
Resilient Graph Neural Networks: A Coupled Dynamical
Systems Approach

Moshe Eliasofa,*,1, Davide Murarib,**,1, Ferdia Sherrya,***,1 and Carola-Bibiane Schönlieba,****

aDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge
bDepartment of Mathematical Sciences, Norwegian University of Science and Technology

Abstract. Graph Neural Networks (GNNs) have established them-
selves as a key component in addressing diverse graph-based tasks.
Despite their notable successes, GNNs remain susceptible to input
perturbations in the form of adversarial attacks. This paper introduces
an innovative approach to fortify GNNs against adversarial pertur-
bations through the lens of coupled dynamical systems. Our method
introduces graph neural layers based on differential equations with
contractive properties, which, as we show, improve the robustness of
GNNs. A distinctive feature of the proposed approach is the simulta-
neous learned evolution of both the node features and the adjacency
matrix, yielding an intrinsic enhancement of model robustness to per-
turbations in the input features and the connectivity of the graph. We
mathematically derive the underpinnings of our novel architecture and
provide theoretical insights to reason about its expected behavior. We
demonstrate the efficacy of our method through numerous real-world
benchmarks, reading on par or improved performance compared to
existing methods.

1 Introduction

In recent years, the emergence of Graph Neural Networks (GNNs)
has revolutionized the field of graph machine learning, offering re-
markable capabilities for modeling and analyzing complex graph-
structured data. These networks have found applications in diverse
domains and applications, from Network Analysis [12, 31] and rec-
ommendation systems, Bioinformatics [11], Computer Vision [44],
and more. However, the increasing prevalence of GNNs in critical
decision-making processes has also exposed them to new challenges,
particularly in terms of vulnerability to adversarial attacks.

In particular, it has been shown that one can design small adversarial
perturbations of the input graph and its node features, that result
in vastly different GNN predictions [45, 53]. Adversarial attacks
received extensive attention in the context of Convolutional Neural
Networks (CNNs) [24], but graph data has an added degree of freedom
compared to data on a regular grid: the connectivity of the graph can
be altered by adding or removing edges. Also, in natural settings,
such as social network graphs, connectivity perturbations may be
more realistically implementable by a potential adversary, rather than
perturbations of the node features. This gives rise to hard discrete

∗ Email: me532@cam.ac.uk.
∗∗ Email: davide.murari@ntnu.no.
∗∗∗ Email: fs436@cam.ac.uk.
∗∗∗∗ Email: cbs31@cam.ac.uk.
1 Equal contribution.

optimization problems, which necessitates the study of adversarial
robustness specialized to graph data and GNNs [25].

In this paper we propose a GNN architecture that jointly processes
the adversarially attacked adjacency matrix and node features by a
learnable neural dynamical system. Our approach extends the active
research front that aims to design neural architectures that enjoy in-
herent properties and behavior, drawing inspiration from dynamical
systems with similar properties [26, 46, 8, 7, 41, 14, 6]. This ap-
proach has also been used to improve the robustness of CNNs, see
SM:G. Specifically, the flow map of the coupled dynamical system
under consideration in this work draws inspiration from the theory
of non-Euclidean contractive systems developed in [4] to offer an
adversarially robust GNN. We name our method CSGNN, standing
for Coupled dynamical Systems GNN. Notably, because adjacency
matrices are not arbitrary matrices, their learnable neural dynamical
system needs to be carefully crafted to ensure it is node-permutation
equivariant, and that it yields a symmetric adjacency matrix. To the
best of our knowledge, this is the first attempt at learning coupled dy-
namical systems that evolve both the node features and the adjacency
matrix.

Main contributions. This paper offers the following advances in
adversarial defense against poisoning attacks in GNNs: (i) A novel
architecture, CSGNN, that jointly evolves the node features and the
adjacency matrix in a data-driven manner to improve GNN robustness
to input perturbations, (ii) A theoretical analysis of our CSGNN,
addressing the relevance of the architecture based on the theory of
contractive dynamical systems and, (iii) Improved performance on
various graph adversarial defense benchmarks.

Outline of the paper. Section 2 presents a literature overview. Sec-
tion 3 introduces the problem of adversarial robustness. Section 4
presents and theoretically analyzes our methodology based on coupled
contractive dynamical systems to improve the network’s robustness.
Section 5 includes a thorough experimental analysis of our CSGNN
and compares its performance with previous works. Section 6 sum-
marizes and discusses the obtained results. Proofs and further results
are provided in the supplementary material that can be found in the
full manuscript [15]2.

2 When referring to Appendix M, for example, we write SM:M.

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240667

1607

2 Related Work

Graph Neural Networks as Dynamical Systems. Drawing inspira-
tion from dynamical systems models that admit desired behaviors, var-
ious GNN architectures have been proposed to take advantage of such
characteristic properties. In particular, building on the interpretation
of CNNs as discretizations of PDEs [8, 38], there have been multiple
works that view GNN layers as time integration steps of learnable
non-linear diffusion equations. Such an approach allowed exploiting
this connection to understand and improve GNNs [7, 14], for example
by including energy-conserving terms alongside diffusion [14, 37] or
using reaction-diffusion equations [10, 17], advection and convection
systems [50, 16], and higher-order ODEs [18]. These approaches to
designing GNNs have been shown to be of significant benefit when
trying to overcome common issues such as over-smoothing [36, 5]
and over-squashing [1]. Recently, it was shown that neural diffusion
GNNs are robust to graph attacks [40]. The design of GNNs via con-
tractive dynamical systems was also considered in [39, 21], but not in
the context of adversarial robustness.

We note that deep learning architectures are also often harnessed to
numerically solve ODEs and PDEs or discover such dynamical sys-
tems from data [33, 3]. However, in this paper, we focus on drawing
links between GNNs and contractive dynamical systems to improve
GNN robustness to adversarial attacks. Additionally, we remark that
the use of coupled dynamical systems updating both the adjacency
matrix and the feature matrix jointly has also been used in [28]. How-
ever, this paper focuses on dynamic graphs for data-driven modeling
purposes, while the focus of this paper it on adversarial robustness.
Additionally, the parameterization of the adjacency matrix updates
differs considerably between our CSGNN and [28] both in structure
and the number of required parameters.

