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Abstract. Randomized smoothing is the state-of-the-art approach to
constructing image classifiers that are provably robust against addi-
tive adversarial perturbations of bounded magnitude. However, it is
more complicated to compute reasonable certificates against semantic
transformations (e.g., image blurring, translation, gamma correction)
and their compositions. In this work, we propose General Lipschitz
(GL), a new flexible framework to certify neural networks against
resolvable semantic transformations. Within the framework, we an-
alyze transformation-dependent Lipschitz-continuity of smoothed
classifiers w.r.t. transformation parameters and derive corresponding
robustness certificates. To assess the effectiveness of the proposed
approach, we evaluate it on different image classification datasets
against several state-of-the-art certification methods.

1 Introduction

Deep neural networks show remarkable performance in a variety of
computer vision tasks. However, they are drastically vulnerable to
specific input perturbations (called adversarial attacks) that might be
imperceptible to the human eye as it was initially shown in [36, 4].
Namely, suppose that deep neural network f : Rn → [0, 1]C maps
input images x to class probabilities. Then, given the classification
rule f̂(x) = argmaxi∈Y fi(x), where Y = {1, 2, . . . , C}, it is
possible to craft an adversarial perturbation δ of small magnitude
such that x and x+ δ are assigned by f̂ to different classes. For some
applications, such as self-driving cars [39] and identification systems
[21, 32], this vulnerability to the small change in the input data is a
serious concern.

Recently, many approaches to create adversarial perturbations
were proposed, as well as defense techniques to counteract these
approaches, causing an attack-defense arms race [1, 43]. This race,
however, barely affected neural network applications where the prov-
ably correct behavior of models is required. As a result, more research
was conducted in the field of certified robustness, where the goal is
to provide provable guarantees on the models’ behavior under differ-
ent input transformations. Randomized smoothing [23, 8] is among
the most effective and popular approaches used to build provably
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robust models. Initially developed as a certification tool against norm-
bounded additive perturbations, it was later extended to the cases of
semantic perturbations [26, 14], such as brightness shift and trans-
lations. In the case of additive perturbations, this approach is about
replacing the base classifier f with a smoothed one in the following
form:

g(x) = Eε∼N (0,σ2)f(x+ ε). (1)

As it is shown in prior works [23, 8], if the base classifier predicts
well under Gaussian noise applied to input x, then the smoothed one
is guaranteed not to change the predicted class label in some vicinity
of x. Lately, it was shown [26, 14] that if the input is subjected to se-
mantic transformation with the parameters sampled from a particular
distribution, then it is possible to derive the robustness guarantees for
a smoothed model against corresponding semantic transformation.

In this work, we focus on resolvable [26] semantic transformations
and their compositions and develop a new framework for certified
robustness of classifiers under these perturbations. In a nutshell, we
approach smoothing from a different angle and show that a smoothed
classifier is Lipschitz continuous with respect to parameters of com-
positions of resolvable transformations.

Our method is derived with no assumptions on semantic transfor-
mation and smoothing distribution (except for the resolvability and
smoothness, respectively). It provides a constructive numerical pro-
cedure for building a certification against a particular transformation.
The proposed approach scales to large datasets at the cost of inference
of the smoothed model and can be applied for certification against
compositions of resolvable semantic transformations.

Our contributions are summarized as follows:

• We propose a universal certification approach against compositions
of resolvable transformations based on randomized smoothing. Our
method can be applied for certification against any composition
of resolvable semantic transformations, in contrast to the previous
studies.

• We propose a numerical procedure to verify the smoothed model’s
robustness with little to no computation overhead.

• We evaluate our method on different datasets and show that it yields
state-of-the-art robustness guarantees in the majority of considered
experimental setups.
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Figure 1: Schematic illustration of the certification procedure: given an input image x of class c and parametric transformation φ, we
sample Nmax augmented images {φ(x, α1), . . . , φ(x, αNmax)} and compute a lower bound on hc(x) using Clopper-Pearson test in form
ĥc(x) = B(α∗/2, n,Nmax − n+ 1), where B is Beta distribution and n is the number of augmented images φ(x, αj) for which the value of
the base classifier fc(φ(x, αj)) > 1

2
. Then, the certification condition from Theorem (1) is checked for the value ĥc(x).

