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Abstract. Hyperbolic rotation is commonly used to effectively
model knowledge graphs and their inherent hierarchies. However,
existing hyperbolic rotation models rely on logarithmic and exponen-
tial mappings for feature transformation. These models only project
data features into hyperbolic space for rotation, limiting their abil-
ity to fully exploit the hyperbolic space. To address this problem,
we propose a novel fully hyperbolic model designed for knowledge
graph embedding. Instead of feature mappings, we define the model
directly in hyperbolic space with the Lorentz model. Our model con-
siders each relation in knowledge graphs as a Lorentz rotation from
the head entity to the tail entity. We adopt the Lorentzian version
distance as the scoring function for measuring the plausibility of
triplets. Extensive results on standard knowledge graph completion
benchmarks demonstrated that our model achieves competitive re-
sults with fewer parameters. In addition, our model get the state-of-
the-art performance on datasets of CoDEx-s and CoDEx-m, which
are more diverse and challenging than before. Our code is available
at https://github.com/llqy123/FHRE.

1 Introduction

Knowledge Graphs (KGs) store a vast amount of facts in the form of
triplets, which provide a rich external semantic knowledge base for
many artificial intelligence tasks, such as word sense disambigua-
tion [1], question answering [9] and recommendation systems [11].
Due to the diverse range of applications, representation learning for
knowledge graphs has attracted significant interest from researchers.

The construction of knowledge graphs typically involves automat-
ically extracting triplets from multiple sources of knowledge to form
a graphical representation. They usually comprise numerous entities,
relations and an extensive collection of triplets. However, since these
KGs are automatically extracted from the knowledge sources, they
are incomplete [18]. In the context of large-scale knowledge graphs,
it is impractical to complete missing facts manually. To address this
challenge, researchers have proposed several algorithms for auto-
matic filling, Knowledge Graph Completion (KGC), also known as
link prediction. Its aim is to the prediction of missing facts using
known triples. In KGC, a common approach to predict missing facts
in KGs is to embed them into vector spaces, which is called Knowl-
edge Graph Embedding (KGE). The KGE model calculates the valid
facts with higher scores through their scoring function.
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Figure 1. The example of the European entity illustrates how KG presents
hierarchies.

In terms of the complexity of neural networks, KGE models can
be categorized into shallow network-based models [6, 13, 18, 35, 37]
and deep network-based models [28, 36]. Shallow network-based
models based on the principle of geometric transformation are be-
coming increasingly popular among researchers, as these models are
lightweight and interpretable. They model the KG mainly through
geometric operations such as translation, rotation and reflection.
Based on these advantages, our paper focuses on shallow networks.

It is well known that real-world knowledge graphs tend to exhibit
hierarchical structures, as illustrated in Figure 1. In Figure 1, the con-
cept of “Europe” encompasses both “Northern Europe” and “South-
ern Europe”. The Northern European countries could include “the
Kingdom of Denmark” and the Southern European countries could
include “Repubblica Italiana”. However, Euclidean space inherently
assumes a flat and uniform structure. It is challenging for Euclidean
space to represent and distinguish between different levels when em-
bedding hierarchical structures.

Fortunately, hyperbolic space [3, 12, 19] can be regarded as con-
tinuous analogue of discrete trees, which endows them with the natu-
ral ability to capture hierarchical structures. For example, MuRP [3],
RotH [7] and FFTRotH [33] borrow the hierarchical modeling ca-
pabilities of hyperbolic spaces. However, a common disadvantage of
current hyperbolic models is that they frequently rely on logarithmic
and exponential mappings to transform data features between hyper-
bolic and tangent spaces. In other words, each epoch and batch of
data must undergo spatial transformation through mapping functions
during the training phase. These hybrid models only project data fea-
tures into hyperbolic space to perform entity and relation transforma-
tions, limiting their ability to fully utilize hyperbolic space. Specifi-
cally, logarithmic and exponential mappings consist of a series of hy-
perbolic and inverse hyperbolic functions. These functions are highly
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complex and often have infinite range, which weakens the stability
of the model.

To address this, we propose a Fully Hyperbolic Rotation model
for knowledge graph Embedding, named as FHRE. Specifically, we
define the model directly in hyperbolic space with the Lorentz model
instead of spatial mappings. Then, our model considers each relation
in knowledge graph as a Lorentz rotation from the head entity to
the tail entity. Finally, we adopt the Lorentzian version distance as a
scoring function for measuring the plausibility of triplets.