Adversarial Defense in Graph Neural Networks. Various adver-
sarial attack algorithms have been designed for graph data, notably
including nettack [54], which makes local changes to targeted nodes’
features and connectivity, and metattack [53], which uses a meta-
learning approach with a surrogate model, usually a graph convolu-
tional network (GCN) [31], to generate a non-targeted global graph
attack and, recently [9] proposed a novel method to create graph
injection attacks.

In response to these developments, significant efforts were made
to design methods that improve GNN robustness. The majority of
these approaches focus on perturbations of the graph connectivity, as
those are more likely and practical in social network graph datasets.
Several of these methods preprocess the graph based on underlying
assumptions or heuristics, for example, dropping edges where node
features are not similar enough, under the assumption that the true,
non-attacked, graph is homophilic [47]. Another approach, in [19],
suggests truncating the singular value decomposition of the adjacency
matrix, effectively eliminating its high-frequency components, based
on the assumption that adversarial attacks add high-frequency pertur-
bations to the true adjacency matrix. The aforementioned approaches
are unsupervised, and are typically added to existing GNN architec-
tures while training them for a specific downstream task, such as
node classification. Additionally, there are defenses that clean the
attacked graph in a supervised manner, such as Pro-GNN [30], which
solves a joint optimization problem for the GNN’s learnable parame-
ters, as well as for the adjacency matrix, with sparsity and low-rank
regularization.

Besides methods for cleaning attacked adjacency matrices, there
are also methods that aim to design robust GNN architectures. An
example of this is given in [27], where the GCN architecture is modi-

fied to use a mid-pass filter, resulting in increased robustness. In this
context, it is also natural to consider the use of Lipschitz constraints:
given an upper bound on the Lipschitz constant of a classifier and
a lower bound on its margin, we can issue robustness certificates
[42]. This has been studied to some extent in the context of GNNs
[29], although, in this case, and in contrast to our work, the Lipschitz
continuity is studied only with respect to the node features. In our
work, we also consider the Lipschitz continuity with respect to the
adjacency matrix. It is worth noting that the development of a defense
mechanism should ideally be done in tandem with the development of
an adaptive attack, although designing an appropriate adaptive attack
is not generally a straightforward task [35]. In [35], a set of attacked
graphs are provided as “unit tests”, which have been generated using
adaptive attacks for various defenses. Therefore, in our experiments,
we consider both standard, long-standing benchmarks, as well as re-
cently proposed attacks in [35]. In recent works like [40, 51], the
robustness of GNNs was studied through a node feature dynamical
systems point of view. However, in our CSGNN, we propose to learn
a coupled dynamical system that involves node features as well as the
adjacency matrix.

3 Preliminaries

Notations. Let G = (V,E) be a graph with n nodes V and m edges
E, also associated with the adjacency matrix A ∈ R

n×n, such that
Ai,j = 1 if (i, j) ∈ E and 0 otherwise, and let fi ∈ R

cin be the
input feature vector of the node vi ∈ V . In this paper, we focus
on poisoning attacks, and we assume two types of possible attacks
(perturbations) of the true data before training the GNN: (i) The
features fi are perturbed to (f∗)i, and, (ii) the adjacency matrix A
of the graph is perturbed by adding or removing edges, inducing
a perturbed adjacency matrix A∗ ∈ R

n×n. We denote by G∗ =
(V∗, E∗) the attacked graph with the same vertices, i.e. V = V∗, by
A∗ ∈ R

n×n the perturbed adjacency matrix, and the perturbed node
features are denoted by (f∗)i. We also denote by F,F∗ ∈ R

n×cin the
matrices collecting, as rows, the individual node features fi, (f∗)i. A
table with these symbols and the rest of the notation is provided in
SM:I.

Measuring graph attacks. To quantify the robustness of a GNN
with respect to an adversarial attack, it is necessary to measure the
impact of the attack. For node features, it is common to consider the
Frobenius norm ‖·‖F to quantify the difference between the perturbed
features F∗ from the clean ones F. However, the Frobenius norm is
not a natural metric for adjacency attacks, see [2, 25] for example.
Instead, it is common to measure the �0 distance between the true and
attacked adjacency matrices, as follows:

�0(A,A∗) = |I(A,A∗)|, (1)

where I(A,A∗) = {i, j ∈ {1, . . . , n} : Aij �= (A∗)ij}. For
brevity, we refer to I(A,A∗) as I, and by |I| we refer to the cardi-
nality of I(A,A∗), as in Equation (1). The �0 distance measures how
many entries of A need to be modified to obtain A∗, and is typically
used to measure budget constraints in studies of adversarial robustness
of GNNs [25, 35]. For binary matrices, the �0 norm coincides with
the �1 norm of the flattened version of the matrix vec (A). We thus
work with the �1 norm since it allows us to build contractive networks
based on dynamical systems, and present some additional remarks
on the connection it has with �0 in SM:C. Throughout this paper,
we denote the perturbed node features by F∗ = F + δF, and the
perturbed adjacency matrix by A∗ = A+ δA, where ‖δF‖F ≤ ε1,
and ‖vec(δA)‖1 ≤ ε2.

M. Eliasof et al. / Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach1608

In adversarial defense, the goal is to design a mechanism such
that the output of the neural network is stable with respect to the
perturbations δF and δA, as formally described in the following
definition.

Definition 3.1 ((ε1, ε2)−robust GNN). Let N : Rn×cin × R
n×n →

R
n×cout be a GNN. We say N to be (ε1, ε2)−robust if for every

j = 1, · · · , n
argmax
i=1,...,cout

(N (F+ δF,A+ δA))j = argmax
i=1,...,cout

(N (F,A))j ,

for every (δF, δA) ∈ R
n×cin × R

n×n with ‖δF‖F ≤ ε1 and
‖vec (δA) ‖1 ≤ ε2, where (N (F,A))j ∈ R

cout is the j−th row
of N (F,A).