2 Preliminaries

In this work, we focus on the task of image classification. Given
X ⊂ R

n as the set of input objects and Y = {1, 2, . . . C} as the set
of classes, the goal is to construct a mapping f̂ : X → Y assigning
a label to each input object. Following the convenient notation, this
mapping may be represented as

f̂(x) = argmax
i∈Y

fi(x), (2)

where f : X → [0, 1]C is a classification model and fi(x) refers to
i− th predicted component.

Suppose a parametric mapping φ : X ×Θ → X corresponds to a
semantic perturbation of the input of the classification model, where
Θ is the space of parameters of the perturbation. The goal of this
paper is to construct the framework to certify that a classifier is robust
at x ∈ X to the transformation φ(x, ·) for some set of parameters
B(β0), where φ(x, β0) = x for all x ∈ X .

A transform φ : X ×Θ → X is called resolvable [26] if for any
parameter α ∈ Θ there exists a continuously differentiable function
γ : Θ×Θ → Θ such that for all x ∈ X and all β ∈ Θ

φ(φ(x, α), β) = φ(x, γ(α, β)). (3)

In this work, we analyze the Lipschitz properties of randomized
smoothing to certify classification models against compositions of
resolvable transformations.

3 Proposed method

This section is devoted to the proposed certification approach and its
theoretical analysis.

3.1 Randomized smoothing for semantic
transformations

For the given base model f : X ⊂ R
n → [0, 1]C , input image x ∈ X ,

resolvable transformation φ : X×Θ → X with the resolving function
γ as defined in 3, we construct the smoothed classifier h(x) in the

form of expectation over perturbation density ρ(y|x) conditioned on
the observed sample x:

h(x) =

∫
Θ

f(φ(x, α))ρ(φ(x, α)|x)dα

=

∫
Rn

f(y)ρ(y|x)dy.
(4)

The goal of this paper is to present a procedure that guarantees a
smoothed model to be robust to semantic perturbations, that is

argmax
i∈{1,2,...C}

hi(x) = argmax
i∈{1,2,...C}

hi(φ(x, β)), (5)

for all β ∈ B(β0), where φ(x, β0) = x. One way to achieve robust-
ness to parametric perturbation is to bound the Lipschitz constant
of the classifier from Eq. (4) with respect to the transformation pa-
rameters. For this purpose, the density ρ(y|x) has to be continuously
differentiable with respect to perturbation parameters; otherwise, this
problem becomes ill-posed. To overcome this issue, we introduce
additional Gaussian smoothing.

Assuming that the perturbed sample has the form x̂ = φ(x, β),
we redefine an auxiliary variable y = φ(x̂, α) + ε, where ε ∼
N (0, σ2In) and the overall conditional probability density ρ(y|x̂)
in the form:

ρ(y|x̂) =
∫
Θ
exp

{
− ‖y−φ(x̂,α)‖22

2σ2

}
τ(α)dα

(2πσ2)
n
2

, (6)

where τ(α) is the smoothing distribution of the transformation. Fol-
lowing the literature, [14, 26], we sample α ∼ N (0, σ2

αId), and then
map it to the desired smoothing distribution (see Section 4 for details).
Here, d = dim(Θ) is the number of transformation parameters.

3.2 Robustness guarantee

In this section, we discuss the main theoretical result. Prior works
mainly concentrate on estimating global Lipschitz constants, which
may lead to loose guarantees. Instead, we provide certification condi-
tions based on local properties due to using perturbation-dependent
smoothing.
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Let x ∈ X be the input object of class c and assume that the
smoothed classifier h defined in Eq. (4) correctly classifies x with
significant confidence, i.e., hc(x) > 1

2
. Then, the following result

holds.

Theorem 1. Certification condition.
Let β(t) : [0, 1] → Θ be a smooth curve such that β(0) = β0

and β(1) = β. Then there exist mappings ξ : [0, 1] → R and
ĝ(β) : Θ → R such that if ĝ(β) < −ξ(1− hc(x)) + ξ(1/2), then h
is robust at x for all β ∈ β(t), where t ∈ [0, 1].

Proof. (Sketch)
Let x be a fixed input of class c. Reassign h(β) = hc(β) to ma-

nipulate only with c−th component of the smoothed classifier that
confidently and correctly classifies the ground truth class, namely, let
hc(β) >

1
2
.