Our contributions then become four-fold:

• To the best of our knowledge, we are the first to propose modelling
knowledge graphs using Lorentz rotations in a fully hyperbolic
space.

• We propose a novel hyperbolic rotation model, named FHRE, ef-
fectively solves the problem that hyperbolic rotation models rely
on spatial mappings.

• Experimental results on standard knowledge graph benchmarks
(FB15k-237 and WN18RR) demonstrate that our model achieves
competitive results in both low and high dimensions.

• We further validate the effectiveness and generalization ability of
our approach on more diverse and challenging benchmark datasets
(CoDEx-s and CoDEx-m). Experiments show that our model get
the state-of-the-art performance compared to the latest model.

2 Related Work

The embedding space of shallow network-based models can be clas-
sified into three main categories: Euclidean, Complex and Hyper-
bolic.

Euclidean-based embeddings. TransE [5] treated the relation
vectors of the knowledge graph as translations from head entities to
tail entities. Although TransE is fairly simple and has few parameters,
it cannot model knowledge graphs with one-to-many, many-to-one
and many-to-many relationships. To overcome these shortcomings,
a series of translation models (e.g., TransH [32] and TransR [20])
were proposed. While these models perform excellently, they are un-
able to model the rich logical patterns (e.g., symmetry, inversion and
composition) in knowledge graph. To solve these problems, rotation
models based on Euclidean space have been proposed, such as RotE
[7] and recent CompoundE [14] model. However, using Euclidean
space with a constant curvature of 0, which is a flat space, is insuf-
ficient to accurately model the hierarchical structure of a knowledge
graph. Thus resulting in distorted data.

Complex-based embeddings. In order to improve the represen-
tation of space, researchers have tried to model knowledge graphs
in complex spaces. Entities and relations in complex space consist
of real and imaginary parts. For example, RotatE [26] defined each
relation in complex space as a rotation from the head entity to the
tail entity. QuatE [37] explored embeddings in hypercomplex spaces
and used Hamilton products for rotation operations. Rotate4D [18]
decomposed the relation into unit vectors to perform 4D rotations
in a hypercomplex space. Although these models achieve better re-
sults, one drawback of these embeddings is that they often require
high-dimensional spaces and then increased memory costs.

Hyperbolic-based embeddings. In recent years, due to the devel-
opment of hyperbolic geometry in the field of artificial intelligence,
more and more researchers use the properties of hyperbolic geometry
to model the knowledge graph. For example, MuRP [3] was the first
to focus on the hierarchical structure of KGs and transformed entity
embeddings by learning relation-specific parameters via Mobius ma-
trix vector multiplication and Mobius addition. RotH [7] performed

rotation modelling knowledge mapping in hyperbolic space. HBE
[24] used the extended Poincaré ball and polar coordinate system to
capture hierarchies. FFTRotH [33] further enhanced the RotH model
by a Fast Fourier Transform. The latest model CoPE [35] learned em-
beddings using the Poincaré ball of hyperbolic geometry to preserve
the hierarchy between entities. Although these models address the
issue of hierarchical structure, they only project data features into
hyperbolic space, limiting their ability to fully leverage the poten-
tial of hyperbolic space. Thus resulting in a lack of performance in
knowledge graph embedding.

Table 1. Mathematical symbols used in this paper.

Symbols Descriptions
G Knowledge Graph
V the set of entities
R the set of relations

h, r, t head entity, relation, tail entity h, t ∈ V , r ∈ R
R Real number
H Hyperbolic space
c space curvature
Ln
c n-dimensional Riemannian manifold

TxLn
c the tangent space at point x

〈, 〉L Lorentzian scalar product
vh,vt head and tail entity embeddings in hyperbolic space
θr parameterized relation embeddings
vh

′ head embedding that have undergone Lorentz rotation

3 Problem Formulation and Preliminaries

In this section, we first introduce the definition of knowledge graph
completion task, and then provides a brief background of the back-
ground knowledge of hyperbolic geometry. Table 1 provides a sum-
mary of the main mathematical symbols utilized throughout the pa-
per.

3.1 Knowledge graph completion

For a knowledge graph G, we represent each piece of data in G in the
form of a triplet (h, r, t). In the task of knowledge graph comple-
tion, there are three main categories: head entity completion (?, r, t),
tail entity completion (h, r, ?) and relation completion (h, ?, t). Our
paper will focus on head or tail completion, as is the case in most
previous work. This is because models require relational information
to be trained.