As discussed in Section 2, this goal is typically met either by mod-
ified architectures, training schemes, as well as their combinations.
In Section 4, we present CSGNN - a defense mechanism based on
a dynamical system perspective. This approach aims to reduce the
sensitivity to input perturbations of the neural network and is based
on the theory of contractive dynamical systems [4]. We will refer to
a map as contractive with respect to a norm ‖ · ‖ if it is 1−Lipschitz
in such norm. Furthermore, we define contractive dynamical systems
as those whose solution map is contractive with respect to the initial
conditions. For completeness, in SM:A, we mathematically define
and discuss contractive systems.

We start from the assumption that the best training accuracy on a
given task corresponds to the clean inputs (A,F). The main idea of
CSGNN is to jointly evolve the features F∗ and the adjacency matrix
A∗, so that even if their clean versions F and A are not known,
the network would output a vector measurably similar to the one
corresponding to (A,F), as we formulate in the following section.
Instead of using heuristics to clean or modify the adjacency matrix,
hence needing more knowledge on the attack, we process both the
matrices in a data-driven manner.

4 Method

4.1 Graph Neural Networks Inspired by Coupled
Contractive Systems

We now present our CSGNN, focused on the task of robust node
classification, where we wish to predict the class of each node in the
graph, given attacked input data (F∗,A∗). The goal is therefore to
design and learn a map D : Rn×c × R

n×n → R
n×c × R

n×n, that
evolves the node features, as well as the adjacency matrix. To the
best of our knowledge, this is the first attempt at learning a coupled
dynamical system that considers both the node features and the adja-
cency matrix in the context of graph-node classification. As discussed
in Section 2, utilizing dynamical systems–perspective in GNNs was
shown to provide strong inductive bias and more predictable behavior.
However, existing defence methods often limit this interpretation to
node feature updates, while using heuristics to pre-process the adja-
cency matrix, if desired. These heuristics assume further knowledge
of the attack, hence motivating the use of a data-driven approach to
design these updates, as we present in this section. Here, we advocate
for the coupling of node features and adjacency matrix updates, in
a principled, data-driven and dynamical system–based fashion. We
focus on undirected graphs, but the proposed methodology can be
adapted to directed ones with some modifications that we discuss
throughout.

We implement the map D as a composition of learnable dynamical
systems inspired by contractivity theory, that simultaneously update

F∗ and A∗. Specifically, we model D as an approximation of the
solution, at the final time T , of the continuous dynamical system:

⎧
⎪⎨
⎪⎩

Ḟ (t) = X(t, F (t), A(t)) ∈ R
n×c

Ȧ(t) = Y (t, A(t)) ∈ R
n×n,

(F (0), A(0)) = (K(F∗),A∗),

(2)

where Ḟ = dF/dt denotes the first order derivative in time, and
K : Rcin → R

c is a linear embedding layer. Similarly to [26, 14, 7],
we assume both X and Y to be piecewise constant in time, i.e.,
that on a given time interval [0, T], there is a partition 0 = τ0 <
τ1 < . . . < τL = T , hl = τl − τl−1 for l = 1, . . . , L, such that
X(t,F,A) = Xl(F,A), Y (t,A) = Yl(A), F ∈ R

n×c, A ∈
R

n×n, t ∈ [τl−1, τl), for a pair of functions Xl : R
n×c × R

n×n →
R

n×c, Yl : Rn×n → R
n×n. When referring to the approximation

of (F (τl), A(τl)), we use (F(l),A(l)) when we start with the clean
pair, and (F

(l)
∗ ,A

(l)
∗) with the perturbed one. To obtain a neural

network, we consider the solution of Equation (2) at time T , which
is approximated using the explicit Euler method. More explicitly,
we compose L explicit Euler layers each defined as Dl((F,A)) :=
(Ψ

hl
Xl

(F,A),Ψ
hl
Yl
(A)), l = 1, . . . , L, where Ψ

hl
Xl

(F,A) := F +

hlXl(F,A), and Ψ
hl
Yl
(A) := A + hlYl(A) are the explicit Euler

steps for Xl and Yl, respectively. The map D is then defined as the
composition of L layers:

D := DL ◦ . . . ◦D1. (3)

The coupled dynamical system encapsulated in D evolves both the
hidden node features and the adjacency matrix for L layers. We denote
the output of D by (F

(L)
∗ ,A

(L)
∗) = D((K(F∗),A∗)). To obtain

node-wise predictions from the network to solve the downstream task,
we feed the final GNN node features F(L)

∗ to a classifier P : Rc →
R

cout , which is implemented by a linear layer. To better explain the
structure of CSGNN, we provide an illustration in Figure 1 and a
detailed feed-forward description in SM:J.

In what follows, we describe how to characterize the functions
Ψ

hl
Xl

and Ψ
hl
Yl

from Equation (3). First, in Section 4.2, we derive
the node feature dynamical system governed by X . We show, that
under mild conditions, contractivity can be achieved, allowing us to
derive a bound on the influence of the attacked node features F∗ on
the GNN output. Second, in Section 4.3, we develop and propose a
novel contractive dynamical system for the adjacency matrix, which
is guided by Y .

Our motivation in designing such a coupled system stems from the
nature of our considered adversarial settings. That is, we assume, that
the adjacency matrix is perturbed. We note, that the adjacency matrix
controls the propagation of node features. Therefore, leaving the input
attacked adjacency unchanged may result in sub-par performance, as
we show experimentally in SM:M. While some methods employ a
pre-processing step of the attacked matrix A∗ [19, 47], it has been
shown that joint optimization of the node features and the adjacency
matrix can lead to improved performance [30]. Therefore, we develop
and study novel, coupled dynamical systems that evolve both the node
features and the adjacency matrix and are learned in a data-driven
manner. This perspective allows to obtain favorable properties such
as adjacency matrix contractivity, thereby reducing the sensitivity to
adversarial adjacency matrix attacks.