To construct the certification criteria, we observe that a directional
derivative of h(β) with respect to β is bounded by the product of two
functions, namely p : [0, 1] → R and g : Θ → R≥0 such that

〈∇β h(β), u〉 =
∫
Rn

f(y)〈∇βρ(y|x̂), u〉dy ≤ p(h(β))g(β) (7)

for all u : ‖u‖2 = 1. Note that such p(·) and g(·) exist since h(·) is
assumed to be smooth (e.g., p ≡ 1, g(β) ≡ supu supβ〈∇βh(β), u〉).

〈∇βh(β), u〉 =
∫
Rn

f(y)η(y, x̂)ρ(y|x̂)dy, (8)

where η(y, x̂) = 〈∇β log ρ(y|x̂), u〉 and u is fixed. To estimate the
g̃(h, β) ≤ p(h)g(β) supremum in Eq. (8) given β, we solve an
optimization problem with a constraint on current fixed value of h,
that change limits of integration. Then, integrating this inequality
along a smooth curve β(t) : β(0) = β0, β(1) = β, we get∫

β(t)

〈∇βh(β), u〉dt ≤
∫
β(t)

p(h)g(β)dt. (9)

Introducing an auxiliary function

ξ(h) =

∫
1

p(h)
dh (10)

we get

ξ(h(β))− ξ(h(β0)) =

∫
β(t)

〈∇βξ(h(β)), u〉dt

≤
∫
β(t)

g(β)dt = ĝ(β).

(11)

Note that ξ is a monotonically increasing function w.r.t. h(β) accord-
ing to the definition (i.e. ρ(h) ≥ 0); and ĝ(β) is non-decreasing along
β(t) since g(β) is non-negative. Assuming that there exists β ∈ β(t)
such that

h �=c(β) >
1

2
, (12)

where h �=c(β) corresponds to the probability of assigning a sample
not to class c. Finally, using the monotonous property of ξ(h) yields
a contradiction, proving the result.

Remark 2. The full proof of the theorem is moved to the Appendix
[22] so as not to distract the reader. The assumption on hc(x) >

1
2

is given to interpret the multiclass classification problem as binary
classification (as the one-vs-all setting). The procedure of computing
the functions ξ and ĝ is described in the numerical evaluation section
3.3. Intuitively, these functions reflect the Lipschitz-continuity of the
smoothed classifier w.r.t. transformation parameters.

The theorem states that the smoothed classifier is robust at the
point x to transformation φ for all parameter values β ∈ β(t), if
the certification condition is verified for a single parameter value.
Note that the certified set of parameters is not necessarily in the ball
vicinity of the initial parameter value. This is the first approach for
non-ball-vicinity certification to our knowledge.

3.3 Numerical evaluation

The Theorem (1) anticipates a numerical procedure to compute certi-
fication functions ξ, ĝ. In this section, we describe this procedure in
detail.

Here and below, we assume that the input sample x is fixed and treat
smoothed model h as the function of the perturbation parameter β,
namely h(φ(x, β)) ≡ h(x̂) ≡ h(x, β) ≡ h(β) for simplicity. Within
our framework, functions ξ, ĝ are derived as the ones bounding
the smoothed classifier’s directional derivative with respect to the
perturbation parameter:

〈∇βh(β), β〉 ≤ g̃(h(β), β) ≤ p(h)g(β), (13)

where g̃(h(β), β) is an upper bound on the directional derivative. This
function is also bounded by the product of a function of h and the
function of β. If the functions p(h) and g(β) are known, the mappings
from Theorem 1 have the following form:

ξ(h) =

∫
1

p(h)
dh, ĝ(β) =

∫ 1

0

g(β(t))dt. (14)

It is worth mentioning that the function ξ(h) can be derived an-
alytically, for example, for additive transformations with τ(α) ∼
N (0, κ2), d = 1:

log ρ(y | x̂) =− 1

2
log(2π)− 1

2
log(κ2 + σ2)−

(y − x− β)2

2(σ2 + κ2)

(15)

η(y, x̂) =
∂

∂β
log ρ(y | x̂) = y − x− β

σ2 + κ2
, (16)

g̃(h, β) =
1√

σ2 + κ2
√
2π

e(erf
−1(1−2h))2 (17)

ξ(h) =
√

σ2 + κ2Φ−1(h), (18)

where Φ−1 is a standard Gaussian distribution’s inverse cumulative
density function. This result coincides with the one from [8, 26] if
σ = 0.