3.2 Hyperbolic geometry

Hyperbolic geometry is a non-Euclidean geometry with constant
negative curvature c. A lower value of c typically indicates a more
curved surface. Previous research has demonstrated the effective-
ness of hyperbolic geometries, such as the Poincaré ball [12] and
the Lorentz model [23], in the field of natural language processing.
Our model is based on the Lorentz model due to its simplicity and
numerical stability [21].

Lorenz model. The Lorentz model of n-dimensional hyperbolic
space is defined as the Riemannian manifold Ln

c = (Hn, g�), where
g� = diag(−1, 1, . . . , 1) is the Riemannian metric tensor and mani-
fold Hn satisfies:

x ∈ R
n+1 : 〈x,x〉L = −1, (1)
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(a) Rotation in Euclidean space (b) Rotation in hyperbolic space with the logarith-
mic and exponential mappings

(c) Rotation in fully hyperbolic space

Figure 2. Rotational transformations based on different spaces in the training phase. Orange dot indicates entity in knowledge graph. Tangent space as
subspace of Euclidean space.

where 〈, 〉L is Lorentzian scalar product. Given x,y ∈ Rn+1, where
n is the space dimension. Formally, the Lorentzian scalar product is
defined as

〈x,y〉L = −x0y0 +
n∑

i=1

xnyn

= xT diag(−1, 1, . . . , 1)y.

(2)

In addition, when describing points in the Lorentz model, we also
follow the terminology of special relativity [4, 8]. That means taking
the first dimension to be the time component x0 and its remaining
dimensions to be the space component xn. Thus, each point in Ln

c ,

has the form x = [x0,xn]
T and x0 =

√
||xn||2 − 1

c
, where c is

the curvature of hyperbolic space. In the latter sections, we denote a
point x in the Lorentz model as x ∈ Ln

c .
Tangent Space. Given x ∈ Ln

c , the tangent space at that point is
defined:

TxLn
c = {y ∈ R

n+1| 〈y,x〉L = 0}. (3)

Note that a tangent space is a type of Euclidean space.
Logarithmic and Exponential Mappings. The logarithmic map-

ping is used to map features from hyperbolic space to tangent space,
while the exponential mapping is used to map features from tangent
space to hyperbolic space. Therefore, given tangent vector z ∈ TxLn

c

to Ln
c by moving along the geodesic γ, where γ(0) = x and

γ′(0) = z. The exponential mapping expc
x(z) process can be de-

fined as follows:

TxLn
c ⇒ Ln

c : expc
x(z) = cosh(α)x+ sinh(α)

z

α
,

α =
√
−c||z||L,

||z||L =
√

〈z, z〉L.

(4)

Conversely, given hyperbolic vector y ∈ Ln
c , the logarithmic

logc
x(y) mapping to TxLn

c is defined as follows:

Ln
c ⇒ TxLn

c : logc
x(y) =

cos−1(β)√
β2 − 1

(y − βx),

β = c 〈x,y〉L ,

(5)

where γ(0) = x and c is the curvature of the hyperbolic space. In
the next work, for simplicity, we set c to 1, i.e., the curvature is -1.

Lorentzian distance. Given x,y ∈ Ln
c , the Lorentzian distance

can be defined as the following equation:

d2L(x,y) =
2

c
− 2 〈x,y〉L , (6)

where d2L(x,y) ∈ Ln
c , and c is the curvature of hyperbolic space.

4 Methodology

In this section, we will introduce the detail of our model. Our model
is comprises of three key components:

• Initialization: Our model initializes entity and relation embed-
dings in hyperbolic space.

• Lorentz rotation: Our model treats each relation as a rotation that
from the head entity to the corresponding candidate tail entity. The
rotation guided the head entities to stay closer with tail entities.
The rotation operations are performed fully in a hyperbolic space.

• Scoring function: The prediction step calculates the scoring func-
tion to measure the plausibility of a triplet. We propose the
Lorentzian distance as our scoring function.

4.1 Initialization

To obtain the embedding in the hyperbolic space, we randomly ini-
tialize the head and tail entity embedding parameters in tangent
space, and initialize parameterized relation embedding as θr. Then
we map these entity embeddings to hyperbolic space using exponen-
tial mapping (Equation 4) and get their embedding of the head enti-
ties vh and tail entities vt in the hyperbolic space. It is noting that
our model only requires once spatial transformation during the ini-
tialization process and does not depend on mapping with other parts
of the process.