4.2 Contractive Node Feature Dynamical System

We now describe the learnable functions Ψ
hl
Xl

, l = 1, . . . , L, that
determine the node feature dynamics of our CSGNN. We build upon

M. Eliasof et al. / Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach 1609

Figure 1: The coupled dynamical system D in CSGNN, as formulated in Equation (3).

a diffusion-based GNN layer, [7, 14], that is known to be stable
and, under certain assumptions, is contractive. More explicitly, our
proposed Ψ

hl
Xl

is characterized as follows:

Ψ
hl
Xl

(F(l−1),A(l−1)) := F(l)

:= F(l−1) + hlXl(F
(l−1),A(l−1)) (4)

= F(l−1) − hl

(
G(l−1)

)�
σ
(
G(l−1)F(l−1)Wl

)
W�

l K̃l,

where G(l−1) := G(A(l−1)), while Wl ∈ R
c×c and K̃l =

(Kl + K�
l)/2 ∈ R

c×c are learnable parameters which allows a
gradient flow interpretation of our system, as in [23]. The time steps
h1, ..., hL > 0 are hyperparameters that are suitably constrained to en-
sure the network’s contractivity according to our theoretical analysis.
For each layer, we use the same step-size for the feature and adjacency
updates. Also, as in [14], the map G(A(l−1)) : Rn×c → R

n×n×c

is the gradient operator of A(l−1) defined in SM:D, and we set
σ = LeakyReLU.

Theorem 4.1 (Equation (4) can induce stable node dynamics). As-
sume σ is a monotonically increasing 1-Lipschitz non-linear function.
There are choices of (Wl,Kl) ∈ R

c×c×R
c×c, for which the explicit

Euler step in Equation (4) is stable for a small enough hl > 0, i.e.
there is a convex energy EA for which

EA(Ψ
hl
Xl

(F(l−1),A)) ≤ EA(F(l−1)), l = 1, . . . , L. (5)

Theorem 4.2 (Equation (4) induces contractive node dynamics). As-
sume σ is a monotonically increasing 1-Lipschitz non-linear function.
There are choices of (Wl,Kl) ∈ R

c×c×R
c×c, for which the explicit

Euler step in Equation (4) is contractive for a small enough hl > 0,
i.e. given any δF ∈ R

n×c,

‖Ψhl
Xl

(F+ δF,A)−Ψ
hl
Xl

(F,A)‖F ≤ ‖δF‖F . (6)

In SM:D we prove Theorems 4.1 and 4.2 for various parameteri-
zations. One parameterization for which both theorems are satisfied
corresponds to Kl = Ic. We have experimented with this configu-
ration, learning only Wl ∈ R

c×c. We found that this configuration
improves several baseline results, showing the benefit of contractive
node feature dynamics. We report those results in SM:M. We also
found, following recent interpretations of dissipative and expanding
GNNs [23], that choosing the parameterization as Wl = Ic, and
training Kl ∈ R

c×c leads to further improved results, as we show in
our experiments in Section 5 and SM:M. We note that this parameter-
ization admits stable dynamical systems, in the sense of Theorem 4.1,
as discussed in SM:D.

4.3 Contractive Adjacency Matrix Dynamical System

As previously discussed, our CSGNN learns both node features and
adjacency matrix dynamical systems to defend against adversarial

attacks. We now elaborate on the latter, aiming to design and learn
dynamical systems with explicit Euler approximation of the solution
Ψ

hl
Yl

: Rn×n → R
n×n, l = 1, . . . , L, such that:

‖vec(Ψhl
Yl
(A(l−1)))− vec(Ψ

hl
Yl
(A(l−1)

∗))‖1 (7)

≤ ‖vec(A(l−1))− vec(A(l−1)
∗)‖1,

where

Ψ
hl
Yl
(A(l−1)) = A(l) = A(l−1) + hlYl(A

(l−1)). (8)

In other words, we wish to learn maps Ψhl
Yl

that decrease the vector-
ized �1 distance between the true and attacked adjacency matrices,
thereby reducing the effect of the adjacency matrix attack.

Since we are concerned with adjacency matrices, we need to pay
attention to the structure of the designed map Yl. Specifically, we
demand that (i) the learned map Yl are node-permutation-equivariant.
That is, relabelling (change of order) of the graph nodes should not
influence the dynamical system Ψhl

Yl
output up to its order, and, (ii) if

the input graph is symmetric, then the updated adjacency matrix A(l)

should remain symmetric. Formally, the requirement (i) demands that:

Ψ
hl
Yl
(PAP�) = PΨ

hl
Yl
(A)P� (9)

should hold for every permutation matrix P ∈ {0, 1}n×n. The sym-
metry condition (ii) implies that we want (Ψhl

Yl
(A))� = Ψ

hl
Yl
(A)

if A� = A. To this end, we adopt the derivations provided in
[34, Appendix A], that show that in order to make the map Ψ

hl
Yl

permutation-equivariant and also symmetry preserving, we can set
Yl(A) = σ(M(A)) in Equation (8), where σ : R → R is any non-
linear activation function applied componentwise, and M : Rn×n →
R

n×n is a suitably designed linear map depending on a learnable
vector k = (k1, · · · , k9) ∈ R

9 and defined in SM:B. The design of
Yl allows us not only to design adjacency matrix updates with the
inductive bias of coming from a dynamical system, but also respecting
the expected symmetry and invariance of the resulting matrix. In case
of directed graphs, one could adapt the procedure by removing the
symmetry assumption, hence adding some more free parameters to
the map M , as we comment on in SM:B. We now provide a theo-
rem that validates the contractivity of the proposed adjacency matrix
dynamical system, with its proof in SM:E.

Theorem 4.3 (Equation (8) defines contractive adjacency dynamics).
Let α ≤ 0, σ : R → R be a Lipschitz continuous function, with
σ′(s) ∈ [0, 1] almost everywhere. If 0 ≤ hl ≤ 2/(2

∑9
i=2 |ki| − α),

then the explicit Euler step

Ψ
hl
Yl
(A(l−1)) := A(l−1) + hlσ

(
M(A(l−1))

)
, (10)

where M is as in SM:B and k1 =
(
α−∑9

i=2 |ki|
)
, is contractive in

the vectorized �1 norm.