3.3.1 Bounding the directional derivative

A bound for the directional derivative in the form from Eq. (13) is
used to compute functions ξ, ĝ from Theorem (1). However, in the
case of a complicated form of conditional density from Eq. (6), it
may be unfeasible to construct an exact bound. Instead, we propose
to use a numerical procedure to bound directional derivatives of the
smoothed model. The gradient of the smoothed classifier with respect
to the parameters of transformation has the following form:

∇βh =

∫
f(y)∇βρ(y|x̂)dy

=

∫
f(y)η(y, x̂)ρ(y|x̂)dy,

(19)
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where η(y, x̂) = ∇β log ρ(y|x̂). Given fixed β, the problem of
bounding the directional derivative 〈∇βh(β), β〉 is equivalent to the
search of the worst base classifier, i.e., the one with the largest bound.
The search for the worst classifier q∗ may be formulated as the opti-
mization problem:

q∗ =argmax
q∈Q

∫
q(y)η(y, x̂)ρ(y|x̂)dy,

s.t. h(x̂) =

∫
q(y)ρ(y|x̂)dy,

(20)

where Q = {q|q : X → [0, 1]} is the set of all binary classifiers.
Under the specific choice of resolvable transform φ and perturbation
distribution τ(α), the problem from Eq. (20) admits the analytical
solution.In general, if the evaluation of ρ(y|x̂) and η(y, x̂) are avail-
able, the solution of the problem from Eq. (20) could be obtained
numerically.

Namely, suppose that M ∈ N is the number of independent and
identically distributed variables (q1, η1), . . . , (qM , ηM ) ∼ ρ(y|x̂)×
η(y, x̂). Then, the functional and constraint (respectively) from Eq.
(20) can be approximated in the following form:

∫
q(y)η(y, x̂)ρ(y|x̂)dy ≈ 1

M

M∑
k=1

qkηk,

∫
q(y)ρ(y|x̂)dy ≈ 1

M

M∑
k=1

qk.

(21)

An approximate solution to Eq. (20) is then obtained by sorting
ηi1 ≥ · · · ≥ ηiM and assigning{

qi1 = qi2 = · · · = qik = 1,

qik+1 = qik+2 = · · · = qM = 0.
(22)

In the Eq. (22), threshold index k is chosen such that{
|h(x̂)− Sk| ≤ |h(x̂)− Sk−1|,
|h(x̂)− Sk| ≤ |h(x̂)− Sk+1|,

(23)

where Sk = 1
M

∑k
j=1 qij .

For sufficiently large M , this scheme yields a tight approximation
of q∗ from Eq. (20), and, hence, for the bound w(h, β) from Eq. (13).

3.3.2 Density Estimation

Since the exact evaluation of the density from Eq. (6) is challeng-
ing, we emulate sampling from the conditional density ρ(y|x̂) by
estimating the gradient of the log-density η(y, x̂) from Eq. (19).

Namely, we use the first-order approximation for the resolvable
transform:

φ(x̂, α) =φ (x̂, α0) + J(α0) (α− α0)+

+O(‖α− α0‖2),
(24)

where J(α) = ∂φ
∂α

to establish Laplace’s posterior log-density esti-
mation:

log ρ(y|x̂) ≈ logC − ‖μ‖2
2σ2

+ 〈Mα0, α0〉−

− 1

2
log detM,

(25)

where M = JTJ + σ2I and μ = y − φ(x̂, α) + Jα and C is a
constant. Finally, an approximation for the initial point α0 from the
Eq. (25) is given via one iteration of the Gauss-Newton method [5]:

α0 ≈
(
J�J + σ2I

)−1

(y − φ(x̂, α) + Jα). (26)

While the above derivation admits an arbitrary parametric transform
φ, for the resolvable one, there exists a closed-form limit when σ → 0.
The last is summarized in the Lemma 1, allowing us to compute log-
density either analytically or through automatic differentiation tools.