4.2 Lorentz rotation

The use of rotational transformation has been proven to efficiently
encode complex logical structures in knowledge graphs, including
symmetric, anti-symmetric, inverse and compositional relations [7,
13, 26, 33].

As an example, in Figure 2, we show rotational transformations
based on different spaces. Figure 2(a) shows the rotation in Euclidean
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space. The rotational transformation of an entity does not depend on
hyperbolic space. Figure 2(b) illustrates the rotation in hyperbolic
space. To perform a rotational transformation in hyperbolic space, an
entity in tangent space (Euclidean space) must be mapped into hyper-
bolic space by exponential mapping. This is followed by a mapping
of the transformed entities back into tangent space by logarithmic
mapping for training purposes. Please note that the same conversion
process must be applied to each batch of data.

Figure 2(c) illustrates the rotation in full hyperbolic space, which
is the method we propose. The initialized data is projected into hy-
perbolic space by an exponential mapping function, without relying
on any mapping function for data feature transformation during the
training phase.

In our approach, we propose that each relation can be considered
as a Lorentz rotation from the head to the tail entity embedding. The
Lorentz rotation theorem is as follows:

Theorem 1 (Lorentz rotation). Lorentz rotation is the rotation of the
spatial coordinates. The Lorentz rotation matrix is of the following
form:

R =

[
1 0

0 R̃

]
, (7)

where R̃TR̃ = I and det(R̃) = 1. R̃ ∈ SO(n) is a special orthog-
onal matrix.

The Lorentz rotation is the linear transformations directly defined
in the Lorentz model, i.e., ∀x ∈ Ln

c ,Rx ∈ Ln
c .

Denote θ as the angle of rotation. The rotation matrix R̃ can rep-
resent the rotation transformation, which is defined as follows:

R̃(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (8)

where R̃T(θ)R̃(θ) = I and det R̃(θ) = 1.
Let θr = (θr,j)j∈{1,··· , d

2
} denote as the parameterized relation

embeddings, where d denotes an even number of embedding dimen-
sion. The rotation operation can be defined as:

Rot(θr) = diag(R̃(θr,1), · · · , R̃(θr, d
2
)), (9)

where Rot(θr) ∈ Ln
c .

Thus, given a head entity embedding vh and relation embedding
θr, the process of Lorentz rotation is defined as follows:

vh
′ = vh ⊗ θr = vhRot(θr), (10)

where vh
′ ∈ Ln

c , “⊗” represents the Lorentz rotation.

4.3 Scoring function

Similar to previous studies [3, 7, 33], we adopt the distance function
as our scoring function to measure the plausibility of triplets. The
score for each triplet (h, r, t) is defined as:

s(h, r, t) = d2L(vh
′,vt) + bh + bt, (11)

where d2L(, ) is the Lorentzian distance (Equation 6), vh
′ is the head

entity after Lorentz rotation (Equation 10), vt is the hyperbolic em-
bedding of the tail entity, bh and bt are entity biases which act as
margins in the scoring function [7, 27].

4.4 Loss function

Following with previous work [3, 7, 8], for each triplet, we randomly
corrupt its head or tail entity with k entities and compute the prob-
ability of the triplet as p = σ(s(h, r, t)), where σ is the sigmoid
function. Finally, we train our model by minimizing the binary cross
entropy loss:

loss = − 1

N

N∑
i=1

(log(p(i)) +
k∑

j=1

log(1− p̃(i,j))), (12)

where N is the number of training set triplets, p(i) and p̃(i,j) are the
probabilities of correct and incorrect triplets, respectively.

Table 2. Data statistic on five datasets.

Dataset Entities Relations Train Valid Test
FB15k-237 14,541 227 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
CoDEx-s 2,034 42 32,888 1,827 1,828
CoDEx-m 17,050 51 185,584 10,310 10,310

Nations 14 55 1,592 199 201

5 Experiments

5.1 Experimental settings

Datasets. To evaluate the effectiveness of our model, we used two
frequently benchmark datasets, FB15k-237 [29] and WN18RR [10].
The FB15k-237 and WN18RR datasets are subsets of the FB15k [5]
and WN18 [10] datasets, respectively. They were created to address
the issue of reversible relations, and enabling more realistic predic-
tions.

