12 6344.39 0.35

Tic-tac-toe 92792.95 34.43 10917.74 0.58

Vote 31761.66 77.37 6083.92 0.27

Zoo-1 1657.55 5.01 285.84 0.06

1.6 to 13 times compared to those achieved by CCP-M1. This sub-
stantial enhancement in cluster quality provides a clear demonstra-
tion of the efficacy of our technique when contrasted with the per-
formance of CCP-M1. The CPU running time of CCA-k-RFP-M1
is generally faster than that of CCP-M1 across multiple datasets.
However, exceptions are observed for Lymph and Zoo-1, where
the number of closed patterns is lower than the number of k-RFPs.
This is due to the same two factors mentioned earlier. For in-
stances like Primary-Tumor, Soybean, Mushroom, and Vote,
where the number of k-RFPs exceeds that of classical patterns,
CCA-k-RFP-M1 still faster than CCP-M1.

In Table 6, our method surpasses the other approaches in
terms of quality across all datasets. However, in terms of run-
time, Aggl-Clust is faster than the other approaches except for
Mushroom, were k-Means is faster. This is because our approach
is configured to search only for optimal solutions, which takes much
time to find the best quality and especially when the number of pat-
terns found is high. Therefore, in terms of quality, our approach is
the best.

Table 7 present the results of the comparison between our ap-
proach and Neo-k-Means. In the quality side our method over-
passes Neo-k-Means across all datasets with a high difference.
However, on the running time side Neo-k-Means is the fastest.
This is because, as explained above, our approach is configured to
search only for optimal solutions.

The results obtained are intriguing and demonstrate the effective-

ness of our method in terms of both the number of optimal solutions
found and the quality of the clusters produced. This is particularly
significant in terms of cluster quality when dealing with a large num-
ber of clusters. Consequently, the findings suggest that relaxing con-
straints on closed patterns can potentially enhance cluster quality.

5 Conclusion and Forthcoming Work

In this paper, we presented a novel approach to conceptual cluster-
ing based on a relaxation of closed frequent itemsets named k-RFPs
defined by relaxing the support of itemsets. In fact, this innovative
pattern model is a notable extension of classical closed patterns, al-
lowing the flexibility to accommodate the nonappearance of up to k
items in each transaction that support the pattern. Our approach is
divided into two phases. First, we applied the SAT encoding previ-
ously used in the context of association rule mining to enumerate the
k-RFPs. Second, using such patterns, ILP models are used to identify
the best clusters. Indeed, we proposed two ILP models: the first one
we called M1, which represents the conceptual clustering problem,
and the second one, M2, is proposed to observe the impact of relaxing
the first constraint of M1 on the number of optimal solutions found.
Third, experimental evaluation was conducted to assess the effective-
ness of the proposed approach compared to classical closed itemsets.
The experiments show that optimal clustering can be reached for high
values of clusters number while classical closed itemsets failed.

As part of our future work, firstly, we plan to enhance our sym-
bolic encoding for k-RFPs to tackle scalability issues. Indeed, for
k > 1, the solver has the potential to generate numerous patterns,
leading to the increase of running time, especially when dealing with
large datasets with high density. For this purpose, parallelization and
decomposition can be used to reach this goal. Secondly, we plan to
investigate the use of k-RFPs for community detection in social net-
works. Social network datasets can be modeled as undirected graphs,
which can be represented similarly to transactional datasets. Thirdly,
we plan to improve the runtime of the ILP solver. We have observed
that the order in which patterns are used as input for the ILP model
can influence the solving time.
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