Lemma 1. Let γ(α, β) be the resolving function: φ(φ(x, β), α) =
φ(x, γ(α, β)). Then, the formula for the logarithm of the conditional
density from Eq. (6) has the limit when σ → 0 in the form

log ρ(y|x̂) = −1

2
log det J�J + log τ(α), J =

∂φ

∂α
. (27)

If only the log-density log ρ(y|x̂) is known, the expression for
η(y, x̂) = ∇β log ρ(y|x̂) is given by the following lemma:

Lemma 2 (Gradient of log-density for resolvable transformations).
Suppose that the log-density log ρ(y|x̂) = z(α, β) = z(α(β), β) is
known. Then

η(y|x̂) = ∇βz =
∂z

∂β
− ∂z

∂α

(
∂γ

∂α

)†
∂γ

∂β
,

where γ is a resolving function of the transform: φ(φ(x, β), α) =
φ(x, γ(α, β)).

Remark 3. Proofs of the lemmas are moved to the Appendix [22] so
as not to distract the reader.

The overall procedure is presented in Algorithms 1, 2.

Algorithm 1 Numerical Estimation of ξ and ĝ for the Resolvable
Transform φ

Require: φ – resolvable input transformation,
Ns – number of samples for bound estimation,
γ – resolving function of φ,
β0 – identity parameters of φ,
α – smoothing parameter,
B – parametric grid of db points to estimate bounds on,
d – number of parameters of the transform,
x – a random input point.

Ensure: ξ(h), ĝ(β) – functions from Theorem 1.
1: {pi}Ns

i=0, {gj}dbj=0 ←
← COMPUTENORMEDBOUNDS(γ, β0, B,Ns, φ, d, x)

2: {ξi}Ns
i=0 ← 1

Ns
CUMULATIVESUMMATION

(
p−1
i

)
3: ξ(h) ← INTERPOLATE(LINSPACE(0, 1, Ns), ξi)

4: z ← INTERPOLATE
(
B, {gj}dbj=0

)
5: for βj ∈ B do

6: ĝj =
∫ 1

0
z((1− t)β0 + tβj)dt

7: end for

8: ĝ(β) = INTERPOLATE(B, {ĝj})
9: return ξ(h), ĝ(β)

4 Experiments

We conducted experiments with different ResNet architectures models
on ImageneNet, CIFAR-10, and CIFAR-100 datasets1. The models
1 Our code is publicly available on github.com/dkorzh10/general_lipschitz.
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Table 1: Quantitative results on ImageNet dataset. We report smoothing distributions and certified robust accuracy for our approach and
competitors’ methods. The best results are highlighted in bold, underlined denotes equivalent performance. Symbol ′′−′′ in the table corresponds
to the transformation in which a method does not certify the model against the given distribution parameters. We evaluate the CRA in the fixed
parameter range Rl ≤ β ≤ Rr for each transformation type. In the parameter column, c, b, γ, (Tx, Ty), rb represent contrast, brightness,
gamma-correction, translations, and Gaussian blur attacks’ parameters, respectively. CRA-TSS, CRA-MP, and CRA-GS correspond to the
certified accuracy of the methods from [26], [30], and [14] respectively. The architecture of the base model is Resnet-50.

Transform β Rl Rr Distribution CRA (ours) CRA-TSS CRA-MP CRA-GS

Brightness b -0.4 0.4 N (0, 0.3) 0.69 0.68 – 0.67

Contrast c 0.6 1.4 LogNorm(0, 0.3) 0.68 – 0.68 0.67

Blur rb 1 4 Exp(0.3) 0.59 0.59 – 0.0

Translation Tx, Ty -56 56 N (0, 50) 0.49 0.28 – 0.45

Gamma γ 1.0 2.0 Rayleigh(0.1) 0.66 – 0.54 –

Gamma γ 0.5 1.0 Rayleigh(0.1) 0.66 – 0.61 –

Contrast c 0.6 1.4 LogNorm(0, 0.6) 0.62 0.59 – 0.62Brightness b -0.4 0.4 N (0, 0.6)

Gamma γ 0.8 1.4 Rayleigh(0, 0.1) 0.62 – – –Contrast c 0.6 2.0 LogNorm(0, 0.1)

Brightness b -0.2 0.2 N (0, 0.4)
0.46 0.02 – –Translation Tx, Ty -56 56 N (0, 30)

Contrast c 0.8 1.2 LogNorm(0, 0.4) 0.09 – – –Translation Tx, Ty -25 25 N (0, 30)