Furthermore, we also validated the robustness of our model on
CoDEx-s and CoDEx-m [25]. The CoDEx-s and CoDE-m datasets
were proposed in [25] to enlarge the KG scope and improve the level
of KG difficulty. This dataset includes three knowledge graphs with
different sizes and structures. Importantly, it contains thousands of
hard negative triples that are plausible but verified to be false. These
two datasets are more diverse and interpretable benchmarks. There-
fore, the CoDEx dataset is a more difficult link prediction benchmark
than FB15k-237.

Finally, we also evaluated our model on Nations [15] dataset. In
this dataset, the number of entities is smaller than the number of rela-
tion. Table 2 provides statistics for all datasets. For a fair comparison,
we used the same partition of train, valid and test with other work.

Evaluation Protocols. Similar to previous work [7, 8, 17], we
augment all datasets by adding inverse relations to each triplet.
In other words, we add an additional triplet (t, r−1,h) for every
(h, r, t). We adopt the Mean Reciprocal Rank (MRR) and Hits@k
(k=1, 3 or 10) as evaluation metrics. Higher MRR and Hits@k values
on the valid set indicate better model performance. The final scores
on the test set are obtained from the best validation model, which
achieved the highest MRR on the validation set.

Baselines. In the low-dimensional experiments, we compared with
10 baseline models. These models can be classified into three cate-
gories depending on the embedding space:

• Euclidean space: MuRE [3] transformed entity embeddings by
learning relation-specific parameters in Euclidean space. RotE
[7] performed rotation operations in Euclidean space. Rot2L [31]
modelled knowledge graphs in Euclidean space using a double-
layer superposition transformation. SAttLE-Tucker [2] utilized a
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Table 3. Link prediction results on FB15k-237 and WN18RR for low-dimensional embeddings (d = 32) in the filtered setting. E, C and H are denoted as the
presentation space of Euclidean, complex and hyperbolic space, respectively. Best results are in bold and second best results are underlined (The same settings

are applied to Table 5 and Table 6). ♣ indicates that the results are from RotH [7].

Space Model
FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

E

MuRE♣ 0.313 0.226 0.340 0.489 0.458 0.421 0.471 0.525
RotE 0.307 0.220 0.337 0.482 0.463 0.426 0.477 0.529
Rot2L 0.326 0.237 - 0.503 0.475 0.434 - 0.554
SAttLE-Tucker 0.340 0.252 0.372 0.513 0.454 0.414 0.474 0.527

C
RotatE♣ 0.290 0.208 0.316 0.458 0.378 0.330 0.417 0.491
ComplEx-N3♣ 0.294 0.211 0.322 0.463 0.420 0.390 0.420 0.460

H

MuRP♣ 0.323 0.235 0.353 0.501 0.465 0.420 0.484 0.544
RotH 0.314 0.223 0.346 0.497 0.472 0.428 0.490 0.553
FFTRotH 0.319 0.228 0.352 0.500 0.484 0.437 0.502 0.572

HYBONET 0.334 0.244 0.365 0.516 0.489 0.455 0.503 0.553
UltraE 0.334 0.243 0.360 0.510 0.488 0.440 0.503 0.558
FHRE(ours) 0.345 0.255 0.375 0.528 0.494 0.458 0.510 0.563

large number of self-attention heads as the key to applying query-
dependent projections to capture mutual information between en-
tities and relations.

• Complex space: RotatE [26] and ComplEx-N3 [17] modelled
knowledge graphs in complex space to improve their expression
ability.

• Hyperbolic space: MuRP [3] transformed entity embeddings by
learning relation-specific parameters in Poincaré ball. RotH [7]
performed rotation operations in hyperbolic space. FFTRotH [33]
improved RotH model with Fast Fourier Transform. HYBONET
[8] performed a Lorentz linear transformation on each triplet in
hyperbolic space. UltraE [34] presented an ultra-hyperbolic KG
embedding method that interleaves hyperbolic and spherical man-
ifolds. Note that MuRP, RotH, FFTRotH and UltraE models rely
on spatial mappings between hyperbolic space and their tangent
space.

In the high-dimensional experiments, we compared more base-
lines besides to the above models. They are: HAKE [38] modelled
the hierarchical structure of knowledge graphs using polar coordinate
systems. CompoundE [14] modelled KGs using translation, rotation
and scaling operations to form a new combined operation. QuatE
[37] unified ComplEx-N3 and RotatE by modeling relations as rota-
tions on quaternion space. Rotate4D [18] treated relations as 4D rota-
tions from head to tail entities in quaternion space. GIE [6] proposed
a knowledge graph embedding model based on geometric space in-
teraction. HBE [24] used the extended Poincaré ball and polar coor-
dinate system to capture hierarchies.