M. Eliasof et al. / Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach1610

In our experiments, α ≤ 0 is a non-positive hyperparameter of
the network. In this Section, we presented the contractive node and
adjacency updates in our CSGNN that allow for reduced sensitivity
to adversarial perturbed inputs in a learnable fashion with respect
to the downstream performance of the task at hand, which is node
classification in this paper. Notably, it is important to distinguish
between extreme cases of contractivity, such as in the case of multi-
layer perceptron (MLP), which holds no sensitivity to the adjacency
matrix by design, and a network with learnable sensitivity through a
contractive behavior, as presented in our CSGNN.

5 Experiments

We now study the effectiveness of CSGNN against different graph ad-
versarial attacks. In Section 5.1 we discuss our experimental settings.
Our choice of datasets and attacks comes from the interest in compar-
ing our proposed methodology with previous papers presenting similar
procedures to improve the network’s robustness. The experimental
analysis we propose focuses on poisoning based on modifying the true
structure of the graph, by adding/removing edges between existent
nodes or perturbing their node features. The presented mathematical
setup is not limited to this class of attacks, but we focus on them so
as to compare our performances to similar techniques for improving
the network robustness. In Section 5.2, we report our experimental re-
sults and observations on several benchmarks, with additional results
and an ablation study in SM:M. The results presented in Section 5.2
focuses on adjacency matrix attacks, which are the most popular in
the literature [48]. To provide a comprehensive evaluation of our CS-
GNN, we also perform a set of experiments that include attacked
node features with nettack. Since we follow the attacks evaluated in
the literature, which utilize different training/validation/test splits for
different types of attacks, the reported results for perturbation rate 0
can be different under different attacks.

5.1 Experimental settings

Datasets. Following [54, 53], we validate the proposed approach
on four benchmark datasets, including three citation graphs, i.e., Cora,
Citeseer, Pubmed, and one blog graph, Polblogs . The statistics of the
datasets are shown in SM:K. Note that in the Polblogs graph, node
features are not available. In this case, we follow Pro-GNN [30] and
set the input node features to a n× n identity matrix.

Baselines. We demonstrate the efficacy of CSGNN by comparing it
with popular GNNs and defense models, as follows: GCN [31]: Is one
of the most commonly used GNN architectures, consisting of feature
propagation according to the symmetric normalized Laplacian and
channel mixing steps. GAT [43]: Graph Attention Networks (GAT)
employ an attention mechanism to learn edge weights for the fea-
ture propagation step. RGCN [52]: RGCN models node features as
samples from Gaussian distributions, and modifies GCN to propagate
both the mean and the variance. In the neighborhood aggregation
operation, high-variance features are down-weighted to improve ro-
bustness. GCN-Jaccard [47]: This is an unsupervised pre-processing
method that relies on binary input node features, based on the as-
sumption that the true graph is homophilic. Edges between nodes
with features whose Jaccard similarity is below a certain threshold
are removed. GCN-SVD [19]: GCN-SVD is also an unsupervised
pre-processing step. Based on the observation that nettack tends to
generate high-rank perturbations to the adjacency matrix, it is sug-
gested to truncate the SVD of the adjacency matrix before it is used to
train a GNN. Pro-GNN [30]: Pro-GNN attempts to jointly optimize

GCN weights and a corrected adjacency matrix using a loss function
consisting of a downstream supervised task-related loss function and
low-rank and sparsity regularization. In Pro-GNN-fs, an additional
feature smoothing regularization is used. Mid-GCN [27]: Mid-GCN
modifies the standard GCN architecture to utilize a mid-pass filter,
unlike the typical low-pass filter in GCN. GNNGuard [49]: GNN-
Guard modifies message-passing GNNs to include layer-dependent
neighbor importance weights in the aggregation step. The neighbor
importance weights are designed to favor edges between nodes with
similar features, encoding an assumption of homophily. GRAND

[20]: In this method, multiple random graph data augmentations are
generated, which are then propagated through the GNN. The GNN
is trained using a task-related loss and a consistency regularization
that encourages similar outputs for the different augmented graphs.
Soft-Median-GDC [22]: This approach first preprocesses the adja-
cency matrix using graph diffusion convolution [32], after which a
GNN that uses soft median neighborhood aggregation function is
trained. GARNET [13]: This method suggests wiring the graph using
weighted spectral embeddings, which are shown to be related to the
original, clean graph. HANG [51]: This approach is based on conser-
vative Hamiltonian neural flows, used to process node features and for
improved robustness. The comparisons with GNNGuard, GARNET
and HANG are reported in SM:M.

Training and Evaluation. We follow the same experimental set-
tings as in [30]. Put precisely, and unless otherwise specified, for each
dataset, we randomly choose 10% of the nodes for training, 10% of
the nodes for validation, and the remaining 80% nodes for testing. For
each experiment, we report the average node classification accuracy
of 10 runs. The hyperparameters of all the models are tuned based on
the validation set accuracy. In all experiments, the objective function
to be minimized is the cross-entropy loss, using the Adam optimizer.
Note that another benefit of our CSGNN is the use of downstream loss
only, compared to other methods that utilize multiple losses to learn
adjacency matrix updates. In SM:L, we discuss the hyperparameters
of CSGNN. A complexity and runtime discussion is given in SM:N.

5.2 Adversarial Defense Performance

We evaluate the node classification performance of CSGNN against
four types of poisoning attacks: (i) non-targeted attack, (ii) targeted
attack, (iii) random attack, and, (iv) unit tests. Below we elaborate on
the results obtained on each type of attack.

Robustness to Non-Targeted Adversarial Attacks. We evaluate
the node classification accuracy of our CSGNN and compare it with
the baseline methods after using the non-targeted adversarial attack
metattack [53]. We follow the publicly available attacks and splits
in [30]. We experiment with varying perturbation rates, i.e., the ratio
of changed edges, from 0 to 25% with a step size of 5%. We report
the average accuracy, as well as the obtained standard deviation over
10 runs in Table 1. The best-performing method is highlighted in
bold. We can see that except for a few cases, our CSGNN consistently
improves or offers on-par performance with other methods.