Contrast c 0.8 1.2 LogNorm(0, 0.4)
0.06 – – –Brightness b -0.2 0.2 N (0, 04)

Translation Tx, Ty -15 15 N (0, 15)

Translation Tx, Ty -3 3 N (0, 10)

0.20 – – –Blur rb 1 3 Rayleigh(1)
Brightness b -0.1 0.1 N (0, 0.3)
Contrast c 0.95 1.05 LogNorm(0, 0.3)

were modified with an additional normalization layer as in [8, 26]. For
a fixed type of semantic transformation φ, we train base classifier f
with corresponding augmentation with the parameters sampled from
the distribution mentioned in Table 1 to make the base classifier f
more empirically robust to this type of transformation. Depending on
the transformation type, fine-tuning the pre-trained ImageNet models
with augmentations takes from 3 to 18 hours on a 1 Nvidia V-100
16GB GPU. The combination of the cross-entropy and consistency
losses from [15] is chosen as an optimization objective, and the fine-
tuning is conducted for 2 epochs using SGD (with the learning rate of
10−3 and momentum of 0.95).

To evaluate our approach, we compute certified robust accuracy
(CRA) of the smoothed classifier. Certified robust accuracy is a frac-
tion of correctly predicted images xi from the test set on which the
certification condition is met.

CRA is evaluated on 500 images sampled randomly from the test
dataset. To estimate the prediction of the smoothed classifier h, we
compute the lower bound of the Clopper-Pearson confidence inter-
val [7] over the sample size Nmax = 1000 and confidence level
α∗ = 10−3 for each initial image x. To estimate mappings ξ, ĝ, we
sample parameters α from the Gaussian distribution and map them to
the desired distribution (see Table 1) using the numerical scheme. In
our experiments, we sample parameters of additive transformations
from Normal distribution, multiplicative transformations – from Log-
Normal and Rayleigh distributions, and exponential transformations –
from Rayleigh distribution. In our approach, the certification proce-
dure is sample-agnostic: it has to be done only once for a pair “base
network – input transform”. Then, the certification in a new sample
is done at the cost of one forward pass of the smoothed network. To
estimate the computational complexity of the proposed method, we
report the time required for the certification in Table 2. Visualization

of the results of the certification is presented in Figure 2.

Table 2: Computation time in seconds for the certification, ImageNet
dataset. We use Nmax = 1000 samples for smoothing. We report
construction (constr) and certification (cert) time for our approach.
We measured the average time required to certify 500 images for our
method, TSS [26] and MP [30].

Transform Ours Ours TSS MPconstr cert

Contrast Brightness 170 1350 1675 –
Brightness Translation 200 2905 1500 –
Translation 33.2 1452 1505 –
Gamma 3.4 1450 – 1470

We evaluated our approach against [26, 30, 14] and present the
results in Tables 1 and 3. Our method achieves state-of-the-art robust-
ness certificates for the majority of transformations, such as Gamma-
Contrast and Contrast-Translation.

It is worth mentioning that for some compositions of transfor-
mations (namely, for ones involving both contrast adjustment in a
wide range and image translations), the resulting classifier is “over
smoothed” – the estimation of probability hc(x̂) of ground truth class
is often less than 0.5. Hence, the necessary condition for our method’s
certification (hc(x̂) > 0.5) is often not satisfied, leading to underesti-
mated CRA.

5 Limitations

This section is devoted to discussing the limitations of the proposed
approach.
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(a) Contrast and Brightness (b) Gamma and Contrast (c) Translation

Figure 2: Visualization of certified robust accuracy for the subset of parameter space for different transformations, ImageNet dataset. By design
of our approach, if the classifier is certified at the input point x for the parameter value β, it is certified for all parameters β∗ ∈ [β0, β]. The
values of CRA are presented in the corresponding color bars. Remark: the certified robust accuracy against the given transform in Table 1 is the
infimum of CRAs on the corresponding plot.

Algorithm 2 Compute Normed Bounds

Require: φ – resolvable input transformation,
Ns – number of samples for bound estimation,
γ – resolving function of φ,
β0 – identity parameters of φ,
α – smoothing parameter,
B – parametric grid of db points to estimate bounds on,
d – number of parameters of the transform,
x – a random input point.