In the CoDEx-s, CoDEx-m and Nation datasets, we compared
CompGCN [30], WGE [28], NoGE [22], ATTH [7] and the latest
model CoPE [35]. The CompGCN, WGE and NoGE models are
based on deep neural networks. 1 ATTH model combined rotations
and reflections for KGs in hyperbolic space. CoPE model learned
embeddings using the Poincaré ball of hyperbolic geometry to pre-
serve the hierarchy between entities.

Implementation Details. In our experiments, we conducted a
grid search to select optimal hyper-parameters, for learning rate lr
∈ {1e-3, 3e-3, 5e-3}, negative sample size neg ∈ {10, 50, 100,
200} and batch size b ∈ {128, 500, 1000}. We optimized our
model with Riemannian Adam [16] and conducted all our experi-
ments on an NVIDIA Tesla P100 GPU with 16GB memory. In low-

1 Since models based on shallow networks are less reported on these datasets.

Table 4. The optimal hyper-parameters on the five datasets with different
embedding dimensions. d and e indicate the embedding dimension and

training epoch.

Para. FB15k-237 WN18RR CoDEx-{s,m} Nations
d 32 500 32 500 64 32
lr 5e-3 5e-3 5e-3 3e-3 5e-3 5e-3
neg 50 50 100 200 10 10
b 500 500 1000 1000 128 128
e 800 800 1000 1000 500 500

dimensional settings, the embedding dimension of all experiments
was set to 32, while the embedding dimension was set to 500 in high-
dimensional settings. The optimal hyper-parameters of our model on
these datasets are detailed in Table 4.

5.2 Results

The spatial accommodation capacity of hyperbolic spaces grows ex-
ponentially, which means that models based on hyperbolic spaces
could perform better even in lower dimensions. Therefore, we first
compared our model with other models when the embedding dimen-
sion is 32. Then, we compare our models with those models with
higher dimensions.

For the FB15k-237 and WN18RR datasets, we show the experi-
mental results for low-dimensional embeddings in Table 3 and for
high-dimensional embeddings in Table 5. For the CoDEx-s, CoDEx-
m and Nation datasets, we show the experimental results in Table 6.
The results of other model we compared are from the original papers.

5.2.1 Low-dimensional embedding experiments

Table 3 demonstrates that our model outperforms all other competi-
tors on the FB15k-237 and WN18RR datasets. In the same dimen-
sions (d = 32), our FHRE outperforms the Euclidean space-based
model Rot2L by an average of 6.1% and 3.7% on the FB15k-237
and WN18RR datasets, respectively. We argue that although Rot2L
also uses rotations to model knowledge graphs, our FHRE is superior
to it. Our rotation was operated in hyperbolic space, which allows
FHRE to capture hierarchical structures more efficiently.

In comparison to models based on hyperbolic spaces, both RotH
and FFTRotH utilize hyperbolic rotations to model the knowledge
graph. However, these models project data features into hyperbolic
space for rotational transformation during training, which limits their
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Table 5. Link prediction results on FB15k-237 and WN18RR for high-dimensional embeddings (d ∈ {200, 300, 500, 1000}) in the filtered setting. E, C,
Q, M and H are denoted as the representation space of Euclidean, complex, quaternion, mixed and hyperbolic, respectively. ♣ indicates that the results are

from RotH [7].

Space Model
FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

E

MuRE♣ 0.336 0.245 0.370 0.521 0.475 0.436 0.487 0.554
RotE 0.346 0.251 0.381 0.538 0.494 0.446 0.512 0.585
HAKE 0.346 0.250 0.381 0.542 0.497 0.452 0.516 0.582
CompoundE 0.357 0.264 0.393 0.545 0.491 0.450 0.508 0.576

C
RotatE♣ 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
ComplEx-N3♣ 0.357 0.264 0.392 0.547 0.480 0.435 0.495 0.572

Q
QuatE 0.348 0.248 0.382 0.550 0.488 0.438 0.508 0.582
Rotate4D 0.353 0.257 0.391 0.547 0.499 0.455 0.518 0.587