Robustness to Targeted Adversarial Attacks. In this experiment,
we use nettack [54] as a targeted attack. Following [52], we vary the
number of perturbations made on every targeted node from 1 to 5 with
a step size of 1. The nodes in the test set with degree larger than 10
are set as target nodes. Here, we also use the publicly available splits
in [30]. The node classification accuracy on target nodes is shown
in Figure 2. From the figure, we can observe that when the number

M. Eliasof et al. / Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach 1611

0 1 2 3 4 5

60

70

80

90

A
cc

ur
ac

y
(%

)

CSGNN GCN GCN-Jaccard Pro-GNN Pro-GNN-fs
GAT GCN-SVD RGCN Mid-GCN

(a) Cora

0 1 2 3 4 5

60

80

(b) Citeseer

0 1 2 3 4 5

94

96

98

(c) Polblogs

Figure 2: Node classification accuracy (%) under nettack. The horizontal axis describes the number of perturbations per node.

Table 1: Node classification performance (accuracy±std) under a non-targeted attack (metattack) with varying perturbation rates.

Dataset Ptb Rate (%) 0 5 10 15 20 25

Cora

GCN 83.50±0.44 76.55±0.79 70.39±1.28 65.10±0.71 59.56±2.72 47.53±1.96
GAT 83.97±0.65 80.44±0.74 75.61±0.59 69.78±1.28 59.94±0.92 54.78±0.74

RGCN 83.09±0.44 77.42±0.39 72.22±0.38 66.82±0.39 59.27±0.37 50.51±0.78
GCN-Jaccard 82.05±0.51 79.13±0.59 75.16±0.76 71.03±0.64 65.71±0.89 60.82±1.08
GCN-SVD 80.63±0.45 78.39±0.54 71.47±0.83 66.69±1.18 58.94±1.13 52.06±1.19
Pro-GNN-fs 83.42±0.52 82.78±0.39 77.91±0.86 76.01±1.12 68.78±5.84 56.54±2.58

Pro-GNN 82.98±0.23 82.27±0.45 79.03±0.59 76.40±1.27 73.32±1.56 69.72±1.69
Mid-GCN 84.61±0.46 82.94±0.59 80.14±0.86 77.77±0.75 76.58±0.29 72.89±0.81
CSGNN 84.12±0.31 82.20±0.65 80.43±0.74 79.32±1.04 77.47±1.22 74.46±0.99

Citeseer

GCN 71.96±0.55 70.88±0.62 67.55±0.89 64.52±1.11 62.03±3.49 56.94±2.09
GAT 73.26±0.83 72.89±0.83 70.63±0.48 69.02±1.09 61.04±1.52 61.85±1.12

RGCN 71.20±0.83 70.50±0.43 67.71±0.30 65.69±0.37 62.49±1.22 55.35±0.66
GCN-Jaccard 72.10±0.63 70.51±0.97 69.54±0.56 65.95±0.94 59.30±1.40 59.89±1.47
GCN-SVD 70.65±0.32 68.84±0.72 68.87±0.62 63.26±0.96 58.55±1.09 57.18±1.87
Pro-GNN-fs 73.26±0.38 73.09±0.34 72.43±0.52 70.82±0.87 66.19±2.38 66.40±2.57

Pro-GNN 73.28±0.69 72.93±0.57 72.51±0.75 72.03±1.11 70.02±2.28 68.95±2.78
Mid-GCN 74.17±0.28 74.31±0.42 73.59±0.29 73.69±0.29 71.51±0.83 69.12±0.72
CSGNN 74.93±0.52 74.91±0.33 73.95±0.35 73.82±0.61 73.01±0.77 72.94±0.56

Polblogs

GCN 95.69±0.38 73.07±0.80 70.72±1.13 64.96±1.91 51.27±1.23 49.23±1.36
GAT 95.35±0.20 83.69±1.45 76.32±0.85 68.80±1.14 51.50±1.63 51.19±1.49

RGCN 95.22±0.14 74.34±0.19 71.04±0.34 67.28±0.38 59.89±0.34 56.02±0.56
GCN-SVD 95.31±0.18 89.09±0.22 81.24±0.49 68.10±3.73 57.33±3.15 48.66±9.93
Pro-GNN-fs 93.20±0.64 93.29±0.18 89.42±1.09 86.04±2.21 79.56±5.68 63.18±4.40

CSGNN 95.87±0.26 95.79±0.15 93.21±0.16 92.08±0.39 90.10±0.37 87.37±0.66

of perturbations increases, the performance of CSGNN is better than
other methods on the attacked target nodes in most cases.

Robustness to targeted attacks to node features and adjacency

matrix. We now provide additional experiments, where not only
the connectivity structure of the graph is attacked, but also the node
features, demonstrated on the Cora and Citeseer datasets. To generate
the attacked versions of these datasets, we follow the same protocol
as in Pro-GNN [30]. The attacks are based on nettack [54], which
applies a targeted attack to the test nodes of the clean graph having a
degree larger than 10. To attack all these nodes, we iterate through the
target nodes and iteratively update the feature and adjacency matrices
attacking the previously obtained one at the next target node. We work
with different attack intensities, applying 1 to 5 perturbations per
targeted node, with a step of 1. The results are reported in Figure 5,
where we compare the performance of CSGNN, with those of GCN,
GCN-SVD, and Pro-GNN. As we can see, CSGNN outperforms all
of the compared models on this task.

Robustness to Random Attacks. In this experimental setting, we
evaluate the performance of CSGNN when the adjacency matrix is
attacked by adding random fake edges, from 0% to 100% of the
number of edges in the true adjacency matrix, with a step size of 20%.
The results are reported in Figure 3. It can be seen, that CSGNN is on
par with or better than the considered baselines.