Ensure: {pi}Ns
i=0, {gj}dbj=0 – point-wise estimation of the gradient

bound from Eq. (13).
1: for βj ∈ B do

2: cj = N (0, Id)
3: z ← LOGRHO(x, γ, βj , cj , φ,Ns) {Equation (25), Lemma 1}

4: η ← GRADLOGRHO(x, γ, βj , α, φ,Ns, z) {Equation (25),
Lemma 2}

5: t ← (βj − β0)/‖βj − β0‖
6: η ← ηt
7: η ← η − MEAN(η)
8: η ← SORT(η, reverse)
9: boundj,: ← CUMULATIVESUMMATION(η)/Ns

10: gj ← maxi(boundj,i)‖β0 − βj‖
11: boundj,: ← boundj,:/maxi(boundj,i)
12: end for

13: pi = maxj boundji

14: return {pi}Ns
i=0, {gj}dbj=0

5.1 Non-resolvable transformations

The major limitation of the proposed approach is that it is suitable to
certify models only against resolvable perturbations. In the case of
non-resolvable transformation, the conditional density from Eq. (6)
may not be a continuously differentiable function with respect to the
transformation parameter in limit σ → 0.

5.2 Probabilistic certification

Recall that our approach is based on the randomized smoothing tech-
nique; hence, the certified model can not be evaluated exactly. In our
experimental setting, for the sample x of class c, the true value of
the smoothed classifier hc(x) is estimated as the lower bound of the
Clopper-Pearson confidence interval [7] over Nmax samples for some
confidence level α∗. Namely, ĥ(x) = B(α∗/2, n,Nmax − n + 1),

Table 3: Certified robust accuracy (CRA) for some attacks on CIFAR-
10 and CIFAR-100 datasets. The best results are highlighted in bold,
underlined denotes equivalent performance. For the contrast trans-
form, our method vs. MP has 86.2 vs. 86.2 and 45.6 vs. 46.0 for
CIFAR-10 and CIFAR-100, respectively. The architecture of the base
model is Resnet-110.

Transform CIFAR-10 CIFAR-100
Ours TSS GS Ours TSS GS

Brightness 86.8 86.6 85.6 45.6 43.8 43.2
Contrast 86.2 – 85.6 45.6 – 43.2
Blur 74.2 75.4 0.0 39.8 41.8 0.0
CB 85.5 83.4 85.5 41.6 38.0 41.4

where B is Beta distribution, Nmax is the sample size and n is the
number of perturbations for which f(φ(x, αj)) > 1

2
. Thus, our ap-

proach produces certificates with probability p ≥ 1− α∗, where α∗

is the upper bound on the probability to return an overestimated lower
bound for the value h(x). For comparison, in our settings, we choose
α∗ = 10−3 and Nmax = 1000.

5.3 Error Analysis

While certain transformations admit analytical solutions, numerical
schemes inherently carry errors. However, attaining the desired pre-
cision is feasible by augmenting the sample size and refining the
approximation with additional points 3, 4. Considering these figures,
it is visible that the impact of varying Ns on the behavior of ξ is
relatively inconsequential for sufficiently large values. Similar obser-
vations can be made for ĝ. Assuming a fixed brightness parameter
of β0 and varying the contrast parameter, Figure 4 demonstrates that

Figure 3: ξ(h) v.s. Ns for the Contrast-Brightness transform
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Figure 4: ĝ(β, 0) v.s. db for the Contrast-Brightness transform

while differences exist, they remain insignificant. Analogous results
may be anticipated by varying the brightness parameter instead of the
contrast.

It is worth mentioning that the estimation of the error of empiri-
cal CDF and inverse empirical CDF (22), (22), might be done, for
example, by applying Dvoretzky–Kiefer–Wolfowitz inequality.

The error estimation of numerical methods, particularly the more
detailed estimation of the error of empirical cumulative distribution
function and its inverse derived from numerical methods, is moved to
the Appendix [22].