M GIE 0.362 0.271 0.401 0.552 0.491 0.452 0.505 0.575

H

MuRP♣ 0.335 0.243 0.367 0.518 0.481 0.440 0.495 0.566
RotH 0.344 0.246 0.380 0.535 0.496 0.449 0.514 0.586
HBE 0.336 0.239 0.372 0.534 0.488 0.448 0.502 0.570
HYBONET 0.352 0.263 0.387 0.529 0.513 0.482 0.527 0.569
UltraE 0.351 0.275 0.400 0.560 0.501 0.450 0.515 0.592

FHRE(ours) 0.374 0.281 0.409 0.558 0.515 0.478 0.529 0.586

Table 6. Link prediction results on the CoDEx-s, CoDEx-m and Nations dataset. E and H are Euclidean and hyperbolic space, respectively. � and ♥ indicate
that the results are from NoGE [22] and CoPE [35], respectively.

Space Model
CoDEx-s CoDEx-m Nations

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

E

CompGCN� 0.395 - 0.621 0.312 - 0.457 - - -
WGE� 0.452 - 0.664 0.338 - 0.485 - - -
NoGE� 0.453 - 0.650 0.338 - 0.484 - - -

H

MuRP♥ 0.420 0.311 0.632 0.306 0.226 0.456 0.818 0.726 1.0

ATTH♥ 0.402 0.286 0.632 0.315 0.237 0.464 0.785 0.664 0.995
CoPE♥ 0.446 0.350 0.631 0.326 0.251 0.466 0.835 0.754 1.0

FHRE(ours) 0.598 0.513 0.765 0.391 0.316 0.536 0.885 0.838 0.997

ability to fully exploit the hyperbolic space and results in poor per-
formance. Our model is based on a fully hyperbolic space and does
not rely on frequent spatial transformations and thus shows excellent
performance on both datasets. We even outperform the UltraE model
since it learned the embeddings with an ultrahyperbolic manifold.

Although HYBONET [8] performs a Lorentzian linear transfor-
mation in hyperbolic space, the linear transformation introduces ad-
ditional parameters. Our analysis is as follows: given the same em-
bedding dimension d, HYBONET has (|V| × d + |R| × d × d)
parameters, while our model has (|V| × d + |R| × d) parameters,
where V and R are the set of entities and relations, respectively.
Therefore, according to the linear transformation time complexity
calculation method, the time complexity of our model is O(n), while
the time complexity of HYBONET is O(n2). Moreover, our exper-
imental observations have confirmed that rotational transformations
are more expressive than linear transformations for modelling knowl-
edge graphs. We also observed that increasing the number of param-
eters does not necessarily result in a corresponding performance im-
provement.

5.2.2 High-dimensional embedding experiments

Table 5 illustrates that our model achieve superior performance com-
pared to other models with high embedding dimension, particularly
on the FB15k-237 dataset. Although the HAKE utilized polar coordi-
nates to model the hierarchical structure of the knowledge graph, it is
modelled in Euclidean space and cannot fully capture the hierarchi-

cal structure. Our model even exceed in the mixed space model GIE.
GIE combined Euclidean, hyperbolic and spherical spaces to form a
new interaction space when modeling knowledge graphs. However,
GIE encountered spatial transformation issues.

While our metrics for the WN18RR model are not optimal in terms
of H@1 and H@10, our model has fewer parameters compared to
Rotate4D and HYBONET. Table 7 illustrates the number of param-
eters. For a fair comparison, we fixed the embedding dimension at
500. Table 7 clearly demonstrates that our model’s parameters are
21.1% and 74.9% lower than those of the Rotate4D and HYBONET
models, respectively.

Table 7. 500-dimensional embedding parameter comparison.

Model Number of parameters
Rotate4D 81.9 M

HYBONET 26.0 M

FHRE(ours) 20.5 M

5.2.3 Robustness and generalization experiments

To validate the robustness and generalization of our model, we per-
formed experiments on more diverse and challenging datasets of dif-
ferent scales. The table 6 shows that our model achieves better results
compared to other models. Compared to CoPE model, our model im-
proved the MRR, H@1 and H@10 metrics by 34.0%, 46.5%, 21.2%,
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Table 8. Classification rules and results for different relation types on
FB15k-237.