Unit tests. We utilize the recently suggested unit tests from [35].
This is a set of perturbed citation datasets, which are notable for
the fact that the perturbations were not generated using standard
attack generation procedures that focus only on attacks like nettack or
metattack. Instead, 8 adversarial defense methods were studied. Then,
bespoke, adaptive attack methods were designed for each of them.
These attack methods were applied to the citation datasets to generate
the “unit tests”. We experiment with those attacks as they offer a
challenging benchmark, that further highlights the contribution of
our CSGNN. We present the results in Figure 4, showing the relative
performance of CSGNN and other baselines compared to GCN. We
see that our CSGNN performs better than other considered models.

M. Eliasof et al. / Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach1612

0 20 40 60 80 100

70

80

A
cc

ur
ac

y
(%

)

CSGNN GCN GCN-Jaccard Pro-GNN
Pro-GNN-fs GAT GCN-SVD RGCN

(a) Cora

0 20 40 60 80 100

60

70

(b) Citeseer

0 20 40 60 80 100
80

85

90

95

(c) Polblogs

Figure 3: Node classification accuracy (%) under a random adjacency matrix attack. The horizontal axis describes the attack percentage.

0 2 4 6

0

10

A
cc

ur
ac

y
(%

)

CSGNN GCN GCN-Jaccard Pro-GNN GNNGuard
GRAND MLP RGCN Soft-Median-GDC

(a) Cora-ML

0 1 2 3

0

5

(b) Citeseer

Figure 4: Node classification accuracy (%) using unit-tests from [35] relative to a baseline GCN. The horizontal axis shows the attack budget (%).

1 2 3 4 5

20

40

60

80

A
cc

ur
ac

y
(%

)

CSGNN Pro-GNN GCN-SVD GCN

(a) Cora

1 2 3 4 5

40

60

80

(b) Citeseer

Figure 5: Node classification accuracy (%) under targeted attack with
nettack to both node features and adjacency matrix. The horizontal
axis describes the number of perturbations per node.

This result further highlights the robustness of CSGNN under different
adversarial attack scenarios, on several datasets. In Figure 8 of SM:M,
we also provide absolute performance results.

6 Summary and Discussion

In this paper, we present CSGNN, a novel GNN architecture inspired
by contractive dynamical systems for graph adversarial defense. Our
CSGNN learns a coupled dynamical system that updates both the
node features as well as the adjacency matrix to reduce the impact
of input perturbations, thereby defending against graph adversarial
attacks. We provide a theoretical analysis of our CSGNN, to gain
insights into its characteristics and expected behavior. Our profound
experimental study of CSGNN reveals the importance of employing
the proposed coupled dynamical system to reduce attack influence
on the model’s accuracy. Namely, our results verify both the efficacy
compared to existing methods, as well as the necessity of each of
the dynamical systems in CSGNN. Since our approach presents a
novel way to model both the node features and adjacency matrix
through the lens of dynamical systems, we believe that our findings
and developments will find further use in graph adversarial defense
and attacks, as well as other applications of GNNs where being stable
to input perturbations is relevant.

References

[1] U. Alon and E. Yahav. On the bottleneck of graph neural networks
and its practical implications. In International Conference on Learning
Representations, 2021.

[2] A. Bojchevski and S. Günnemann. Adversarial attacks on node embed-
dings via graph poisoning. In International Conference on Machine
Learning, pages 695–704. PMLR, 2019.

[3] J. Brandstetter, D. E. Worrall, and M. Welling. Message passing neural
PDE solvers. In International Conference on Learning Representations,
2022.

M. Eliasof et al. / Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach 1613

[4] F. Bullo. Contraction Theory for Dynamical Systems. Kindle Direct
Publishing, 1.1 edition, 2023. ISBN 979-8836646806.

[5] C. Cai and Y. Wang. A note on over-smoothing for graph neural networks.
arXiv:2006.13318, 2020.

[6] E. Celledoni, D. Murari, B. Owren, C.-B. Schönlieb, and F. Sherry.
Dynamical Systems–Based Neural Networks. SIAM Journal on Scientific
Computing, 45(6):A3071–A3094, 2023.

[7] B. P. Chamberlain, J. Rowbottom, M. Gorinova, S. Webb, E. Rossi, and
M. M. Bronstein. GRAND: Graph neural diffusion. In International
Conference on Machine Learning (ICML), pages 1407–1418, 2021.

[8] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural
Ordinary Differential Equations. In Advances in Neural Information
Processing Systems 31: NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 6572–6583, 2018.

[9] Y. Chen, H. Yang, Y. Zhang, K. Ma, T. Liu, B. Han, and J. Cheng.
Understanding and improving graph injection attack by promoting unno-
ticeability. arXiv:2202.08057, 2022.

[10] J. Choi, S. Hong, N. Park, and S.-B. Cho. GREAD: Graph neural
reaction-diffusion equations. arXiv:2211.14208, 2022.

[11] G. Corso, H. Stärk, B. Jing, R. Barzilay, and T. S. Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. In The Eleventh
International Conference on Learning Representations, 2023.

[12] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in
neural information processing systems, pages 3844–3852, 2016.

[13] C. Deng, X. Li, Z. Feng, and Z. Zhang. Garnet: Reduced-rank topology
learning for robust and scalable graph neural networks. In Learning on
Graphs Conference, pages 3–1. PMLR, 2022.

[14] M. Eliasof, E. Haber, and E. Treister. PDE-GCN: Novel architectures
for graph neural networks motivated by partial differential equations.
Advances in Neural Information Processing Systems, 34:3836–3849,
2021.

[15] M. Eliasof, D. Murari, F. Sherry, and C.-B. Schönlieb. Contractive
Systems Improve Graph Neural Networks Against Adversarial Attacks.
arXiv:2311.06942, 2023.

[16] M. Eliasof, E. Haber, and E. Treister. Feature transportation improves
graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 11874–11882, 2024.

[17] M. Eliasof, E. Haber, and E. Treister. Graph neural reaction diffusion
models. arXiv:2406.10871, 2024.

[18] M. Eliasof, E. Haber, E. Treister, and C.-B. B. Schönlieb. On the temporal
domain of differential equation inspired graph neural networks. In
International Conference on Artificial Intelligence and Statistics, pages
1792–1800. PMLR, 2024.