6 Related Work

6.1 Adversarial attacks and empirical defenses

The vulnerability of deep learning models to specifically crafted im-
perceptible additive transformations was discovered in [36, 4]. In
[10], the fast gradient sign method was proposed, and the empirical
effectiveness of adversarial training against such transformations was
discussed. Lately, several ways to exploit this vulnerability in the
white-box [29] and black-box [13] settings were proposed. Many ap-
plications of adversarial attacks were lately studied, especially in the
real-world setting: face recognition [21, 32], detection [20], segmen-
tation [19], and other supervised settings were shown to be affected
by this vulnerability. At the same time, empirical defenses [27, 16, 9]
against such attacks were proposed. They are mainly narrowed to a
specific attack setting or crafting the worst-case examples and includ-
ing ones in the training set. However, such defenses did not provide
enough guarantees to unseen attacks, and consequently, new adap-
tive attacks were created to overcome previously suggested defenses,
causing an arms race.

6.2 Approaches for provable certification

Recent research in the field of certified robustness incorporates plenty
of verification protocols [25]. New approaches are often introduced
during the competition on the verification of neural networks [6].
There are two major approaches to certify classifiers against additive
transformations: deterministic [12, 40] and probabilistic [8, 23]. The
deterministic approach guarantees that the model is robust at some
point x if there is no point from the vicinity of x such that it is
classified differently from x.

In contrast, probabilistic approaches are mainly based on random-
ized smoothing and utilize global [11, 38] or local [42] Lipschitz
properties of the smoothed classifier. However, since a smoothed
model can not be exactly evaluated, all the robustness guarantees hold
with some probability depending on the finite sample estimation of
the smoothed model [8]. Randomized smoothing is also applied in

different domains, for example, as a defense against text adversarial
attacks [45], and automatic speech recognition defense [31]. Solver-
based deterministic approaches verify the model’s robustness entirely
but are not scalable due to computation complexity and usually are
restricted to simple architectures [18]. In contrast, linear relaxation
approaches do not provide the tightest possible robustness certificates
but are model-agnostic and applicable to large datasets [42]. The
other deterministic methods are usually based on particular properties
of neural networks, such as Lipschitz continuity [24, 38] or curva-
ture of the decision boundary [35]. On the other hand, probabilistic
approaches usually utilize an assumption about the smoothness of
the model and provide presented state-of-the-art certification results
against additive transformations [8, 23].

Semantic transformations are another important class of input per-
turbations, which fool deep learning models easily [17]. Certified
robustness under this threat model is still an open issue [26, 2]. Re-
cently, a few approaches to tackle semantic transformations were
proposed that are based on enumeration [34], interval bound prop-
agation [3, 28], and randomized smoothing [26, 14]. It is known
that different relaxation approaches provide worse results than the
ones based on smoothing [44]. On the other hand, when determin-
istic guarantees are infeasible, probabilistic approaches [33, 41] to
estimate the probability of the model failing when an attack is pa-
rameterized provide some insights about the model’s robustness. It is
worth mentioning that empirical robustness [37] may be improved by
incorporating adversarial training, which might be time-consuming
on large-scale datasets [37].

A promising way to tackle the certified robustness against semantic
perturbations is based on transformation-specific randomized smooth-
ing [26, 14]. The idea of transformation-specific smoothing is to
consider the Lipschitz continuity of a smoothed model with respect
to the transformation parameters. According to [26], this type of
smoothing may be applied to two categories of transformations: re-
solvable and differentially resolvable, where the last implies taking
into account interpolation errors. However, previous attempts to ap-
ply transformation-specific smoothing to certify classifiers against
semantic transformations might be infeasible for more complicated
transformations [26] or require a surrogate network to represent the
transformation and not scalable to large datasets [14]. As a separate
application of transformation-dependent smoothing, [30] specifically
studied Gamma correction and Contrast change as multiplicative
transformations. This work provides asymmetrical guarantees and
estimates the certification quality, considering realistic image com-
pression into 8-bit RGB.

7 Conclusion and future work

In this paper, we propose General Lipschitz, a novel framework to cer-
tify neural networks against resolvable transformations and their com-
positions. Based on transformation-dependent randomized smoothing,
our approach yields robustness certificates for complex parameterized
subsets of parameter space. One of the advantages of the framework
is the numerical procedure that produces certificates for a parameter
subset by verifying certification condition in a single point of param-
eter space. Our experimental study shows that the proposed method
achieves certified robust accuracy comparable to the state-of-the-art
techniques and outperforms them in some experimental settings. Our
approach allows us to certify models against resolvable transforma-
tions only, so one possible direction for future work is to extend it to
the case of differentially resolvable transformations. Another direction
is to apply the approach to object detection or segmentation tasks.
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