Categories ηh ηt Number of triplets
1-1 < 1.5 < 1.5 725
1-N < 1.5 > 1.5 19
N-1 > 1.5 < 1.5 19577
N-N > 1.5 > 1.5 145

19.9%, 25.8%, 15.0%, 5.9% and 11.1% on the CoDEx-s, CoDEx-
s and Nations datasets. Although CoPE employed the Poincaré ball
model of hyperbolic space to preserve the hierarchies between enti-
ties, the CoPE encountered frequent spatial mapping problems.

Our model outperforms deep network models such as NoGE,
achieving better results. We believe that NoGE, based on deep neural
networks, is susceptible to over-fitting issues. Furthermore, as shown
in Table 6, the experiments demonstrate that our model maintains
excellent performance in the face of more diverse and challenging
datasets, which verifies the robustness of our model and its ability to
perform well in a variety of situations.

5.3 Exploring the multi-relations

To assess the effectiveness of our model when handling with multi-
relation(1-to-N, N-to-1 and N-to-N) between entities. According to
the calculation rules in [5], we divided the test set of FB15k-237 into
four categories: 1-to-1, 1-to-N, N-to-1 and N-to-N. “1-to-N” means
that a head entity can form a fact triplet with multiple tail entities.
“N-to-1” means that a tail entity can form a fact triplet with multiple
head entities. The division results are shown in Table 8, where ηh and
ηt represent the average degree of head and tail entities, respectively.

We compared our model with HYBONET[8] model when fixed
the embedding dimension for entities and relations at 32. For a fair
comparison, we reproduced the HYBONET with the optimal hyper-
parameter settings from their paper, and remained other setting same
with ours. The experiment results are shown in Table 9.

For Table 9, we observe that our model is effective when deal
with different multi-relation entities. Compared with the HYBONET
model’s linear transformation, we attribute this performance gain to
the Lorentz rotation in hyperbolic space are more expressive when
modeling complicated relations between entities.

Table 9. Result of each relation category on FB15k-237 for HYBONET
and our model. Best results are in bold.

Categories
HYBONET FHRE(ours)

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
1-1 0.240 0.185 0.260 0.345 0.239 0.177 0.258 0.346

1-N 0.340 0.315 0.315 0.394 0.369 0.342 0.368 0.421

N-1 0.335 0.244 0.366 0.516 0.348 0.255 0.382 0.534

N-N 0.371 0.248 0.448 0.593 0.373 0.244 0.455 0.606

5.4 Visualizations of Rotation in hyperbolic space

To verify the impact of rotations entirely in hyperbolic space, we
visualized the same embedding after rotation under performed our
model and RotH model on the WN18RR dataset. The dimensions of
embeddings are 32. We selected the first 1000 triplet instances as-
sociated with the relation “_derivationally_related_form” and used
the t-SNE method to reduce the dimension of head and tail entity
embeddings. We then projected them onto a polar coordinate system
for visualization. With this relation, entities expects to be closer and
together.

(a) RotH (b) FHRE (ours)

Figure 3. Embedding of the entities learned with rotation on relation
_derivationally_related_form by RotH model and our model .

Figure 3 shows the embedded visualisations. In Figure 3(a), RotH
performs rotation in hyperbolic space. In Figure 3(b), our model per-
forms rotation in fully hyperbolic space. It is evident that the entity in
our model is closely associated with its associated entities. However,
in the RotH, the entity is relatively isolated from other entities. This
discrepancy can be attributed to the frequent spatial transformations
of the data features when training. The spatial transformations be-
tween different representation space could lead to lose the semantic
and structure information of original KGs during the transformation
process. Our model is rotation entirely in a hyperbolic space without
spatial transformation, which compensates for this limitation.

6 Conclusion

In this paper, we propose FHRE, a fully hyperbolic rotation model
for knowledge graph embedding. In contrast to previous hyperbolic
KGE models, our model does not employ exponential and logarith-
mic mappings to transform data features during the training phase.
Instead, it is defined directly on the Lorenz model. We conducted
extensive experiments on five datasets. In the standard benchmarks
WN18RR and FB15k-237, our model has demonstrated competitive
results in both low and high dimensions. We conducted an analy-
sis of the time complexity of the model, which indicated that our
model could be faster. Furthermore, we have validated the effective-
ness and generalization ability of our approach on more diverse and
challenging benchmark datasets. The experiment demonstrates that
our model get the state-of-the-art performance compared to the latest
model. Finally, visualization results show that FHRE can encourage
entities with similar semantics to have similar embeddings, which is
beneficial to the prediction of unknown triplets.
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