[19] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis.
All you need is low (rank): defending against adversarial attacks on
graphs. In Proceedings of the 13th International Conference on Web
Search and Data Mining, pages 169–177, 2020.

[20] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Khar-
lamov, and J. Tang. Graph random neural networks for semi-supervised
learning on graphs. Advances in neural information processing systems,
33:22092–22103, 2020.

[21] C. Gallicchio and A. Micheli. Graph Echo State Networks. In The 2010
international joint conference on neural networks, pages 1–8. IEEE.

[22] S. Geisler, T. Schmidt, H. Sirin, D. Zügner, A. Bojchevski, and S. Gün-
nemann. Robustness of graph neural networks at scale. In Advances in
Neural Information Processing Systems 34: NeurIPS 2021, December
6-14, 2021, virtual, pages 7637–7649, 2021.

[23] F. D. Giovanni, J. Rowbottom, B. P. Chamberlain, T. Markovich, and
M. M. Bronstein. Understanding convolution on graphs via energies.
Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 2015.

[25] S. Günnemann. Graph Neural Networks: Adversarial Robustness. In
L. Wu, P. Cui, J. Pei, and L. Zhao, editors, Graph Neural Networks: Foun-
dations, Frontiers, and Applications, pages 149–176. Springer Nature
Singapore, Singapore, 2022.

[26] E. Haber and L. Ruthotto. Stable architectures for deep neural networks.
Inverse Problems, 34(1):014004, Dec. 2017.

[27] J. Huang, L. Du, X. Chen, Q. Fu, S. Han, and D. Zhang. Robust mid-pass
filtering graph convolutional networks. In Proceedings of the ACM Web
Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May
2023, pages 328–338. ACM, 2023.

[28] Z. Huang, Y. Sun, and W. Wang. Coupled graph ode for learning in-
teracting system dynamics. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, 2021.

[29] Y. Jia, D. Zou, H. Wang, and H. Jin. Enhancing node-level adversarial

defenses by Lipschitz regularization of graph neural networks. In Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD ’23, page 951–963, 2023.

[30] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining, pages 66–74, 2020.

[31] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Repre-
sentations (ICLR), 2017.

[32] J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion improves
graph learning. In Advances in Neural Information Processing Systems
32: NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
13333–13345, 2019.

[33] Z. Long, Y. Lu, X. Ma, and B. Dong. PDE-net: Learning PDEs from
data, 2018.

[34] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and
equivariant graph networks. ICLR, 2018.

[35] F. Mujkanovic, S. Geisler, S. Günnemann, and A. Bojchevski. Are
Defenses for Graph Neural Networks Robust? Advances in Neural
Information Processing Systems, 35:8954–8968, Dec. 2022.

[36] K. Oono and T. Suzuki. Graph neural networks exponentially lose
expressive power for node classification. In International Conference on
Learning Representations, 2020.

[37] T. K. Rusch, B. Chamberlain, J. Rowbottom, S. Mishra, and M. Bronstein.
Graph-coupled oscillator networks. In International Conference on
Machine Learning, pages 18888–18909. PMLR, 2022.

[38] L. Ruthotto and E. Haber. Deep neural networks motivated by partial
differential equations. Journal of Mathematical Imaging and Vision, 62:
352–364, 2020.

[39] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2008.

[40] Y. Song, Q. Kang, S. Wang, K. Zhao, and W. P. Tay. On the robustness
of graph neural diffusion to topology perturbations. Advances in Neural
Information Processing Systems, 35:6384–6396, 2022.

[41] M. Thorpe, T. M. Nguyen, H. Xia, T. Strohmer, A. Bertozzi, S. Osher,
and B. Wang. GRAND++: Graph neural diffusion with a source term.
In International Conference on Learning Representations, 2022.

[42] Y. Tsuzuku, I. Sato, and M. Sugiyama. Lipschitz-margin training: Scal-
able certification of perturbation invariance for deep neural networks.
Advances in neural information processing systems, 31, 2018.

[43] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio. Graph Attention Networks. International Conference on Learning
Representations, 2018.

[44] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph CNN for learning on point clouds.
arXiv:1801.07829, 2018.

[45] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan. Hid-
ing individuals and communities in a social network. Nature Human
Behaviour, 2(2):139–147, 2018.

[46] E. Weinan. A Proposal on Machine Learning via Dynamical Systems.
Communications in Mathematics and Statistics, 5(1):1–11, Mar. 2017.

[47] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu. Ad-
versarial examples for graph data: Deep insights into attack and defense.
In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pages 4816–4823, 7 2019.

[48] Y. Xu, M. Lanier, A. Sarkar, and Y. Vorobeychik. Attacks on node
attributes in graph neural networks. arXiv:2402.12426, 2024.

[49] X. Zhang and M. Zitnik. GNNGuard: Defending graph neural networks
against adversarial attacks. In Advances in Neural Information Process-
ing Systems 33: NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[50] K. Zhao, Q. Kang, Y. Song, R. She, S. Wang, and W. P. Tay. Graph
neural convection-diffusion with heterophily. arXiv:2305.16780, 2023.

[51] K. Zhao, Q. Kang, Y. Song, R. She, S. Wang, and W. P. Tay. Adversarial
robustness in graph neural networks: A Hamiltonian approach. Advances
in Neural Information Processing Systems, 36, 2024.

[52] D. Zhu, Z. Zhang, P. Cui, and W. Zhu. Robust graph convolutional
networks against adversarial attacks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data min-
ing, pages 1399–1407, 2019.

[53] D. Zügner and S. Günnemann. Adversarial attacks on graph neural
networks via meta learning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[54] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks on
neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pages
2847–2856, 2018.

M. Eliasof et al. / Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach1614

	Introduction
	Related Work
	Preliminaries
	Method
	Graph Neural Networks Inspired by Coupled Contractive Systems
	Contractive Node Feature Dynamical System
	Contractive Adjacency Matrix Dynamical System

	Experiments
	Experimental settings
	Adversarial Defense Performance

	Summary and Discussion

